Spaces:
Sleeping
Sleeping
Update app.cpp
Browse files
app.cpp
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
// app.cpp - Modified version
|
2 |
#include <opencv2/opencv.hpp>
|
3 |
#include <algorithm>
|
4 |
#include <cmath>
|
@@ -11,6 +11,179 @@
|
|
11 |
#include <sstream>
|
12 |
#include <string>
|
13 |
#include <fstream>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
// Function to compute the theoretical max value
|
16 |
double compute_theoretical_max(double a, double y, double beta, int grid_points, double tolerance) {
|
@@ -174,99 +347,139 @@ void save_as_json(const std::string& filename,
|
|
174 |
}
|
175 |
|
176 |
int main(int argc, char* argv[]) {
|
177 |
-
//
|
178 |
-
if (argc
|
179 |
-
std::cerr << "Usage: " << argv[0] << "
|
180 |
return 1;
|
181 |
}
|
182 |
|
183 |
-
|
184 |
-
int p = std::stoi(argv[2]);
|
185 |
-
double a = std::stod(argv[3]);
|
186 |
-
double y = std::stod(argv[4]);
|
187 |
-
int fineness = std::stoi(argv[5]);
|
188 |
-
int theory_grid_points = std::stoi(argv[6]);
|
189 |
-
double theory_tolerance = std::stod(argv[7]);
|
190 |
-
std::string output_file = argv[8];
|
191 |
-
const double b = 1.0;
|
192 |
-
|
193 |
-
std::cout << "Running with parameters: n = " << n << ", p = " << p
|
194 |
-
<< ", a = " << a << ", y = " << y << ", fineness = " << fineness
|
195 |
-
<< ", theory_grid_points = " << theory_grid_points
|
196 |
-
<< ", theory_tolerance = " << theory_tolerance << std::endl;
|
197 |
-
std::cout << "Output will be saved to: " << output_file << std::endl;
|
198 |
-
|
199 |
-
// βββ Beta range parameters ββββββββββββββββββββββββββββββββββββββββ
|
200 |
-
const int num_beta_points = fineness; // Controlled by fineness parameter
|
201 |
-
std::vector<double> beta_values(num_beta_points);
|
202 |
-
for (int i = 0; i < num_beta_points; ++i) {
|
203 |
-
beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
|
204 |
-
}
|
205 |
-
|
206 |
-
// βββ Storage for results ββββββββββββββββββββββββββββββββββββββββ
|
207 |
-
std::vector<double> max_eigenvalues(num_beta_points);
|
208 |
-
std::vector<double> min_eigenvalues(num_beta_points);
|
209 |
-
std::vector<double> theoretical_max_values(num_beta_points);
|
210 |
-
std::vector<double> theoretical_min_values(num_beta_points);
|
211 |
-
|
212 |
-
// βββ RandomβGaussian X and S_n ββββββββββββββββββββββββββββββββ
|
213 |
-
std::mt19937_64 rng{std::random_device{}()};
|
214 |
-
std::normal_distribution<double> norm(0.0, 1.0);
|
215 |
-
|
216 |
-
cv::Mat X(p, n, CV_64F);
|
217 |
-
for(int i = 0; i < p; ++i)
|
218 |
-
for(int j = 0; j < n; ++j)
|
219 |
-
X.at<double>(i,j) = norm(rng);
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
std::
|
234 |
-
std::shuffle(diags.begin(), diags.end(), rng);
|
235 |
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
|
|
239 |
}
|
240 |
|
241 |
-
// βββ
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
-
|
252 |
-
|
|
|
253 |
|
254 |
-
|
255 |
-
double progress = static_cast<double>(beta_idx + 1) / num_beta_points;
|
256 |
-
std::cout << "PROGRESS:" << progress << std::endl;
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
|
|
262 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
}
|
264 |
|
265 |
-
// Save data as JSON for Python to read
|
266 |
-
save_as_json(output_file, beta_values, max_eigenvalues, min_eigenvalues,
|
267 |
-
theoretical_max_values, theoretical_min_values);
|
268 |
-
|
269 |
-
std::cout << "Data saved to " << output_file << std::endl;
|
270 |
-
|
271 |
return 0;
|
272 |
}
|
|
|
1 |
+
// app.cpp - Modified version with cubic equation solver
|
2 |
#include <opencv2/opencv.hpp>
|
3 |
#include <algorithm>
|
4 |
#include <cmath>
|
|
|
11 |
#include <sstream>
|
12 |
#include <string>
|
13 |
#include <fstream>
|
14 |
+
#include <complex>
|
15 |
+
|
16 |
+
// Struct to hold cubic equation roots
|
17 |
+
struct CubicRoots {
|
18 |
+
std::complex<double> root1;
|
19 |
+
std::complex<double> root2;
|
20 |
+
std::complex<double> root3;
|
21 |
+
};
|
22 |
+
|
23 |
+
// Function to solve cubic equation: az^3 + bz^2 + cz + d = 0
|
24 |
+
CubicRoots solveCubic(double a, double b, double c, double d) {
|
25 |
+
// Handle special case for a == 0 (quadratic)
|
26 |
+
if (std::abs(a) < 1e-14) {
|
27 |
+
CubicRoots roots;
|
28 |
+
// For a quadratic equation: bz^2 + cz + d = 0
|
29 |
+
double discriminant = c * c - 4.0 * b * d;
|
30 |
+
if (discriminant >= 0) {
|
31 |
+
double sqrtDiscriminant = std::sqrt(discriminant);
|
32 |
+
roots.root1 = std::complex<double>((-c + sqrtDiscriminant) / (2.0 * b), 0.0);
|
33 |
+
roots.root2 = std::complex<double>((-c - sqrtDiscriminant) / (2.0 * b), 0.0);
|
34 |
+
roots.root3 = std::complex<double>(1e99, 0.0); // Infinity for third root
|
35 |
+
} else {
|
36 |
+
double real = -c / (2.0 * b);
|
37 |
+
double imag = std::sqrt(-discriminant) / (2.0 * b);
|
38 |
+
roots.root1 = std::complex<double>(real, imag);
|
39 |
+
roots.root2 = std::complex<double>(real, -imag);
|
40 |
+
roots.root3 = std::complex<double>(1e99, 0.0); // Infinity for third root
|
41 |
+
}
|
42 |
+
return roots;
|
43 |
+
}
|
44 |
+
|
45 |
+
// Normalize equation: z^3 + (b/a)z^2 + (c/a)z + (d/a) = 0
|
46 |
+
double p = b / a;
|
47 |
+
double q = c / a;
|
48 |
+
double r = d / a;
|
49 |
+
|
50 |
+
// Substitute z = t - p/3 to get t^3 + pt^2 + qt + r = 0
|
51 |
+
double p1 = q - p * p / 3.0;
|
52 |
+
double q1 = r - p * q / 3.0 + 2.0 * p * p * p / 27.0;
|
53 |
+
|
54 |
+
// Calculate discriminant
|
55 |
+
double D = q1 * q1 / 4.0 + p1 * p1 * p1 / 27.0;
|
56 |
+
|
57 |
+
// Precompute values
|
58 |
+
const double two_pi = 2.0 * M_PI;
|
59 |
+
const double third = 1.0 / 3.0;
|
60 |
+
const double p_over_3 = p / 3.0;
|
61 |
+
|
62 |
+
CubicRoots roots;
|
63 |
+
|
64 |
+
if (D > 1e-10) { // One real root and two complex conjugate roots
|
65 |
+
double sqrtD = std::sqrt(D);
|
66 |
+
double u = std::cbrt(-q1 / 2.0 + sqrtD);
|
67 |
+
double v = std::cbrt(-q1 / 2.0 - sqrtD);
|
68 |
+
|
69 |
+
// Real root
|
70 |
+
roots.root1 = std::complex<double>(u + v - p_over_3, 0.0);
|
71 |
+
|
72 |
+
// Complex conjugate roots
|
73 |
+
double real_part = -(u + v) / 2.0 - p_over_3;
|
74 |
+
double imag_part = (u - v) * std::sqrt(3.0) / 2.0;
|
75 |
+
roots.root2 = std::complex<double>(real_part, imag_part);
|
76 |
+
roots.root3 = std::complex<double>(real_part, -imag_part);
|
77 |
+
}
|
78 |
+
else if (D < -1e-10) { // Three distinct real roots
|
79 |
+
double angle = std::acos(-q1 / 2.0 * std::sqrt(-27.0 / (p1 * p1 * p1)));
|
80 |
+
double magnitude = 2.0 * std::sqrt(-p1 / 3.0);
|
81 |
+
|
82 |
+
roots.root1 = std::complex<double>(magnitude * std::cos(angle / 3.0) - p_over_3, 0.0);
|
83 |
+
roots.root2 = std::complex<double>(magnitude * std::cos((angle + two_pi) / 3.0) - p_over_3, 0.0);
|
84 |
+
roots.root3 = std::complex<double>(magnitude * std::cos((angle + 2.0 * two_pi) / 3.0) - p_over_3, 0.0);
|
85 |
+
}
|
86 |
+
else { // D β 0, at least two equal roots
|
87 |
+
double u = std::cbrt(-q1 / 2.0);
|
88 |
+
|
89 |
+
roots.root1 = std::complex<double>(2.0 * u - p_over_3, 0.0);
|
90 |
+
roots.root2 = std::complex<double>(-u - p_over_3, 0.0);
|
91 |
+
roots.root3 = roots.root2; // Duplicate root
|
92 |
+
}
|
93 |
+
|
94 |
+
return roots;
|
95 |
+
}
|
96 |
+
|
97 |
+
// Function to compute the cubic equation for Im(s) vs z
|
98 |
+
std::vector<std::vector<double>> computeImSVsZ(double a, double y, double beta, int num_points) {
|
99 |
+
std::vector<double> z_values(num_points);
|
100 |
+
std::vector<double> ims_values1(num_points);
|
101 |
+
std::vector<double> ims_values2(num_points);
|
102 |
+
std::vector<double> ims_values3(num_points);
|
103 |
+
|
104 |
+
// Generate z values from 0 to 10 (or adjust range as needed)
|
105 |
+
double z_start = 0.01; // Avoid z=0 to prevent potential division issues
|
106 |
+
double z_end = 10.0;
|
107 |
+
double z_step = (z_end - z_start) / (num_points - 1);
|
108 |
+
|
109 |
+
for (int i = 0; i < num_points; ++i) {
|
110 |
+
double z = z_start + i * z_step;
|
111 |
+
z_values[i] = z;
|
112 |
+
|
113 |
+
// Coefficients for the cubic equation:
|
114 |
+
// zas^3 + [z(a+1)+a(1-y)]s^2 + [z+(a+1)-y-yΞ²(a-1)]s + 1 = 0
|
115 |
+
double coef_a = z * a;
|
116 |
+
double coef_b = z * (a + 1) + a * (1 - y);
|
117 |
+
double coef_c = z + (a + 1) - y - y * beta * (a - 1);
|
118 |
+
double coef_d = 1.0;
|
119 |
+
|
120 |
+
// Solve the cubic equation
|
121 |
+
CubicRoots roots = solveCubic(coef_a, coef_b, coef_c, coef_d);
|
122 |
+
|
123 |
+
// Extract imaginary parts
|
124 |
+
ims_values1[i] = std::abs(roots.root1.imag());
|
125 |
+
ims_values2[i] = std::abs(roots.root2.imag());
|
126 |
+
ims_values3[i] = std::abs(roots.root3.imag());
|
127 |
+
}
|
128 |
+
|
129 |
+
// Create output vector
|
130 |
+
std::vector<std::vector<double>> result = {
|
131 |
+
z_values, ims_values1, ims_values2, ims_values3
|
132 |
+
};
|
133 |
+
|
134 |
+
return result;
|
135 |
+
}
|
136 |
+
|
137 |
+
// Function to save Im(s) vs z data as JSON
|
138 |
+
void saveImSDataAsJSON(const std::string& filename,
|
139 |
+
const std::vector<std::vector<double>>& data) {
|
140 |
+
std::ofstream outfile(filename);
|
141 |
+
|
142 |
+
if (!outfile.is_open()) {
|
143 |
+
std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl;
|
144 |
+
return;
|
145 |
+
}
|
146 |
+
|
147 |
+
// Start JSON object
|
148 |
+
outfile << "{\n";
|
149 |
+
|
150 |
+
// Write z values
|
151 |
+
outfile << " \"z_values\": [";
|
152 |
+
for (size_t i = 0; i < data[0].size(); ++i) {
|
153 |
+
outfile << data[0][i];
|
154 |
+
if (i < data[0].size() - 1) outfile << ", ";
|
155 |
+
}
|
156 |
+
outfile << "],\n";
|
157 |
+
|
158 |
+
// Write Im(s) values for first root
|
159 |
+
outfile << " \"ims_values1\": [";
|
160 |
+
for (size_t i = 0; i < data[1].size(); ++i) {
|
161 |
+
outfile << data[1][i];
|
162 |
+
if (i < data[1].size() - 1) outfile << ", ";
|
163 |
+
}
|
164 |
+
outfile << "],\n";
|
165 |
+
|
166 |
+
// Write Im(s) values for second root
|
167 |
+
outfile << " \"ims_values2\": [";
|
168 |
+
for (size_t i = 0; i < data[2].size(); ++i) {
|
169 |
+
outfile << data[2][i];
|
170 |
+
if (i < data[2].size() - 1) outfile << ", ";
|
171 |
+
}
|
172 |
+
outfile << "],\n";
|
173 |
+
|
174 |
+
// Write Im(s) values for third root
|
175 |
+
outfile << " \"ims_values3\": [";
|
176 |
+
for (size_t i = 0; i < data[3].size(); ++i) {
|
177 |
+
outfile << data[3][i];
|
178 |
+
if (i < data[3].size() - 1) outfile << ", ";
|
179 |
+
}
|
180 |
+
outfile << "]\n";
|
181 |
+
|
182 |
+
// Close JSON object
|
183 |
+
outfile << "}\n";
|
184 |
+
|
185 |
+
outfile.close();
|
186 |
+
}
|
187 |
|
188 |
// Function to compute the theoretical max value
|
189 |
double compute_theoretical_max(double a, double y, double beta, int grid_points, double tolerance) {
|
|
|
347 |
}
|
348 |
|
349 |
int main(int argc, char* argv[]) {
|
350 |
+
// Check command mode
|
351 |
+
if (argc < 2) {
|
352 |
+
std::cerr << "Usage: " << argv[0] << " [eigenvalues|cubic] [parameters...]" << std::endl;
|
353 |
return 1;
|
354 |
}
|
355 |
|
356 |
+
std::string mode = argv[1];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
+
if (mode == "eigenvalues") {
|
359 |
+
// βββ Eigenvalue analysis mode βββββββββββββββββββββββββββββββββββββββββββ
|
360 |
+
if (argc != 9) {
|
361 |
+
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
|
362 |
+
return 1;
|
363 |
+
}
|
364 |
|
365 |
+
int n = std::stoi(argv[2]);
|
366 |
+
int p = std::stoi(argv[3]);
|
367 |
+
double a = std::stod(argv[4]);
|
368 |
+
double y = std::stod(argv[5]);
|
369 |
+
int fineness = std::stoi(argv[6]);
|
370 |
+
int theory_grid_points = std::stoi(argv[7]);
|
371 |
+
double theory_tolerance = std::stod(argv[8]);
|
372 |
+
std::string output_file = argv[9];
|
373 |
+
const double b = 1.0;
|
374 |
|
375 |
+
std::cout << "Running eigenvalue analysis with parameters: n = " << n << ", p = " << p
|
376 |
+
<< ", a = " << a << ", y = " << y << ", fineness = " << fineness
|
377 |
+
<< ", theory_grid_points = " << theory_grid_points
|
378 |
+
<< ", theory_tolerance = " << theory_tolerance << std::endl;
|
379 |
+
std::cout << "Output will be saved to: " << output_file << std::endl;
|
|
|
380 |
|
381 |
+
// βββ Beta range parameters ββββββββββββββββββββββββββββββββββββββββ
|
382 |
+
const int num_beta_points = fineness; // Controlled by fineness parameter
|
383 |
+
std::vector<double> beta_values(num_beta_points);
|
384 |
+
for (int i = 0; i < num_beta_points; ++i) {
|
385 |
+
beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
|
386 |
}
|
387 |
|
388 |
+
// βββ Storage for results ββββββββββββββββββββββββββββββββββββββββ
|
389 |
+
std::vector<double> max_eigenvalues(num_beta_points);
|
390 |
+
std::vector<double> min_eigenvalues(num_beta_points);
|
391 |
+
std::vector<double> theoretical_max_values(num_beta_points);
|
392 |
+
std::vector<double> theoretical_min_values(num_beta_points);
|
393 |
+
|
394 |
+
// βββ RandomβGaussian X and S_n ββββββββββββββββββββββββββββββββ
|
395 |
+
std::mt19937_64 rng{std::random_device{}()};
|
396 |
+
std::normal_distribution<double> norm(0.0, 1.0);
|
397 |
|
398 |
+
cv::Mat X(p, n, CV_64F);
|
399 |
+
for(int i = 0; i < p; ++i)
|
400 |
+
for(int j = 0; j < n; ++j)
|
401 |
+
X.at<double>(i,j) = norm(rng);
|
402 |
+
|
403 |
+
// βββ Process each beta value βββββββββββββββββββββββββββββββββ
|
404 |
+
for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) {
|
405 |
+
double beta = beta_values[beta_idx];
|
406 |
+
|
407 |
+
// Compute theoretical values with customizable precision
|
408 |
+
theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance);
|
409 |
+
theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance);
|
410 |
+
|
411 |
+
// βββ Build T_n matrix ββββββββββββββββββββββββββββββββββ
|
412 |
+
int k = static_cast<int>(std::floor(beta * p));
|
413 |
+
std::vector<double> diags(p);
|
414 |
+
std::fill_n(diags.begin(), k, a);
|
415 |
+
std::fill_n(diags.begin()+k, p-k, b);
|
416 |
+
std::shuffle(diags.begin(), diags.end(), rng);
|
417 |
+
|
418 |
+
cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F);
|
419 |
+
for(int i = 0; i < p; ++i){
|
420 |
+
T_n.at<double>(i,i) = diags[i];
|
421 |
+
}
|
422 |
+
|
423 |
+
// βββ Form B_n = (1/n) * X * T_n * X^T ββββββββββββ
|
424 |
+
cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n);
|
425 |
+
|
426 |
+
// βββ Compute eigenvalues of B ββββββββββββββββββββββββββββ
|
427 |
+
cv::Mat eigVals;
|
428 |
+
cv::eigen(B, eigVals);
|
429 |
+
std::vector<double> eigs(n);
|
430 |
+
for(int i = 0; i < n; ++i)
|
431 |
+
eigs[i] = eigVals.at<double>(i, 0);
|
432 |
+
|
433 |
+
max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end());
|
434 |
+
min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end());
|
435 |
+
|
436 |
+
// Progress indicator for Streamlit
|
437 |
+
double progress = static_cast<double>(beta_idx + 1) / num_beta_points;
|
438 |
+
std::cout << "PROGRESS:" << progress << std::endl;
|
439 |
+
|
440 |
+
// Less verbose output for Streamlit
|
441 |
+
if (beta_idx % 20 == 0 || beta_idx == num_beta_points - 1) {
|
442 |
+
std::cout << "Processing beta = " << beta
|
443 |
+
<< " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl;
|
444 |
+
}
|
445 |
+
}
|
446 |
|
447 |
+
// Save data as JSON for Python to read
|
448 |
+
save_as_json(output_file, beta_values, max_eigenvalues, min_eigenvalues,
|
449 |
+
theoretical_max_values, theoretical_min_values);
|
450 |
|
451 |
+
std::cout << "Data saved to " << output_file << std::endl;
|
|
|
|
|
452 |
|
453 |
+
} else if (mode == "cubic") {
|
454 |
+
// βββ Cubic equation analysis mode βββββββββββββββββββββββββββββββββββββββββββ
|
455 |
+
if (argc != 6) {
|
456 |
+
std::cerr << "Usage: " << argv[0] << " cubic <a> <y> <beta> <num_points> <output_file>" << std::endl;
|
457 |
+
return 1;
|
458 |
}
|
459 |
+
|
460 |
+
double a = std::stod(argv[2]);
|
461 |
+
double y = std::stod(argv[3]);
|
462 |
+
double beta = std::stod(argv[4]);
|
463 |
+
int num_points = std::stoi(argv[5]);
|
464 |
+
std::string output_file = argv[6];
|
465 |
+
|
466 |
+
std::cout << "Running cubic equation analysis with parameters: a = " << a
|
467 |
+
<< ", y = " << y << ", beta = " << beta << ", num_points = " << num_points << std::endl;
|
468 |
+
std::cout << "Output will be saved to: " << output_file << std::endl;
|
469 |
+
|
470 |
+
// Compute Im(s) vs z data
|
471 |
+
std::vector<std::vector<double>> ims_data = computeImSVsZ(a, y, beta, num_points);
|
472 |
+
|
473 |
+
// Save to JSON
|
474 |
+
saveImSDataAsJSON(output_file, ims_data);
|
475 |
+
|
476 |
+
std::cout << "Cubic equation data saved to " << output_file << std::endl;
|
477 |
+
|
478 |
+
} else {
|
479 |
+
std::cerr << "Unknown mode: " << mode << std::endl;
|
480 |
+
std::cerr << "Use 'eigenvalues' or 'cubic'" << std::endl;
|
481 |
+
return 1;
|
482 |
}
|
483 |
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
return 0;
|
485 |
}
|