diff --git "a/app.py" "b/app.py" --- "a/app.py" +++ "b/app.py" @@ -4,832 +4,21 @@ import numpy as np import plotly.graph_objects as go from scipy.optimize import fsolve from scipy.stats import gaussian_kde -import os -import tempfile -import subprocess -import sys -import importlib.util -import time -from datetime import timedelta -import mpmath # Direct import instead of through sympy - -# Set high precision for mpmath calculations -mpmath.mp.dps = 50 # 50 digits of precision - -# Initialize session state for persistent UI elements -if 'initialized' not in st.session_state: - st.session_state.initialized = True - st.session_state.progress_containers = {} - st.session_state.status_texts = {} - st.session_state.progress_values = {} - st.session_state.start_times = {} # Configure Streamlit for Hugging Face Spaces st.set_page_config( - page_title="Cubic Root Analysis (C++ Accelerated)", + page_title="Cubic Root Analysis", layout="wide", initial_sidebar_state="collapsed" ) -# Create containers for main UI elements that should persist -header_container = st.empty() -subtitle_container = st.empty() -cpp_status_container = st.empty() - -# Display header - won't be refreshed later -with header_container: - st.title("Cubic Root Analysis (C++ Accelerated)") - -with subtitle_container: - st.markdown("Analyze cubic equations with high-precision calculations and visualizations") - - -# Advanced Progress Bar Class that persists across refreshes -class AdvancedProgressBar: - def __init__(self, key, total_steps, description="Processing"): - self.key = key - self.total_steps = total_steps - self.description = description - - # Initialize in session state if not present - if key not in st.session_state.progress_containers: - st.session_state.progress_containers[key] = st.empty() - st.session_state.status_texts[key] = st.empty() - st.session_state.progress_values[key] = 0 - st.session_state.start_times[key] = time.time() - - def update(self, step=None, description=None): - if step is not None: - st.session_state.progress_values[self.key] = step - else: - st.session_state.progress_values[self.key] += 1 - - if description: - self.description = description - - # Calculate progress percentage - progress = min(st.session_state.progress_values[self.key] / self.total_steps, 1.0) - - # Update progress bar - st.session_state.progress_containers[self.key].progress(progress) - - # Calculate time metrics - elapsed = time.time() - st.session_state.start_times[self.key] - elapsed_str = str(timedelta(seconds=int(elapsed))) - - if progress > 0: - eta = elapsed * (1 - progress) / progress - eta_str = str(timedelta(seconds=int(eta))) - else: - eta_str = "Calculating..." - - # Update status text - status_text = (f"{self.description} - Step {st.session_state.progress_values[self.key]} of {self.total_steps} " - f"({progress*100:.1f}%) | Elapsed: {elapsed_str} | ETA: {eta_str}") - st.session_state.status_texts[self.key].info(status_text) - - def complete(self): - # Mark as completed - st.session_state.progress_containers[self.key].progress(1.0) - elapsed = time.time() - st.session_state.start_times[self.key] - elapsed_str = str(timedelta(seconds=int(elapsed))) - st.session_state.status_texts[self.key].success(f"✅ {self.description} completed in {elapsed_str}") - - def clear(self): - # Remove from session state - if self.key in st.session_state.progress_containers: - st.session_state.progress_containers[self.key].empty() - st.session_state.status_texts[self.key].empty() - del st.session_state.progress_containers[self.key] - del st.session_state.status_texts[self.key] - del st.session_state.progress_values[self.key] - del st.session_state.start_times[self.key] - - def add_sqrt_support(expr_str): """Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility""" return expr_str.replace('sqrt(', 'sp.sqrt(') - -# C++ Module Compilation Function -@st.cache_resource -def compile_cpp_module(): - """Compile C++ acceleration module once and cache it""" - # Create a unique progress tracker for compilation - progress = AdvancedProgressBar("cpp_compilation", 5, "Compiling C++ acceleration module") - - # Define C++ code as a string - cpp_code = """ - #include - #include - #include - #include - #include - #include - #include - #include - #include - #include - #include - - namespace py = pybind11; - using namespace Eigen; - - // Fast discriminant computation function using standard cubic form - double compute_discriminant_fast(double z, double beta, double z_a, double y) { - double a = z * z_a; - double b = z * z_a + z + z_a - z_a*y; - double c = z + z_a + 1 - y*(beta*z_a + 1 - beta); - double d = 1.0; - - // Standard formula for cubic discriminant - return 18*a*b*c*d - 27*a*a*d*d + b*b*c*c - 2*b*b*b*d - 9*a*c*c*c; - } - - // Batch computation of discriminant for array of z values - py::array_t discriminant_array(double beta, double z_a, double y, py::array_t z_values) { - auto z_buf = z_values.request(); - auto result = py::array_t(z_buf.size); - auto result_buf = result.request(); - - double* z_ptr = static_cast(z_buf.ptr); - double* result_ptr = static_cast(result_buf.ptr); - - #pragma omp parallel for - for (size_t i = 0; i < z_buf.size; i++) { - result_ptr[i] = compute_discriminant_fast(z_ptr[i], beta, z_a, y); - } - - return result; - } - - // Find zeros of discriminant function - std::tuple, py::array_t, py::array_t> - find_discriminant_zeros(double z_a, double y, double z_min, double z_max, int beta_steps, int z_steps) { - // Create beta grid - auto betas = py::array_t(beta_steps); - auto betas_buf = betas.request(); - double* betas_ptr = static_cast(betas_buf.ptr); - - for (int i = 0; i < beta_steps; i++) { - betas_ptr[i] = static_cast(i) / (beta_steps - 1); - } - - // Arrays for results - auto z_mins = py::array_t(beta_steps); - auto z_maxs = py::array_t(beta_steps); - auto z_mins_buf = z_mins.request(); - auto z_maxs_buf = z_maxs.request(); - double* z_mins_ptr = static_cast(z_mins_buf.ptr); - double* z_maxs_ptr = static_cast(z_maxs_buf.ptr); - - // Apply condition for y - double y_effective = y > 1.0 ? y : 1.0/y; - - // Create z grid - std::vector z_grid(z_steps); - for (int i = 0; i < z_steps; i++) { - z_grid[i] = z_min + (z_max - z_min) * static_cast(i) / (z_steps - 1); - } - - // For each beta value, find min and max z where discriminant is zero - #pragma omp parallel for - for (int b_idx = 0; b_idx < beta_steps; b_idx++) { - double beta = betas_ptr[b_idx]; - std::vector roots_found; - - // Calculate discriminant for all z values - std::vector disc_vals(z_steps); - for (int i = 0; i < z_steps; i++) { - disc_vals[i] = compute_discriminant_fast(z_grid[i], beta, z_a, y_effective); - } - - // Find sign changes (zeros of discriminant) - for (int i = 0; i < z_steps - 1; i++) { - double f1 = disc_vals[i]; - double f2 = disc_vals[i+1]; - - if (std::isnan(f1) || std::isnan(f2)) { - continue; - } - - if (f1 == 0.0) { - roots_found.push_back(z_grid[i]); - } else if (f2 == 0.0) { - roots_found.push_back(z_grid[i+1]); - } else if (f1 * f2 < 0) { - // Binary search for more accurate root - double zl = z_grid[i], zr = z_grid[i+1]; - double fl = f1, fr = f2; - for (int j = 0; j < 50; j++) { - double mid = 0.5 * (zl + zr); - double fm = compute_discriminant_fast(mid, beta, z_a, y_effective); - - if (fm == 0) { - zl = zr = mid; - break; - } - - if ((fm > 0 && fl > 0) || (fm < 0 && fl < 0)) { - zl = mid; - fl = fm; - } else { - zr = mid; - fr = fm; - } - } - roots_found.push_back(0.5 * (zl + zr)); - } - } - - // Store min and max roots if any found - if (roots_found.empty()) { - z_mins_ptr[b_idx] = std::numeric_limits::quiet_NaN(); - z_maxs_ptr[b_idx] = std::numeric_limits::quiet_NaN(); - } else { - double min_root = *std::min_element(roots_found.begin(), roots_found.end()); - double max_root = *std::max_element(roots_found.begin(), roots_found.end()); - - z_mins_ptr[b_idx] = min_root; - z_maxs_ptr[b_idx] = max_root; - } - } - - return std::make_tuple(betas, z_mins, z_maxs); - } - - // Compute eigenvalue support boundaries - std::tuple, py::array_t> - compute_eigenvalue_boundaries(double z_a, double y, py::array_t beta_values, int n_samples, int seeds) { - auto beta_buf = beta_values.request(); - int beta_steps = beta_buf.size; - - // Results arrays - auto min_eigenvalues = py::array_t(beta_steps); - auto max_eigenvalues = py::array_t(beta_steps); - auto min_buf = min_eigenvalues.request(); - auto max_buf = max_eigenvalues.request(); - double* min_ptr = static_cast(min_buf.ptr); - double* max_ptr = static_cast(max_buf.ptr); - double* beta_ptr = static_cast(beta_buf.ptr); - - // Apply condition for y - double y_effective = y > 1.0 ? y : 1.0/y; - - // Compute eigenvalues for each beta value - #pragma omp parallel for - for (int i = 0; i < beta_steps; i++) { - double beta = beta_ptr[i]; - - std::vector min_vals; - std::vector max_vals; - - // Run multiple trials with different seeds for more stable results - for (int seed = 0; seed < seeds; seed++) { - // Set random seed - std::mt19937 gen(seed * 100 + i); - std::normal_distribution normal_dist(0.0, 1.0); - - // Compute dimension p based on aspect ratio y - int p = static_cast(y_effective * n_samples); - - // Constructing T_n (Population / Shape Matrix) - int k = static_cast(std::floor(beta * p)); - - // Create diagonal entries - std::vector diag_entries(p); - std::fill_n(diag_entries.begin(), k, z_a); - std::fill_n(diag_entries.begin() + k, p - k, 1.0); - - // Shuffle the diagonal entries - std::shuffle(diag_entries.begin(), diag_entries.end(), gen); - - // Create T_n matrix - MatrixXd T_n = MatrixXd::Zero(p, p); - for (int j = 0; j < p; j++) { - T_n(j, j) = diag_entries[j]; - } - - // Generate random data matrix X with standard normal entries - MatrixXd X(p, n_samples); - for (int r = 0; r < p; r++) { - for (int c = 0; c < n_samples; c++) { - X(r, c) = normal_dist(gen); - } - } - - // Compute sample covariance matrix S_n = (1/n) * XX^T - MatrixXd S_n = (1.0 / n_samples) * (X * X.transpose()); - - // Compute B_n = S_n T_n - MatrixXd B_n = S_n * T_n; - - // Compute eigenvalues - SelfAdjointEigenSolver solver(B_n); - VectorXd eigenvalues = solver.eigenvalues(); - - // Store min and max eigenvalues - min_vals.push_back(eigenvalues.minCoeff()); - max_vals.push_back(eigenvalues.maxCoeff()); - } - - // Compute averages - double min_avg = 0.0, max_avg = 0.0; - for (double val : min_vals) min_avg += val; - for (double val : max_vals) max_avg += val; - - min_ptr[i] = min_avg / seeds; - max_ptr[i] = max_avg / seeds; - } - - return std::make_tuple(min_eigenvalues, max_eigenvalues); - } - - // Compute cubic roots using fast C++ implementation - py::array_t> compute_cubic_roots_cpp(double z, double beta, double z_a, double y) { - // Apply the condition for y - double y_effective = y > 1.0 ? y : 1.0/y; - - // Coefficients in the form as³ + bs² + cs + d = 0 - double a = z * z_a; - double b = z * z_a + z + z_a - z_a*y_effective; - double c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta); - double d = 1.0; - - // Handle special cases - if (std::abs(a) < 1e-10) { - // Create result array - auto result = py::array_t>(3); - auto buf = result.request(); - std::complex* ptr = static_cast*>(buf.ptr); - - if (std::abs(b) < 1e-10) { // Linear case - ptr[0] = std::complex(-d/c, 0.0); - ptr[1] = std::complex(0.0, 0.0); - ptr[2] = std::complex(0.0, 0.0); - } else { // Quadratic case - double discriminant = c*c - 4*b*d; - if (discriminant >= 0) { - double sqrt_disc = std::sqrt(discriminant); - ptr[0] = std::complex((-c + sqrt_disc) / (2*b), 0.0); - ptr[1] = std::complex((-c - sqrt_disc) / (2*b), 0.0); - } else { - double sqrt_disc = std::sqrt(-discriminant); - ptr[0] = std::complex(-c/(2*b), sqrt_disc/(2*b)); - ptr[1] = std::complex(-c/(2*b), -sqrt_disc/(2*b)); - } - ptr[2] = std::complex(0.0, 0.0); - } - return result; - } - - // For better numerical stability, normalize the equation: x³ + px² + qx + r = 0 - double p = b / a; - double q = c / a; - double r = d / a; - - // Depressed cubic: t³ + pt + q = 0 where x = t - p/3 - double p_prime = q - p*p/3.0; - double q_prime = r - p*q/3.0 + 2.0*p*p*p/27.0; - - // Compute discriminant - double discriminant = 4.0*p_prime*p_prime*p_prime/27.0 + q_prime*q_prime; - - // Create result array - auto result = py::array_t>(3); - auto buf = result.request(); - std::complex* ptr = static_cast*>(buf.ptr); - - // Calculate roots based on discriminant - if (std::abs(discriminant) < 1e-10) { // Discriminant ≈ 0 - if (std::abs(q_prime) < 1e-10) { // Triple root - ptr[0] = ptr[1] = ptr[2] = std::complex(-p/3.0, 0.0); - } else { // One simple, one double root - double u = std::cbrt(-q_prime/2.0); - ptr[0] = std::complex(2*u - p/3.0, 0.0); - ptr[1] = ptr[2] = std::complex(-u - p/3.0, 0.0); - } - } else if (discriminant > 0) { // One real, two complex conjugate roots - double sqrt_disc = std::sqrt(discriminant); - std::complex u = std::pow(std::complex(-q_prime/2.0 + sqrt_disc/2.0, 0.0), 1.0/3.0); - std::complex v = std::pow(std::complex(-q_prime/2.0 - sqrt_disc/2.0, 0.0), 1.0/3.0); - - ptr[0] = std::complex(std::real(u + v) - p/3.0, 0.0); - - std::complex omega(-0.5, 0.866025403784439); // -1/2 + i*√3/2 - std::complex omega2(-0.5, -0.866025403784439); // -1/2 - i*√3/2 - - ptr[1] = omega * u + omega2 * v - std::complex(p/3.0, 0.0); - ptr[2] = omega2 * u + omega * v - std::complex(p/3.0, 0.0); - } else { // Three distinct real roots - double sqrt_disc = std::sqrt(-discriminant); - double theta = std::atan2(sqrt_disc, -2.0*q_prime); - double r_prime = std::pow(q_prime*q_prime + discriminant/4.0, 1.0/6.0); - - ptr[0] = std::complex(2.0*r_prime*std::cos(theta/3.0) - p/3.0, 0.0); - ptr[1] = std::complex(2.0*r_prime*std::cos((theta + 2.0*M_PI)/3.0) - p/3.0, 0.0); - ptr[2] = std::complex(2.0*r_prime*std::cos((theta + 4.0*M_PI)/3.0) - p/3.0, 0.0); - } - - return result; - } - - // Compute high y curve - py::array_t compute_high_y_curve(py::array_t betas, double z_a, double y) { - auto beta_buf = betas.request(); - auto result = py::array_t(beta_buf.size); - auto result_buf = result.request(); - - double* beta_ptr = static_cast(beta_buf.ptr); - double* result_ptr = static_cast(result_buf.ptr); - - // Apply the condition for y - double y_effective = y > 1.0 ? y : 1.0/y; - - double a = z_a; - double denominator = 1.0 - 2.0*a; - - #pragma omp parallel for - for (size_t i = 0; i < beta_buf.size; i++) { - if (std::abs(denominator) < 1e-10) { - result_ptr[i] = std::numeric_limits::quiet_NaN(); - continue; - } - - double beta = beta_ptr[i]; - double numerator = -4.0*a*(a-1.0)*y_effective*beta - 2.0*a*y_effective - 2.0*a*(2.0*a-1.0); - result_ptr[i] = numerator/denominator; - } - - return result; - } - - // Compute alternate low expression - py::array_t compute_alternate_low_expr(py::array_t betas, double z_a, double y) { - auto beta_buf = betas.request(); - auto result = py::array_t(beta_buf.size); - auto result_buf = result.request(); - - double* beta_ptr = static_cast(beta_buf.ptr); - double* result_ptr = static_cast(result_buf.ptr); - - // Apply the condition for y - double y_effective = y > 1.0 ? y : 1.0/y; - - #pragma omp parallel for - for (size_t i = 0; i < beta_buf.size; i++) { - double beta = beta_ptr[i]; - result_ptr[i] = (z_a * y_effective * beta * (z_a - 1.0) - 2.0*z_a*(1.0 - y_effective) - 2.0*z_a*z_a) / (2.0 + 2.0*z_a); - } - - return result; - } - - // Compute max k expression - py::array_t compute_max_k_expression(py::array_t betas, double z_a, double y, int k_samples=1000) { - auto beta_buf = betas.request(); - auto result = py::array_t(beta_buf.size); - auto result_buf = result.request(); - - double* beta_ptr = static_cast(beta_buf.ptr); - double* result_ptr = static_cast(result_buf.ptr); - - // Apply the condition for y - double y_effective = y > 1.0 ? y : 1.0/y; - - double a = z_a; - // Sample k values on a logarithmic scale - std::vector k_values(k_samples); - for (int j = 0; j < k_samples; j++) { - k_values[j] = std::pow(10.0, -3.0 + 6.0 * static_cast(j) / (k_samples - 1)); - } - - #pragma omp parallel for - for (size_t i = 0; i < beta_buf.size; i++) { - double beta = beta_ptr[i]; - std::vector values(k_samples); - - // Compute expression value for each k - for (int j = 0; j < k_samples; j++) { - double k = k_values[j]; - double numerator = y_effective*beta*(a-1.0)*k + (a*k+1.0)*((y_effective-1.0)*k-1.0); - double denominator = (a*k+1.0)*(k*k+k); - - if (std::abs(denominator) < 1e-10) { - values[j] = std::numeric_limits::quiet_NaN(); - } else { - values[j] = numerator/denominator; - } - } - - // Find maximum value (excluding NaNs) - double max_val = -std::numeric_limits::infinity(); - bool has_valid = false; - - for (double val : values) { - if (!std::isnan(val)) { - max_val = std::max(max_val, val); - has_valid = true; - } - } - - result_ptr[i] = has_valid ? max_val : std::numeric_limits::quiet_NaN(); - } - - return result; - } - - // Compute min t expression - py::array_t compute_min_t_expression(py::array_t betas, double z_a, double y, int t_samples=1000) { - auto beta_buf = betas.request(); - auto result = py::array_t(beta_buf.size); - auto result_buf = result.request(); - - double* beta_ptr = static_cast(beta_buf.ptr); - double* result_ptr = static_cast(result_buf.ptr); - - // Apply the condition for y - double y_effective = y > 1.0 ? y : 1.0/y; - - double a = z_a; - if (a <= 0) { - for (size_t i = 0; i < beta_buf.size; i++) { - result_ptr[i] = std::numeric_limits::quiet_NaN(); - } - return result; - } - - double lower_bound = -1.0/a + 1e-10; // Avoid division by zero - - #pragma omp parallel for - for (size_t i = 0; i < beta_buf.size; i++) { - double beta = beta_ptr[i]; - - // Sample t values - std::vector t_values(t_samples); - for (int j = 0; j < t_samples; j++) { - t_values[j] = lower_bound + (-1e-10 - lower_bound) * static_cast(j) / (t_samples - 1); - } - - std::vector values(t_samples); - - // Compute expression value for each t - for (int j = 0; j < t_samples; j++) { - double t = t_values[j]; - double numerator = y_effective*beta*(a-1.0)*t + (a*t+1.0)*((y_effective-1.0)*t-1.0); - double denominator = (a*t+1.0)*(t*t+t); - - if (std::abs(denominator) < 1e-10) { - values[j] = std::numeric_limits::quiet_NaN(); - } else { - values[j] = numerator/denominator; - } - } - - // Find minimum value (excluding NaNs) - double min_val = std::numeric_limits::infinity(); - bool has_valid = false; - - for (double val : values) { - if (!std::isnan(val)) { - min_val = std::min(min_val, val); - has_valid = true; - } - } - - result_ptr[i] = has_valid ? min_val : std::numeric_limits::quiet_NaN(); - } - - return result; - } - - // Generate phase diagram - py::array_t generate_phase_diagram_cpp( - double z_a, double y, double beta_min, double beta_max, - double z_min, double z_max, int beta_steps, int z_steps) { - - // Apply the condition for y - double y_effective = y > 1.0 ? y : 1.0/y; - - // Create result array - auto result = py::array_t({z_steps, beta_steps}); - auto result_buf = result.request(); - int* result_ptr = static_cast(result_buf.ptr); - - // Create beta and z grids - std::vector beta_values(beta_steps); - std::vector z_values(z_steps); - - for (int i = 0; i < beta_steps; i++) { - beta_values[i] = beta_min + (beta_max - beta_min) * static_cast(i) / (beta_steps - 1); - } - - for (int i = 0; i < z_steps; i++) { - z_values[i] = z_min + (z_max - z_min) * static_cast(i) / (z_steps - 1); - } - - // Analyze roots for each (z, beta) point - #pragma omp parallel for collapse(2) - for (int i = 0; i < z_steps; i++) { - for (int j = 0; j < beta_steps; j++) { - double z = z_values[i]; - double beta = beta_values[j]; - - // Coefficients for cubic equation - double a = z * z_a; - double b = z * z_a + z + z_a - z_a*y_effective; - double c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta); - double d = 1.0; - - // Calculate discriminant - double discriminant = 18*a*b*c*d - 27*a*a*d*d + b*b*c*c - 2*b*b*b*d - 9*a*c*c*c; - - // Set result based on sign of discriminant - // 1 for all real roots (discriminant > 0), -1 for complex roots (discriminant < 0) - result_ptr[i * beta_steps + j] = (discriminant > 0) ? 1 : -1; - } - } - - return result; - } - - // Generate eigenvalue distribution - std::tuple, py::array_t> - generate_eigenvalue_distribution_cpp(double beta, double y, double z_a, int n, int seed) { - // Apply the condition for y - double y_effective = y > 1.0 ? y : 1.0/y; - - // Set random seed - std::mt19937 gen(seed); - std::normal_distribution normal_dist(0.0, 1.0); - - // Compute dimension p based on aspect ratio y - int p = static_cast(y_effective * n); - - // Constructing T_n (Population / Shape Matrix) - int k = static_cast(std::floor(beta * p)); - - // Create diagonal entries - std::vector diag_entries(p); - std::fill_n(diag_entries.begin(), k, z_a); - std::fill_n(diag_entries.begin() + k, p - k, 1.0); - - // Shuffle the diagonal entries - std::shuffle(diag_entries.begin(), diag_entries.end(), gen); - - // Create T_n matrix - MatrixXd T_n = MatrixXd::Zero(p, p); - for (int i = 0; i < p; i++) { - T_n(i, i) = diag_entries[i]; - } - - // Generate random data matrix X with standard normal entries - MatrixXd X(p, n); - for (int r = 0; r < p; r++) { - for (int c = 0; c < n; c++) { - X(r, c) = normal_dist(gen); - } - } - - // Compute sample covariance matrix S_n = (1/n) * XX^T - MatrixXd S_n = (1.0 / n) * (X * X.transpose()); - - // Compute B_n = S_n T_n - MatrixXd B_n = S_n * T_n; - - // Compute eigenvalues - SelfAdjointEigenSolver solver(B_n); - VectorXd eigenvalues = solver.eigenvalues(); - - // Return eigenvalues as numpy array - auto result = py::array_t(p); - auto result_buf = result.request(); - double* result_ptr = static_cast(result_buf.ptr); - - for (int i = 0; i < p; i++) { - result_ptr[i] = eigenvalues(i); - } - - // Create x grid for KDE estimation (done in Python) - auto x_grid = py::array_t(500); - auto x_grid_buf = x_grid.request(); - double* x_grid_ptr = static_cast(x_grid_buf.ptr); - - double min_eig = eigenvalues.minCoeff(); - double max_eig = eigenvalues.maxCoeff(); - - for (int i = 0; i < 500; i++) { - x_grid_ptr[i] = min_eig + (max_eig - min_eig) * static_cast(i) / 499.0; - } - - return std::make_tuple(result, x_grid); - } - - PYBIND11_MODULE(cubic_cpp, m) { - m.doc() = "C++ accelerated cubic root analysis"; - - // Expose all the C++ functions to Python - m.def("discriminant_array", &discriminant_array, "Compute cubic discriminant for array of z values"); - m.def("find_discriminant_zeros", &find_discriminant_zeros, "Find zeros of the discriminant function"); - m.def("compute_eigenvalue_boundaries", &compute_eigenvalue_boundaries, "Compute eigenvalue boundaries"); - m.def("compute_cubic_roots_cpp", &compute_cubic_roots_cpp, "Compute cubic roots"); - m.def("compute_high_y_curve", &compute_high_y_curve, "Compute high y curve"); - m.def("compute_alternate_low_expr", &compute_alternate_low_expr, "Compute alternate low expression"); - m.def("compute_max_k_expression", &compute_max_k_expression, "Compute max k expression"); - m.def("compute_min_t_expression", &compute_min_t_expression, "Compute min t expression"); - m.def("generate_eigenvalue_distribution_cpp", &generate_eigenvalue_distribution_cpp, "Generate eigenvalue distribution"); - m.def("generate_phase_diagram_cpp", &generate_phase_diagram_cpp, "Generate phase diagram"); - } - """ - - progress.update(1, "Creating temporary directory for compilation") - - # Create a temporary directory to compile the C++ code - with tempfile.TemporaryDirectory() as tmpdirname: - # Write C++ code to file - progress.update(2, "Writing C++ code to temporary file") - with open(os.path.join(tmpdirname, "cubic_cpp.cpp"), "w") as f: - f.write(cpp_code) - - # Write setup.py for compiling with pybind11 - progress.update(3, "Creating setup.py file") - setup_py = """ -from setuptools import setup, Extension -from pybind11.setup_helpers import Pybind11Extension, build_ext - -ext_modules = [ - Pybind11Extension( - "cubic_cpp", - ["cubic_cpp.cpp"], - include_dirs=["/usr/include/eigen3"], - extra_compile_args=["-fopenmp", "-O3", "-march=native", "-ffast-math"], - extra_link_args=["-fopenmp"], - cxx_std=17, - ), -] - -setup( - name="cubic_cpp", - ext_modules=ext_modules, - cmdclass={"build_ext": build_ext}, -) - """ - - with open(os.path.join(tmpdirname, "setup.py"), "w") as f: - f.write(setup_py) - - # Compile the module - progress.update(4, "Running compilation process") - try: - result = subprocess.run( - [sys.executable, "setup.py", "build_ext", "--inplace"], - cwd=tmpdirname, - capture_output=True, - text=True, - check=True - ) - - # Get the compiled module path - module_path = None - for file in os.listdir(tmpdirname): - if file.startswith("cubic_cpp") and file.endswith(".so"): - module_path = os.path.join(tmpdirname, file) - break - - if not module_path: - progress.complete() - return None, f"Failed to find compiled module. Output: {result.stdout}\n{result.stderr}" - - # Import the module - progress.update(5, "Importing compiled module") - spec = importlib.util.spec_from_file_location("cubic_cpp", module_path) - cubic_cpp = importlib.util.module_from_spec(spec) - spec.loader.exec_module(cubic_cpp) - - progress.complete() - return cubic_cpp, None - - except subprocess.CalledProcessError as e: - progress.complete() - return None, f"Compilation failed: {e.stdout}\n{e.stderr}" - except Exception as e: - progress.complete() - return None, f"Error: {str(e)}" - -# Try to compile the C++ module -cpp_module, cpp_error = compile_cpp_module() - -# Display C++ status -with cpp_status_container: - if cpp_module: - st.success("✅ C++ acceleration module loaded successfully! Calculations will run faster.") - else: - st.warning("⚠️ C++ acceleration not available. Using Python fallback implementation.") - if cpp_error: - with st.expander("Error details"): - st.code(cpp_error) - -# ----- SymPy-based high-precision implementations ----- +############################# +# 1) Define the discriminant +############################# # Symbolic variables for the cubic discriminant z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True) @@ -840,154 +29,90 @@ b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym) d_sym = 1 -# Standard discriminant formula for cubic equations -# Δ = 18abcd - 27a²d² + b²c² - 2b³d - 9ac³ +# Symbolic expression for the cubic discriminant Delta_expr = ( - 18*a_sym*b_sym*c_sym*d_sym - - 27*a_sym**2*d_sym**2 + - b_sym**2*c_sym**2 - - 2*b_sym**3*d_sym - - 9*a_sym*c_sym**3 + ((b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym))**2 + + (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3 ) # Fast numeric function for the discriminant -discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, modules=[{"sqrt": np.sqrt}, "numpy"]) +discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy") - -# Function to find zeros of the discriminant with SymPy precision -@st.cache_data(show_spinner=False) +@st.cache_data def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps): """ Scan z in [z_min, z_max] for sign changes in the discriminant, and return approximated roots (where the discriminant is zero). - Uses high-precision SymPy calculations. """ - # Create an advanced progress bar - progress_key = f"find_zeros_{z_a}_{y}_{beta}_{z_min}_{z_max}_{steps}" - progress = AdvancedProgressBar(progress_key, steps, "Finding discriminant zeros") - # Apply the condition for y y_effective = y if y > 1 else 1/y - # Create SymPy lambdified function with high precision - mpmath_discriminant_func = sp.lambdify( - (z_sym, beta_sym, z_a_sym, y_sym), - Delta_expr, - modules="mpmath" - ) - - # Create grid with high precision z_grid = np.linspace(z_min, z_max, steps) - disc_vals = [] - - # Calculate discriminant values with progress tracking - for i, z in enumerate(z_grid): - progress.update(i+1, f"Computing discriminant at z = {z:.4f}") - - # Use high precision mpmath for calculation - disc_vals.append(float(mpmath_discriminant_func(z, beta, z_a, y_effective))) - - disc_vals = np.array(disc_vals) + disc_vals = discriminant_func(z_grid, beta, z_a, y_effective) roots_found = [] - - # Loop through and find sign changes for i in range(len(z_grid) - 1): f1, f2 = disc_vals[i], disc_vals[i+1] if np.isnan(f1) or np.isnan(f2): continue - - if abs(f1) < 1e-12: + if f1 == 0.0: roots_found.append(z_grid[i]) - elif abs(f2) < 1e-12: + elif f2 == 0.0: roots_found.append(z_grid[i+1]) elif f1 * f2 < 0: - # Use high-precision binary search to refine root location - zl, zr = mpmath.mpf(str(z_grid[i])), mpmath.mpf(str(z_grid[i+1])) - fl = mpmath_discriminant_func(zl, beta, z_a, y_effective) - fr = mpmath_discriminant_func(zr, beta, z_a, y_effective) - - # Binary search with high precision + zl, zr = z_grid[i], z_grid[i+1] for _ in range(50): - mid = (zl + zr) / 2 - fm = mpmath_discriminant_func(mid, beta, z_a, y_effective) - - if abs(fm) < 1e-20: + mid = 0.5 * (zl + zr) + fm = discriminant_func(mid, beta, z_a, y_effective) + if fm == 0: zl = zr = mid break - - if fm * fl > 0: - zl, fl = mid, fm + if np.sign(fm) == np.sign(f1): + zl, f1 = mid, fm else: - zr, fr = mid, fm - - # Convert back to float for NumPy compatibility - roots_found.append(float(zl)) - - progress.complete() + zr, f2 = mid, fm + roots_found.append(0.5 * (zl + zr)) return np.array(roots_found) - -@st.cache_data(show_spinner=False) +@st.cache_data def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps): """ For each beta in [0,1] (with beta_steps points), find the minimum and maximum z - for which the discriminant is zero. Uses C++ acceleration if available. + for which the discriminant is zero. + Returns: betas, lower z*(β) values, and upper z*(β) values. """ - # Try to use C++ acceleration if available - if cpp_module is not None: - try: - return cpp_module.find_discriminant_zeros(z_a, y, z_min, z_max, beta_steps, z_steps) - except Exception as e: - st.warning(f"C++ acceleration failed, falling back to Python: {str(e)}") - - # Create progress tracking - progress_key = f"sweep_beta_{z_a}_{y}_{z_min}_{z_max}_{beta_steps}_{z_steps}" - progress = AdvancedProgressBar(progress_key, beta_steps, "Computing discriminant zeros across β values") - betas = np.linspace(0, 1, beta_steps) z_min_values = [] z_max_values = [] - - for i, b in enumerate(betas): - progress.update(i+1, f"Processing β = {b:.4f}") - roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, max(100, z_steps // beta_steps)) + for b in betas: + roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps) if len(roots) == 0: z_min_values.append(np.nan) z_max_values.append(np.nan) else: z_min_values.append(np.min(roots)) z_max_values.append(np.max(roots)) - - progress.complete() return betas, np.array(z_min_values), np.array(z_max_values) - -@st.cache_data(show_spinner=False) +@st.cache_data def compute_eigenvalue_support_boundaries(z_a, y, beta_values, n_samples=100, seeds=5): """ - Compute the support boundaries of the eigenvalue distribution. - Uses C++ acceleration if available. + Compute the support boundaries of the eigenvalue distribution by directly + finding the minimum and maximum eigenvalues of B_n = S_n T_n for different beta values. """ - # Try to use C++ acceleration if available - if cpp_module is not None: - try: - return cpp_module.compute_eigenvalue_boundaries(z_a, y, beta_values, n_samples, seeds) - except Exception as e: - st.warning(f"C++ acceleration failed, falling back to Python: {str(e)}") - - # Create progress tracking - progress_key = f"eigenval_bound_{z_a}_{y}_{len(beta_values)}_{n_samples}_{seeds}" - progress = AdvancedProgressBar(progress_key, len(beta_values), "Computing eigenvalue support boundaries") - # Apply the condition for y y_effective = y if y > 1 else 1/y min_eigenvalues = np.zeros_like(beta_values) max_eigenvalues = np.zeros_like(beta_values) + # Use a progress bar for Streamlit + progress_bar = st.progress(0) + status_text = st.empty() + for i, beta in enumerate(beta_values): # Update progress - progress.update(i+1, f"Processing β = {beta:.4f} (matrix size: {n_samples})") + progress_bar.progress((i + 1) / len(beta_values)) + status_text.text(f"Processing β = {beta:.2f} ({i+1}/{len(beta_values)})") min_vals = [] max_vals = [] @@ -1030,191 +155,81 @@ def compute_eigenvalue_support_boundaries(z_a, y, beta_values, n_samples=100, se min_eigenvalues[i] = np.mean(min_vals) max_eigenvalues[i] = np.mean(max_vals) - progress.complete() + # Clear progress indicators + progress_bar.empty() + status_text.empty() + return min_eigenvalues, max_eigenvalues - -@st.cache_data(show_spinner=False) +@st.cache_data def compute_high_y_curve(betas, z_a, y): """ - Compute the "High y Expression" curve with high precision. - Uses C++ acceleration if available. + Compute the "High y Expression" curve. """ - # Try to use C++ acceleration if available - if cpp_module is not None: - try: - return cpp_module.compute_high_y_curve(betas, z_a, y) - except Exception as e: - st.warning(f"C++ acceleration failed, falling back to Python: {str(e)}") - - # Create progress bar - progress_key = f"high_y_{z_a}_{y}_{len(betas)}" - progress = AdvancedProgressBar(progress_key, 3, "Computing high y expression") - progress.update(1, "Setting up symbolic expression") - # Apply the condition for y y_effective = y if y > 1 else 1/y - # Use SymPy for higher precision - a = z_a_sym + a = z_a + betas = np.array(betas) denominator = 1 - 2*a - numerator = -4*a*(a-1)*y_sym*beta_sym - 2*a*y_sym - 2*a*(2*a-1) - expr = numerator / denominator - - progress.update(2, "Creating high-precision lambda function") - - # Convert to a high-precision numeric function - func = sp.lambdify((beta_sym, z_a_sym, y_sym), expr, modules="mpmath") - - progress.update(3, "Computing values") - - # Check if denominator is near zero (division by zero case) - denom_val = float(sp.N(denominator.subs(z_a_sym, z_a))) - if abs(denom_val) < 1e-12: - progress.complete() + if denominator == 0: return np.full_like(betas, np.nan) - - # Compute values with high precision for each beta - result = np.zeros_like(betas) - for i, beta in enumerate(betas): - result[i] = float(func(beta, z_a, y_effective)) - - progress.complete() - return result - + numerator = -4*a*(a-1)*y_effective*betas - 2*a*y_effective - 2*a*(2*a-1) + return numerator/denominator -@st.cache_data(show_spinner=False) +@st.cache_data def compute_alternate_low_expr(betas, z_a, y): """ - Compute the alternate low expression with high precision. - Uses C++ acceleration if available. + Compute the alternate low expression: + (z_a*y*beta*(z_a-1) - 2*z_a*(1-y) - 2*z_a**2) / (2+2*z_a) """ - # Try to use C++ acceleration if available - if cpp_module is not None: - try: - return cpp_module.compute_alternate_low_expr(betas, z_a, y) - except Exception as e: - st.warning(f"C++ acceleration failed, falling back to Python: {str(e)}") - - # Create progress bar - progress_key = f"low_expr_{z_a}_{y}_{len(betas)}" - progress = AdvancedProgressBar(progress_key, 3, "Computing low y expression") - progress.update(1, "Setting up symbolic expression") - # Apply the condition for y y_effective = y if y > 1 else 1/y - # Use SymPy for higher precision - expr = (z_a_sym * y_sym * beta_sym * (z_a_sym - 1) - - 2*z_a_sym*(1 - y_sym) - 2*z_a_sym**2) / (2 + 2*z_a_sym) - - progress.update(2, "Creating high-precision lambda function") - - # Convert to a high-precision numeric function - func = sp.lambdify((beta_sym, z_a_sym, y_sym), expr, modules="mpmath") - - progress.update(3, "Computing values") - - # Compute values with high precision for each beta - result = np.zeros_like(betas) - for i, beta in enumerate(betas): - result[i] = float(func(beta, z_a, y_effective)) - - progress.complete() - return result + betas = np.array(betas) + return (z_a * y_effective * betas * (z_a - 1) - 2*z_a*(1 - y_effective) - 2*z_a**2) / (2 + 2*z_a) - -@st.cache_data(show_spinner=False) +@st.cache_data def compute_max_k_expression(betas, z_a, y, k_samples=1000): """ Compute max_{k ∈ (0,∞)} (y*beta*(a-1)*k + (a*k+1)*((y-1)*k-1)) / ((a*k+1)*(k^2+k)) - with high precision. Uses C++ acceleration if available. """ - # Try to use C++ acceleration if available - if cpp_module is not None: - try: - return cpp_module.compute_max_k_expression(betas, z_a, y, k_samples) - except Exception as e: - st.warning(f"C++ acceleration failed, falling back to Python: {str(e)}") - - # Create progress bar - progress_key = f"max_k_{z_a}_{y}_{len(betas)}_{k_samples}" - progress = AdvancedProgressBar(progress_key, len(betas), "Computing max k expression") - # Apply the condition for y y_effective = y if y > 1 else 1/y - # Use SymPy for symbolic expression - k_sym = sp.Symbol("k", positive=True) - a = z_a_sym - numerator = y_sym*beta_sym*(a-1)*k_sym + (a*k_sym+1)*((y_sym-1)*k_sym-1) - denominator = (a*k_sym+1)*(k_sym**2+k_sym) - expr = numerator / denominator - - # Convert to high-precision function - func = sp.lambdify((k_sym, beta_sym, z_a_sym, y_sym), expr, modules="mpmath") - + a = z_a # Sample k values on a logarithmic scale k_values = np.logspace(-3, 3, k_samples) max_vals = np.zeros_like(betas) for i, beta in enumerate(betas): - progress.update(i+1, f"Processing β = {beta:.4f}") - values = np.zeros_like(k_values) for j, k in enumerate(k_values): - try: - val = float(func(k, beta, z_a, y_effective)) - if np.isfinite(val): - values[j] = val - else: - values[j] = np.nan - except (ZeroDivisionError, OverflowError): + numerator = y_effective*beta*(a-1)*k + (a*k+1)*((y_effective-1)*k-1) + denominator = (a*k+1)*(k**2+k) + if abs(denominator) < 1e-10: values[j] = np.nan + else: + values[j] = numerator/denominator valid_indices = ~np.isnan(values) if np.any(valid_indices): max_vals[i] = np.max(values[valid_indices]) else: max_vals[i] = np.nan - - progress.complete() + return max_vals - -@st.cache_data(show_spinner=False) +@st.cache_data def compute_min_t_expression(betas, z_a, y, t_samples=1000): """ Compute min_{t ∈ (-1/a, 0)} (y*beta*(a-1)*t + (a*t+1)*((y-1)*t-1)) / ((a*t+1)*(t^2+t)) - with high precision. Uses C++ acceleration if available. """ - # Try to use C++ acceleration if available - if cpp_module is not None: - try: - return cpp_module.compute_min_t_expression(betas, z_a, y, t_samples) - except Exception as e: - st.warning(f"C++ acceleration failed, falling back to Python: {str(e)}") - - # Create progress bar - progress_key = f"min_t_{z_a}_{y}_{len(betas)}_{t_samples}" - progress = AdvancedProgressBar(progress_key, len(betas), "Computing min t expression") - # Apply the condition for y y_effective = y if y > 1 else 1/y - # Use SymPy for symbolic expression - t_sym = sp.Symbol("t") - a = z_a_sym - numerator = y_sym*beta_sym*(a-1)*t_sym + (a*t_sym+1)*((y_sym-1)*t_sym-1) - denominator = (a*t_sym+1)*(t_sym**2+t_sym) - expr = numerator / denominator - - # Convert to high-precision function - func = sp.lambdify((t_sym, beta_sym, z_a_sym, y_sym), expr, modules="mpmath") - a = z_a if a <= 0: - progress.complete() return np.full_like(betas, np.nan) lower_bound = -1/a + 1e-10 # Avoid division by zero @@ -1222,140 +237,75 @@ def compute_min_t_expression(betas, z_a, y, t_samples=1000): min_vals = np.zeros_like(betas) for i, beta in enumerate(betas): - progress.update(i+1, f"Processing β = {beta:.4f}") - values = np.zeros_like(t_values) for j, t in enumerate(t_values): - try: - val = float(func(t, beta, z_a, y_effective)) - if np.isfinite(val): - values[j] = val - else: - values[j] = np.nan - except (ZeroDivisionError, OverflowError): + numerator = y_effective*beta*(a-1)*t + (a*t+1)*((y_effective-1)*t-1) + denominator = (a*t+1)*(t**2+t) + if abs(denominator) < 1e-10: values[j] = np.nan + else: + values[j] = numerator/denominator valid_indices = ~np.isnan(values) if np.any(valid_indices): min_vals[i] = np.min(values[valid_indices]) else: min_vals[i] = np.nan - - progress.complete() + return min_vals - -@st.cache_data(show_spinner=False) +@st.cache_data def compute_derivatives(curve, betas): - """Compute first and second derivatives of a curve using smooth spline interpolation.""" - from scipy.interpolate import CubicSpline - - # Filter out NaN values - valid_idx = ~np.isnan(curve) - if not np.any(valid_idx): - return np.full_like(betas, np.nan), np.full_like(betas, np.nan) - - valid_betas = betas[valid_idx] - valid_curve = curve[valid_idx] - - if len(valid_betas) < 4: # Need at least 4 points for cubic spline - # Fall back to numpy gradient - d1 = np.gradient(curve, betas) - d2 = np.gradient(d1, betas) - return d1, d2 - - # Create cubic spline for smoother derivatives - cs = CubicSpline(valid_betas, valid_curve) - - # Evaluate first and second derivatives - d1 = np.zeros_like(betas) - d2 = np.zeros_like(betas) - - for i, beta in enumerate(betas): - if np.isnan(curve[i]): - d1[i] = np.nan - d2[i] = np.nan - else: - d1[i] = cs(beta, 1) # First derivative - d2[i] = cs(beta, 2) # Second derivative - + """Compute first and second derivatives of a curve""" + d1 = np.gradient(curve, betas) + d2 = np.gradient(d1, betas) return d1, d2 - def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr, custom_curve1=None, custom_curve2=None): """Compute derivatives for all curves""" - # Progress tracking - progress_key = f"derivatives_{len(betas)}" - progress = AdvancedProgressBar(progress_key, 7, "Computing derivatives") - derivatives = {} # Upper z*(β) - progress.update(1, "Computing upper z*(β) derivatives") derivatives['upper'] = compute_derivatives(z_maxs, betas) # Lower z*(β) - progress.update(2, "Computing lower z*(β) derivatives") derivatives['lower'] = compute_derivatives(z_mins, betas) # Low y Expression (only if provided) if low_y_curve is not None: - progress.update(3, "Computing low y expression derivatives") derivatives['low_y'] = compute_derivatives(low_y_curve, betas) - else: - progress.update(3, "Skipping low y expression (not provided)") # High y Expression if high_y_curve is not None: - progress.update(4, "Computing high y expression derivatives") derivatives['high_y'] = compute_derivatives(high_y_curve, betas) - else: - progress.update(4, "Skipping high y expression (not provided)") # Alternate Low Expression if alt_low_expr is not None: - progress.update(5, "Computing alternate low expression derivatives") derivatives['alt_low'] = compute_derivatives(alt_low_expr, betas) - else: - progress.update(5, "Skipping alternate low expression (not provided)") # Custom Expression 1 (if provided) if custom_curve1 is not None: - progress.update(6, "Computing custom expression 1 derivatives") derivatives['custom1'] = compute_derivatives(custom_curve1, betas) - else: - progress.update(6, "Skipping custom expression 1 (not provided)") # Custom Expression 2 (if provided) if custom_curve2 is not None: - progress.update(7, "Computing custom expression 2 derivatives") derivatives['custom2'] = compute_derivatives(custom_curve2, betas) - else: - progress.update(7, "Skipping custom expression 2 (not provided)") - - progress.complete() + return derivatives - def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, is_s_based=True): """ - Compute custom curve with high precision using SymPy. - If is_s_based=True, compute using s substitution. Otherwise, compute direct z(β) expression. + Compute custom curve. If is_s_based=True, compute using s substitution. + Otherwise, compute direct z(β) expression. """ - # Progress tracking - progress_key = f"custom_expr_{z_a}_{y}_{len(betas)}" - progress = AdvancedProgressBar(progress_key, 4, "Computing custom expression") - # Apply the condition for y y_effective = y if y > 1 else 1/y - # Create SymPy symbols beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True) local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "sp": sp} try: # Add sqrt support - progress.update(1, "Parsing expression") s_num_expr = add_sqrt_support(s_num_expr) s_denom_expr = add_sqrt_support(s_denom_expr) @@ -1364,7 +314,6 @@ def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, is_s_base if is_s_based: # Compute s and substitute into main expression - progress.update(2, "Computing s-based expression") s_expr = num_expr / denom_expr a = z_a_sym numerator = y_sym*beta_sym*(z_a_sym-1)*s_expr + (a*s_expr+1)*((y_sym-1)*s_expr-1) @@ -1372,54 +321,185 @@ def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, is_s_base final_expr = numerator/denominator else: # Direct z(β) expression - progress.update(2, "Computing direct z(β) expression") final_expr = num_expr / denom_expr except sp.SympifyError as e: - progress.complete() st.error(f"Error parsing expressions: {e}") return np.full_like(betas, np.nan) - progress.update(3, "Creating lambda function with mpmath precision") - - # Convert to high-precision numeric function - final_func = sp.lambdify((beta_sym, z_a_sym, y_sym), final_expr, modules="mpmath") - - progress.update(4, "Evaluating expression for all β values") - - # Compute values for each beta - result = np.zeros_like(betas) - - for i, beta in enumerate(betas): - try: - # Calculate with high precision - val = final_func(beta, z_a, y_effective) - # Convert to float for compatibility - result[i] = float(val) - except Exception as e: - result[i] = np.nan - - progress.complete() + final_func = sp.lambdify((beta_sym, z_a_sym, y_sym), final_expr, modules=["numpy"]) + with np.errstate(divide='ignore', invalid='ignore'): + result = final_func(betas, z_a, y_effective) + if np.isscalar(result): + result = np.full_like(betas, result) return result - -def compute_cubic_roots(z, beta, z_a, y): - """ - Compute the roots of the cubic equation for given parameters with high precision. - Uses C++ acceleration if available. - """ - # Try to use C++ acceleration if available - if cpp_module is not None: - try: - return cpp_module.compute_cubic_roots_cpp(z, beta, z_a, y) - except Exception as e: - st.warning(f"C++ acceleration failed, falling back to Python: {str(e)}") +def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps, + s_num_expr=None, s_denom_expr=None, + z_num_expr=None, z_denom_expr=None, + show_derivatives=False, + show_high_y=False, + show_low_y=False, + show_max_k=True, + show_min_t=True, + use_eigenvalue_method=True, + n_samples=1000, + seeds=5): + if z_a <= 0 or y <= 0 or z_min >= z_max: + st.error("Invalid input parameters.") + return None + + betas = np.linspace(0, 1, beta_steps) + + if use_eigenvalue_method: + # Use the eigenvalue method to compute boundaries + st.info("Computing eigenvalue support boundaries. This may take a moment...") + min_eigs, max_eigs = compute_eigenvalue_support_boundaries(z_a, y, betas, n_samples, seeds) + z_mins, z_maxs = min_eigs, max_eigs + else: + # Use the original discriminant method + betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps) + + high_y_curve = compute_high_y_curve(betas, z_a, y) if show_high_y else None + alt_low_expr = compute_alternate_low_expr(betas, z_a, y) if show_low_y else None + + # Compute the max/min expressions + max_k_curve = compute_max_k_expression(betas, z_a, y) if show_max_k else None + min_t_curve = compute_min_t_expression(betas, z_a, y) if show_min_t else None + + # Compute both custom curves + custom_curve1 = None + custom_curve2 = None + if s_num_expr and s_denom_expr: + custom_curve1 = compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, True) + if z_num_expr and z_denom_expr: + custom_curve2 = compute_custom_expression(betas, z_a, y, z_num_expr, z_denom_expr, False) + + # Compute derivatives if needed + if show_derivatives: + derivatives = compute_all_derivatives(betas, z_mins, z_maxs, None, high_y_curve, + alt_low_expr, custom_curve1, custom_curve2) + # Calculate derivatives for max_k and min_t curves if they exist + if show_max_k: + max_k_derivatives = compute_derivatives(max_k_curve, betas) + if show_min_t: + min_t_derivatives = compute_derivatives(min_t_curve, betas) + + fig = go.Figure() + + # Original curves + if use_eigenvalue_method: + fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines", + name="Upper Bound (Max Eigenvalue)", line=dict(color='blue'))) + fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines", + name="Lower Bound (Min Eigenvalue)", line=dict(color='blue'))) + # Add shaded region between curves + fig.add_trace(go.Scatter( + x=np.concatenate([betas, betas[::-1]]), + y=np.concatenate([z_maxs, z_mins[::-1]]), + fill='toself', + fillcolor='rgba(0,0,255,0.2)', + line=dict(color='rgba(255,255,255,0)'), + showlegend=False, + hoverinfo='skip' + )) + else: + fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines", + name="Upper z*(β)", line=dict(color='blue'))) + fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines", + name="Lower z*(β)", line=dict(color='blue'))) + + # Add High y Expression only if selected + if show_high_y and high_y_curve is not None: + fig.add_trace(go.Scatter(x=betas, y=high_y_curve, mode="markers+lines", + name="High y Expression", line=dict(color='green'))) + + # Add Low Expression only if selected + if show_low_y and alt_low_expr is not None: + fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines", + name="Low Expression", line=dict(color='orange'))) + + # Add the max/min curves if selected + if show_max_k and max_k_curve is not None: + fig.add_trace(go.Scatter(x=betas, y=max_k_curve, mode="lines", + name="Max k Expression", line=dict(color='red', width=2))) + + if show_min_t and min_t_curve is not None: + fig.add_trace(go.Scatter(x=betas, y=min_t_curve, mode="lines", + name="Min t Expression", line=dict(color='purple', width=2))) + if custom_curve1 is not None: + fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines", + name="Custom 1 (s-based)", line=dict(color='magenta'))) + if custom_curve2 is not None: + fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines", + name="Custom 2 (direct)", line=dict(color='brown'))) + + if show_derivatives: + # First derivatives + curve_info = [ + ('upper', 'Upper Bound' if use_eigenvalue_method else 'Upper z*(β)', 'blue'), + ('lower', 'Lower Bound' if use_eigenvalue_method else 'Lower z*(β)', 'lightblue'), + ] + + if show_high_y and high_y_curve is not None: + curve_info.append(('high_y', 'High y', 'green')) + if show_low_y and alt_low_expr is not None: + curve_info.append(('alt_low', 'Alt Low', 'orange')) + + if custom_curve1 is not None: + curve_info.append(('custom1', 'Custom 1', 'magenta')) + if custom_curve2 is not None: + curve_info.append(('custom2', 'Custom 2', 'brown')) + + for key, name, color in curve_info: + if key in derivatives: + fig.add_trace(go.Scatter(x=betas, y=derivatives[key][0], mode="lines", + name=f"{name} d/dβ", line=dict(color=color, dash='dash'))) + fig.add_trace(go.Scatter(x=betas, y=derivatives[key][1], mode="lines", + name=f"{name} d²/dβ²", line=dict(color=color, dash='dot'))) + + # Add derivatives for max_k and min_t curves if they exist + if show_max_k and max_k_curve is not None: + fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[0], mode="lines", + name="Max k d/dβ", line=dict(color='red', dash='dash'))) + fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[1], mode="lines", + name="Max k d²/dβ²", line=dict(color='red', dash='dot'))) + + if show_min_t and min_t_curve is not None: + fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[0], mode="lines", + name="Min t d/dβ", line=dict(color='purple', dash='dash'))) + fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[1], mode="lines", + name="Min t d²/dβ²", line=dict(color='purple', dash='dot'))) + + fig.update_layout( + title="Curves vs β: Eigenvalue Support Boundaries and Asymptotic Expressions" if use_eigenvalue_method + else "Curves vs β: z*(β) Boundaries and Asymptotic Expressions", + xaxis_title="β", + yaxis_title="Value", + hovermode="x unified", + showlegend=True, + legend=dict( + yanchor="top", + y=0.99, + xanchor="left", + x=0.01 + ) + ) + return fig + +def compute_cubic_roots(z, beta, z_a, y): + """ + Compute the roots of the cubic equation for given parameters using SymPy for maximum accuracy. + """ # Apply the condition for y y_effective = y if y > 1 else 1/y + # Import SymPy functions + from sympy import symbols, solve, im, re, N, Poly + # Create a symbolic variable for the equation - s = sp.Symbol('s') + s = symbols('s') # Coefficients in the form as^3 + bs^2 + cs + d = 0 a = z * z_a @@ -1428,40 +508,26 @@ def compute_cubic_roots(z, beta, z_a, y): d = 1 # Handle special cases - if abs(a) < 1e-12: - if abs(b) < 1e-12: # Linear case + if abs(a) < 1e-10: + if abs(b) < 1e-10: # Linear case roots = np.array([-d/c, 0, 0], dtype=complex) else: # Quadratic case - # Use SymPy for higher precision - quad_eq = b*s**2 + c*s + d - symbolic_roots = sp.solve(quad_eq, s) - - # Convert to complex numbers with proper precision - numerical_roots = [] - for root in symbolic_roots: - high_prec_root = complex(float(sp.re(root).evalf(50)), float(sp.im(root).evalf(50))) - numerical_roots.append(high_prec_root) - - # Pad to 3 roots - while len(numerical_roots) < 3: - numerical_roots.append(0j) - - roots = np.array(numerical_roots, dtype=complex) + quad_roots = np.roots([b, c, d]) + roots = np.append(quad_roots, 0).astype(complex) return roots try: - # Create the cubic equation with high precision - cubic_eq = a*s**3 + b*s**2 + c*s + d + # Create the cubic polynomial + cubic_eq = Poly(a*s**3 + b*s**2 + c*s + d, s) - # Solve using SymPy's solver with high precision - symbolic_roots = sp.solve(cubic_eq, s) + # Solve the equation symbolically + symbolic_roots = solve(cubic_eq, s) - # Convert to high-precision complex numbers + # Convert symbolic roots to complex numbers with high precision numerical_roots = [] for root in symbolic_roots: - # Use SymPy's evalf with high precision (50 digits) - high_prec_root = root.evalf(50) - numerical_root = complex(float(sp.re(high_prec_root)), float(sp.im(high_prec_root))) + # Use SymPy's N function with high precision + numerical_root = complex(N(root, 30)) numerical_roots.append(numerical_root) # If we got fewer than 3 roots (due to multiplicity), pad with zeros @@ -1475,7 +541,6 @@ def compute_cubic_roots(z, beta, z_a, y): coeffs = [a, b, c, d] return np.roots(coeffs) - def track_roots_consistently(z_values, all_roots): """ Ensure consistent tracking of roots across z values by minimizing discontinuity. @@ -1517,24 +582,21 @@ def track_roots_consistently(z_values, all_roots): return tracked_roots - def generate_cubic_discriminant(z, beta, z_a, y_effective): """ - Calculate the cubic discriminant with high precision using the standard formula. - For a cubic ax^3 + bx^2 + cx + d: Δ = 18abcd - 27a^2d^2 + b^2c^2 - 2b^3d - 9ac^3 + Calculate the cubic discriminant using the standard formula. + For a cubic ax^3 + bx^2 + cx + d: + Δ = 18abcd - 27a^2d^2 + b^2c^2 - 2b^3d - 9ac^3 """ - # Use SymPy for high precision calculation - a = mpmath.mpf(str(z * z_a)) - b = mpmath.mpf(str(z * z_a + z + z_a - z_a*y_effective)) - c = mpmath.mpf(str(z + z_a + 1 - y_effective*(beta*z_a + 1 - beta))) - d = mpmath.mpf("1.0") + a = z * z_a + b = z * z_a + z + z_a - z_a*y_effective + c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta) + d = 1 - # Standard formula for cubic discriminant with high precision + # Standard formula for cubic discriminant discriminant = (18*a*b*c*d - 27*a**2*d**2 + b**2*c**2 - 2*b**3*d - 9*a*c**3) - return float(discriminant) + return discriminant - -@st.cache_data(show_spinner=False) def generate_root_plots(beta, y, z_a, z_min, z_max, n_points): """ Generate Im(s) and Re(s) vs. z plots with improved accuracy using SymPy. @@ -1546,33 +608,35 @@ def generate_root_plots(beta, y, z_a, z_min, z_max, n_points): # Apply the condition for y y_effective = y if y > 1 else 1/y - # Create progress bar - progress_key = f"root_plots_{beta}_{y}_{z_a}_{z_min}_{z_max}_{n_points}" - progress = AdvancedProgressBar(progress_key, n_points + 1, "Computing cubic roots vs. z") - z_points = np.linspace(z_min, z_max, n_points) # Collect all roots first all_roots = [] discriminants = [] + # Progress indicator + progress_bar = st.progress(0) + status_text = st.empty() + for i, z in enumerate(z_points): # Update progress - progress.update(i+1, f"Computing roots for z = {z:.3f}") + progress_bar.progress((i + 1) / n_points) + status_text.text(f"Computing roots for z = {z:.3f} ({i+1}/{n_points})") - # Calculate roots using high precision + # Calculate roots using SymPy roots = compute_cubic_roots(z, beta, z_a, y) # Initial sorting to help with tracking roots = sorted(roots, key=lambda x: (abs(x.imag), x.real)) all_roots.append(roots) - # Calculate discriminant with high precision + # Calculate discriminant disc = generate_cubic_discriminant(z, beta, z_a, y_effective) discriminants.append(disc) - # Update for final tracking step - progress.update(n_points+1, "Tracking roots across z values") + # Clear progress indicators + progress_bar.empty() + status_text.empty() all_roots = np.array(all_roots) discriminants = np.array(discriminants) @@ -1580,8 +644,6 @@ def generate_root_plots(beta, y, z_a, z_min, z_max, n_points): # Track roots consistently across z values tracked_roots = track_roots_consistently(z_points, all_roots) - progress.complete() - # Extract imaginary and real parts ims = np.imag(tracked_roots) res = np.real(tracked_roots) @@ -1627,8 +689,44 @@ def generate_root_plots(beta, y, z_a, z_min, z_max, n_points): return fig_im, fig_re, fig_disc +def analyze_complex_root_structure(beta_values, z, z_a, y): + """ + Analyze when the cubic equation switches between having all real roots + and having a complex conjugate pair plus one real root. + + Returns: + - transition_points: beta values where the root structure changes + - structure_types: list indicating whether each interval has all real roots or complex roots + """ + # Apply the condition for y + y_effective = y if y > 1 else 1/y + + transition_points = [] + structure_types = [] + + previous_type = None + + for beta in beta_values: + roots = compute_cubic_roots(z, beta, z_a, y) + + # Check if all roots are real (imaginary parts close to zero) + is_all_real = all(abs(root.imag) < 1e-10 for root in roots) + + current_type = "real" if is_all_real else "complex" + + if previous_type is not None and current_type != previous_type: + # Found a transition point + transition_points.append(beta) + structure_types.append(previous_type) + + previous_type = current_type + + # Add the final interval type + if previous_type is not None: + structure_types.append(previous_type) + + return transition_points, structure_types -@st.cache_data(show_spinner=False) def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points): """ Generate Im(s) and Re(s) vs. β plots with improved accuracy using SymPy. @@ -1640,33 +738,35 @@ def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points): # Apply the condition for y y_effective = y if y > 1 else 1/y - # Create progress bar - progress_key = f"roots_beta_{z}_{y}_{z_a}_{beta_min}_{beta_max}_{n_points}" - progress = AdvancedProgressBar(progress_key, n_points + 1, "Computing cubic roots vs. β") - beta_points = np.linspace(beta_min, beta_max, n_points) # Collect all roots first all_roots = [] discriminants = [] + # Progress indicator + progress_bar = st.progress(0) + status_text = st.empty() + for i, beta in enumerate(beta_points): # Update progress - progress.update(i+1, f"Computing roots for β = {beta:.3f}") + progress_bar.progress((i + 1) / n_points) + status_text.text(f"Computing roots for β = {beta:.3f} ({i+1}/{n_points})") - # Calculate roots using high precision + # Calculate roots using SymPy roots = compute_cubic_roots(z, beta, z_a, y) # Initial sorting to help with tracking roots = sorted(roots, key=lambda x: (abs(x.imag), x.real)) all_roots.append(roots) - # Calculate discriminant with high precision + # Calculate discriminant disc = generate_cubic_discriminant(z, beta, z_a, y_effective) discriminants.append(disc) - # Update for final tracking step - progress.update(n_points+1, "Tracking roots across β values") + # Clear progress indicators + progress_bar.empty() + status_text.empty() all_roots = np.array(all_roots) discriminants = np.array(discriminants) @@ -1674,8 +774,6 @@ def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points): # Track roots consistently across beta values tracked_roots = track_roots_consistently(beta_points, all_roots) - progress.complete() - # Extract imaginary and real parts ims = np.imag(tracked_roots) res = np.real(tracked_roots) @@ -1721,55 +819,44 @@ def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points): return fig_im, fig_re, fig_disc - -@st.cache_data(show_spinner=False) def generate_phase_diagram(z_a, y, beta_min=0.0, beta_max=1.0, z_min=-10.0, z_max=10.0, beta_steps=100, z_steps=100): """ Generate a phase diagram showing regions of complex and real roots. - Uses C++ acceleration if available. + + Returns a heatmap where: + - Value 1 (red): Region with all real roots + - Value -1 (blue): Region with complex roots """ - # Try to use C++ acceleration if available - if cpp_module is not None: - try: - phase_map = cpp_module.generate_phase_diagram_cpp(z_a, y, beta_min, beta_max, z_min, z_max, beta_steps, z_steps) - beta_values = np.linspace(beta_min, beta_max, beta_steps) - z_values = np.linspace(z_min, z_max, z_steps) - except Exception as e: - st.warning(f"C++ acceleration failed, falling back to Python: {str(e)}") - # Fall back to Python implementation below - phase_map = None - else: - phase_map = None + # Apply the condition for y + y_effective = y if y > 1 else 1/y - # If C++ failed or is not available, use Python implementation - if phase_map is None: - # Create progress tracking - progress_key = f"phase_diagram_{z_a}_{y}_{beta_steps}_{z_steps}" - progress = AdvancedProgressBar(progress_key, z_steps, "Generating phase diagram") - - # Apply the condition for y - y_effective = y if y > 1 else 1/y - - beta_values = np.linspace(beta_min, beta_max, beta_steps) - z_values = np.linspace(z_min, z_max, z_steps) - - # Initialize phase map - phase_map = np.zeros((z_steps, beta_steps)) + beta_values = np.linspace(beta_min, beta_max, beta_steps) + z_values = np.linspace(z_min, z_max, z_steps) + + # Initialize phase map + phase_map = np.zeros((z_steps, beta_steps)) + + # Progress tracking + progress_bar = st.progress(0) + status_text = st.empty() + + for i, z in enumerate(z_values): + # Update progress + progress_bar.progress((i + 1) / len(z_values)) + status_text.text(f"Analyzing phase at z = {z:.2f} ({i+1}/{len(z_values)})") - for i, z in enumerate(z_values): - # Update progress - progress.update(i+1, f"Analyzing phase at z = {z:.2f} ({i+1}/{len(z_values)})") + for j, beta in enumerate(beta_values): + roots = compute_cubic_roots(z, beta, z_a, y) - for j, beta in enumerate(beta_values): - # Use high-precision discriminant calculation - disc = generate_cubic_discriminant(z, beta, z_a, y_effective) - - # Set result based on sign of discriminant - # 1 for all real roots (discriminant > 0), -1 for complex roots (discriminant < 0) - phase_map[i, j] = 1 if disc > 0 else -1 - - progress.complete() + # Check if all roots are real (imaginary parts close to zero) + is_all_real = all(abs(root.imag) < 1e-10 for root in roots) + + phase_map[i, j] = 1 if is_all_real else -1 + + # Clear progress indicators + progress_bar.empty() + status_text.empty() # Create heatmap fig = go.Figure(data=go.Heatmap( @@ -1796,78 +883,46 @@ def generate_phase_diagram(z_a, y, beta_min=0.0, beta_max=1.0, z_min=-10.0, z_ma return fig - -@st.cache_data(show_spinner=False) +@st.cache_data def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42): """ Generate the eigenvalue distribution of B_n = S_n T_n as n→∞ - Uses C++ acceleration if available. """ - # Create progress tracking - progress_key = f"eigenval_dist_{beta}_{y}_{z_a}_{n}_{seed}" - progress = AdvancedProgressBar(progress_key, 7, "Generating eigenvalue distribution") - - # Try to use C++ acceleration if available - if cpp_module is not None: - try: - progress.update(1, "Using C++ accelerated eigenvalue calculation") - eigenvalues, x_vals = cpp_module.generate_eigenvalue_distribution_cpp(beta, y, z_a, n, seed) - progress.update(6, "Eigenvalues computed successfully") - except Exception as e: - st.warning(f"C++ acceleration failed, falling back to Python: {str(e)}") - # Fall back to Python implementation below - eigenvalues = None - else: - eigenvalues = None + # Apply the condition for y + y_effective = y if y > 1 else 1/y - # If C++ failed or is not available, use Python implementation - if eigenvalues is None: - # Apply the condition for y - y_effective = y if y > 1 else 1/y - - # Set random seed - progress.update(1, "Setting up random seed") - np.random.seed(seed) - - # Compute dimension p based on aspect ratio y - progress.update(2, "Initializing matrices") - p = int(y_effective * n) - - # Constructing T_n (Population / Shape Matrix) - k = int(np.floor(beta * p)) - diag_entries = np.concatenate([ - np.full(k, z_a), - np.full(p - k, 1.0) - ]) - np.random.shuffle(diag_entries) - T_n = np.diag(diag_entries) - - # Generate the data matrix X with i.i.d. standard normal entries - progress.update(3, "Generating random data matrix") - X = np.random.randn(p, n) - - # Compute the sample covariance matrix S_n = (1/n) * XX^T - progress.update(4, "Computing sample covariance matrix") - S_n = (1 / n) * (X @ X.T) - - # Compute B_n = S_n T_n - progress.update(5, "Computing B_n matrix") - B_n = S_n @ T_n - - # Compute eigenvalues of B_n - progress.update(6, "Computing eigenvalues") - eigenvalues = np.linalg.eigvalsh(B_n) - - # Create x grid for KDE - x_vals = np.linspace(min(eigenvalues), max(eigenvalues), 500) + # Set random seed + np.random.seed(seed) + + # Compute dimension p based on aspect ratio y + p = int(y_effective * n) + + # Constructing T_n (Population / Shape Matrix) - using the approach from the second script + k = int(np.floor(beta * p)) + diag_entries = np.concatenate([ + np.full(k, z_a), + np.full(p - k, 1.0) + ]) + np.random.shuffle(diag_entries) + T_n = np.diag(diag_entries) + + # Generate the data matrix X with i.i.d. standard normal entries + X = np.random.randn(p, n) + + # Compute the sample covariance matrix S_n = (1/n) * XX^T + S_n = (1 / n) * (X @ X.T) + + # Compute B_n = S_n T_n + B_n = S_n @ T_n + + # Compute eigenvalues of B_n + eigenvalues = np.linalg.eigvalsh(B_n) # Use KDE to compute a smooth density estimate - progress.update(7, "Computing kernel density estimate") kde = gaussian_kde(eigenvalues) + x_vals = np.linspace(min(eigenvalues), max(eigenvalues), 500) kde_vals = kde(x_vals) - progress.complete() - # Create figure fig = go.Figure() @@ -1889,321 +944,80 @@ def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42): return fig, eigenvalues +# ----------------- Streamlit UI ----------------- +st.title("Cubic Root Analysis") -@st.cache_data(show_spinner=False) -def analyze_complex_root_structure(beta_values, z, z_a, y): - """ - Analyze when the cubic equation switches between having all real roots - and having a complex conjugate pair plus one real root. +# Define three tabs +tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Complex Root Analysis", "Differential Analysis"]) + +# ----- Tab 1: z*(β) Curves ----- +with tab1: + st.header("Eigenvalue Support Boundaries") - Returns: - - transition_points: beta values where the root structure changes - - structure_types: list indicating whether each interval has all real roots or complex roots - """ - # Create progress tracking - progress_key = f"root_struct_{z}_{z_a}_{y}_{len(beta_values)}" - progress = AdvancedProgressBar(progress_key, len(beta_values), "Analyzing root structure") + # Cleaner layout with better column organization + col1, col2, col3 = st.columns([1, 1, 2]) - transition_points = [] - structure_types = [] - - previous_type = None - - for i, beta in enumerate(beta_values): - progress.update(i+1, f"Analyzing root structure at β = {beta:.4f}") - - # Calculate roots with high precision - roots = compute_cubic_roots(z, beta, z_a, y) - - # Check if all roots are real (imaginary parts close to zero) - is_all_real = all(abs(root.imag) < 1e-10 for root in roots) + with col1: + z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1") + y_1 = st.number_input("y", value=1.0, key="y_1") - current_type = "real" if is_all_real else "complex" - - if previous_type is not None and current_type != previous_type: - # Found a transition point - transition_points.append(beta) - structure_types.append(previous_type) - - previous_type = current_type - - # Add the final interval type - if previous_type is not None: - structure_types.append(previous_type) - - progress.complete() - return transition_points, structure_types - - -@st.cache_data(show_spinner=False) -def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps, - s_num_expr=None, s_denom_expr=None, - z_num_expr=None, z_denom_expr=None, - show_derivatives=False, - show_high_y=False, - show_low_y=False, - show_max_k=True, - show_min_t=True, - use_eigenvalue_method=True, - n_samples=1000, - seeds=5): - """ - Generate z vs beta plot with high precision calculations. - """ - # Create main progress tracking - progress_key = f"z_vs_beta_{z_a}_{y}_{beta_steps}" - progress = AdvancedProgressBar(progress_key, 5, "Computing z*(β) curves") - - if z_a <= 0 or y <= 0 or z_min >= z_max: - progress.complete() - st.error("Invalid input parameters.") - return None - - progress.update(1, "Creating β grid") - betas = np.linspace(0, 1, beta_steps) - - if use_eigenvalue_method: - # Use the eigenvalue method to compute boundaries - progress.update(2, "Computing eigenvalue support boundaries") - min_eigs, max_eigs = compute_eigenvalue_support_boundaries(z_a, y, betas, n_samples, seeds) - z_mins, z_maxs = min_eigs, max_eigs - else: - # Use the original discriminant method - progress.update(2, "Computing discriminant zeros") - betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps) - - progress.update(3, "Computing additional curves") - - # Compute additional curves - high_y_curve = compute_high_y_curve(betas, z_a, y) if show_high_y else None - alt_low_expr = compute_alternate_low_expr(betas, z_a, y) if show_low_y else None - - # Compute the max/min expressions - max_k_curve = compute_max_k_expression(betas, z_a, y) if show_max_k else None - min_t_curve = compute_min_t_expression(betas, z_a, y) if show_min_t else None - - # Compute both custom curves - custom_curve1 = None - custom_curve2 = None - if s_num_expr and s_denom_expr: - custom_curve1 = compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, True) - if z_num_expr and z_denom_expr: - custom_curve2 = compute_custom_expression(betas, z_a, y, z_num_expr, z_denom_expr, False) - - # Compute derivatives if needed - if show_derivatives: - progress.update(4, "Computing derivatives") - derivatives = compute_all_derivatives(betas, z_mins, z_maxs, None, high_y_curve, - alt_low_expr, custom_curve1, custom_curve2) - # Calculate derivatives for max_k and min_t curves if they exist - if show_max_k and max_k_curve is not None: - max_k_derivatives = compute_derivatives(max_k_curve, betas) - if show_min_t and min_t_curve is not None: - min_t_derivatives = compute_derivatives(min_t_curve, betas) + with col2: + z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1") + z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1") - progress.update(5, "Creating plot") - - fig = go.Figure() - - # Original curves - if use_eigenvalue_method: - fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines", - name="Upper Bound (Max Eigenvalue)", line=dict(color='blue'))) - fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines", - name="Lower Bound (Min Eigenvalue)", line=dict(color='blue'))) - # Add shaded region between curves - fig.add_trace(go.Scatter( - x=np.concatenate([betas, betas[::-1]]), - y=np.concatenate([z_maxs, z_mins[::-1]]), - fill='toself', - fillcolor='rgba(0,0,255,0.2)', - line=dict(color='rgba(255,255,255,0)'), - showlegend=False, - hoverinfo='skip' - )) - else: - fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines", - name="Upper z*(β)", line=dict(color='blue'))) - fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines", - name="Lower z*(β)", line=dict(color='blue'))) - - # Add High y Expression only if selected - if show_high_y and high_y_curve is not None: - fig.add_trace(go.Scatter(x=betas, y=high_y_curve, mode="markers+lines", - name="High y Expression", line=dict(color='green'))) - - # Add Low Expression only if selected - if show_low_y and alt_low_expr is not None: - fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines", - name="Low Expression", line=dict(color='orange'))) - - # Add the max/min curves if selected - if show_max_k and max_k_curve is not None: - fig.add_trace(go.Scatter(x=betas, y=max_k_curve, mode="lines", - name="Max k Expression", line=dict(color='red', width=2))) - - if show_min_t and min_t_curve is not None: - fig.add_trace(go.Scatter(x=betas, y=min_t_curve, mode="lines", - name="Min t Expression", line=dict(color='purple', width=2))) - - if custom_curve1 is not None: - fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines", - name="Custom 1 (s-based)", line=dict(color='magenta'))) - if custom_curve2 is not None: - fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines", - name="Custom 2 (direct)", line=dict(color='brown'))) - - if show_derivatives: - # First derivatives - curve_info = [ - ('upper', 'Upper Bound' if use_eigenvalue_method else 'Upper z*(β)', 'blue'), - ('lower', 'Lower Bound' if use_eigenvalue_method else 'Lower z*(β)', 'lightblue'), - ] - - if show_high_y and high_y_curve is not None: - curve_info.append(('high_y', 'High y', 'green')) - if show_low_y and alt_low_expr is not None: - curve_info.append(('alt_low', 'Alt Low', 'orange')) - - if custom_curve1 is not None: - curve_info.append(('custom1', 'Custom 1', 'magenta')) - if custom_curve2 is not None: - curve_info.append(('custom2', 'Custom 2', 'brown')) - - for key, name, color in curve_info: - if key in derivatives: - fig.add_trace(go.Scatter(x=betas, y=derivatives[key][0], mode="lines", - name=f"{name} d/dβ", line=dict(color=color, dash='dash'))) - fig.add_trace(go.Scatter(x=betas, y=derivatives[key][1], mode="lines", - name=f"{name} d²/dβ²", line=dict(color=color, dash='dot'))) - - # Add derivatives for max_k and min_t curves if they exist - if show_max_k and max_k_curve is not None and 'max_k_derivatives' in locals(): - fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[0], mode="lines", - name="Max k d/dβ", line=dict(color='red', dash='dash'))) - fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[1], mode="lines", - name="Max k d²/dβ²", line=dict(color='red', dash='dot'))) - - if show_min_t and min_t_curve is not None and 'min_t_derivatives' in locals(): - fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[0], mode="lines", - name="Min t d/dβ", line=dict(color='purple', dash='dash'))) - fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[1], mode="lines", - name="Min t d²/dβ²", line=dict(color='purple', dash='dot'))) - - fig.update_layout( - title="Curves vs β: Eigenvalue Support Boundaries and Asymptotic Expressions" if use_eigenvalue_method - else "Curves vs β: z*(β) Boundaries and Asymptotic Expressions", - xaxis_title="β", - yaxis_title="Value", - hovermode="x unified", - showlegend=True, - legend=dict( - yanchor="top", - y=0.99, - xanchor="left", - x=0.01 + with col1: + method_type = st.radio( + "Calculation Method", + ["Eigenvalue Method", "Discriminant Method"], + index=0 # Default to eigenvalue method ) - ) - progress.complete() - return fig - - -# ----------------- Streamlit UI ----------------- - -# Create tab containers that won't be refreshed -if 'tab_placeholders' not in st.session_state: - st.session_state.tab_placeholders = st.tabs(["z*(β) Curves", "Complex Root Analysis", "Differential Analysis"]) - -# ----- Tab 1: z*(β) Curves ----- -with st.session_state.tab_placeholders[0]: - # Create persistent containers for this tab - if 'tab1_header' not in st.session_state: - st.session_state.tab1_header = st.empty() - st.session_state.tab1_col1 = st.empty() - st.session_state.tab1_col2 = st.empty() - st.session_state.tab1_col3 = st.empty() - - # Fill header - with st.session_state.tab1_header: - st.header("Eigenvalue Support Boundaries") - - # Create column layout - with st.session_state.tab1_col1: - col1, col2, col3 = st.columns([1, 1, 2]) - - with col1: - z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1") - y_1 = st.number_input("y", value=1.0, key="y_1") - - with col2: - z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1") - z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1") - - with col1: - method_type = st.radio( - "Calculation Method", - ["Eigenvalue Method", "Discriminant Method"], - index=0 # Default to eigenvalue method - ) - - # Advanced settings in collapsed expanders - with st.expander("Method Settings", expanded=False): - if method_type == "Eigenvalue Method": - beta_steps = st.slider("β steps", min_value=21, max_value=101, value=51, step=10, - key="beta_steps_eigen") - n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000, - step=100) - seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1) - else: - beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, - key="beta_steps") - z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, - step=1000, key="z_steps") - - # Curve visibility options - with st.expander("Curve Visibility", expanded=False): - col_vis1, col_vis2 = st.columns(2) - with col_vis1: - show_high_y = st.checkbox("Show High y Expression", value=False, key="show_high_y") - show_max_k = st.checkbox("Show Max k Expression", value=True, key="show_max_k") - with col_vis2: - show_low_y = st.checkbox("Show Low y Expression", value=False, key="show_low_y") - show_min_t = st.checkbox("Show Min t Expression", value=True, key="show_min_t") - - # Custom expressions collapsed by default - with st.expander("Custom Expression 1 (s-based)", expanded=False): - st.markdown("""Enter expressions for s = numerator/denominator - (using variables `y`, `beta`, `z_a`, and `sqrt()`)""") - st.latex(r"\text{This s will be inserted into:}") - st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}") - s_num = st.text_input("s numerator", value="", key="s_num") - s_denom = st.text_input("s denominator", value="", key="s_denom") - - with st.expander("Custom Expression 2 (direct z(β))", expanded=False): - st.markdown("""Enter direct expression for z(β) = numerator/denominator - (using variables `y`, `beta`, `z_a`, and `sqrt()`)""") - z_num = st.text_input("z(β) numerator", value="", key="z_num") - z_denom = st.text_input("z(β) denominator", value="", key="z_denom") - - # Move show_derivatives to main UI level for better visibility - with col2: - show_derivatives = st.checkbox("Show derivatives", value=False) - - # Compute button container - with st.session_state.tab1_col2: - compute_button = st.button("Compute Curves", key="tab1_button") - - # Results container - with st.session_state.tab1_col3: - result_container = st.empty() - - # Compute if button pressed - if compute_button: - with result_container: - plot_container = st.empty() - explanation_container = st.empty() - + # Advanced settings in collapsed expanders + with st.expander("Method Settings", expanded=False): + if method_type == "Eigenvalue Method": + beta_steps = st.slider("β steps", min_value=21, max_value=101, value=51, step=10, + key="beta_steps_eigen") + n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000, + step=100) + seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1) + else: + beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, + key="beta_steps") + z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, + step=1000, key="z_steps") + + # Curve visibility options + with st.expander("Curve Visibility", expanded=False): + col_vis1, col_vis2 = st.columns(2) + with col_vis1: + show_high_y = st.checkbox("Show High y Expression", value=False, key="show_high_y") + show_max_k = st.checkbox("Show Max k Expression", value=True, key="show_max_k") + with col_vis2: + show_low_y = st.checkbox("Show Low y Expression", value=False, key="show_low_y") + show_min_t = st.checkbox("Show Min t Expression", value=True, key="show_min_t") + + # Custom expressions collapsed by default + with st.expander("Custom Expression 1 (s-based)", expanded=False): + st.markdown("""Enter expressions for s = numerator/denominator + (using variables `y`, `beta`, `z_a`, and `sqrt()`)""") + st.latex(r"\text{This s will be inserted into:}") + st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}") + s_num = st.text_input("s numerator", value="", key="s_num") + s_denom = st.text_input("s denominator", value="", key="s_denom") + + with st.expander("Custom Expression 2 (direct z(β))", expanded=False): + st.markdown("""Enter direct expression for z(β) = numerator/denominator + (using variables `y`, `beta`, `z_a`, and `sqrt()`)""") + z_num = st.text_input("z(β) numerator", value="", key="z_num") + z_denom = st.text_input("z(β) denominator", value="", key="z_denom") + + # Move show_derivatives to main UI level for better visibility + with col2: + show_derivatives = st.checkbox("Show derivatives", value=False) + + # Compute button + if st.button("Compute Curves", key="tab1_button"): + with col3: use_eigenvalue_method = (method_type == "Eigenvalue Method") if use_eigenvalue_method: fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, None, @@ -2218,10 +1032,10 @@ with st.session_state.tab_placeholders[0]: use_eigenvalue_method=False) if fig is not None: - plot_container.plotly_chart(fig, use_container_width=True) + st.plotly_chart(fig, use_container_width=True) # Curve explanations in collapsed expander - with explanation_container.expander("Curve Explanations", expanded=False): + with st.expander("Curve Explanations", expanded=False): if use_eigenvalue_method: st.markdown(""" - **Upper/Lower Bounds** (Blue): Maximum/minimum eigenvalues of B_n = S_n T_n @@ -2251,348 +1065,273 @@ with st.session_state.tab_placeholders[0]: - Dotted lines: Second derivatives (d²/dβ²) """) - # ----- Tab 2: Complex Root Analysis ----- -with st.session_state.tab_placeholders[1]: - # Create persistent containers for this tab - if 'tab2_header' not in st.session_state: - st.session_state.tab2_header = st.empty() - st.session_state.tab2_subtabs = st.empty() - - # Fill header - with st.session_state.tab2_header: - st.header("Complex Root Analysis") +with tab2: + st.header("Complex Root Analysis") # Create tabs within the page for different plots - with st.session_state.tab2_subtabs: - plot_tabs = st.tabs(["Im{s} vs. z", "Im{s} vs. β", "Phase Diagram", "Eigenvalue Distribution"]) - - # Tab for Im{s} vs. z plot - with plot_tabs[0]: - if 'tab2_z_col1' not in st.session_state: - st.session_state.tab2_z_col1 = st.empty() - st.session_state.tab2_z_col2 = st.empty() - - with st.session_state.tab2_z_col1: - col1, col2 = st.columns([1, 2]) - with col1: - beta_z = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2_z") - y_z = st.number_input("y", value=1.0, key="y_tab2_z") - z_a_z = st.number_input("z_a", value=1.0, key="z_a_tab2_z") - z_min_z = st.number_input("z_min", value=-10.0, key="z_min_tab2_z") - z_max_z = st.number_input("z_max", value=10.0, key="z_max_tab2_z") - with st.expander("Resolution Settings", expanded=False): - z_points = st.slider("z grid points", min_value=100, max_value=2000, value=500, step=100, key="z_points_z") - compute_button_z = st.button("Compute Complex Roots vs. z", key="tab2_button_z") - - with st.session_state.tab2_z_col2: - result_container_z = st.empty() - - if compute_button_z: - with result_container_z: - fig_im, fig_re, fig_disc = generate_root_plots(beta_z, y_z, z_a_z, z_min_z, z_max_z, z_points) - if fig_im is not None and fig_re is not None and fig_disc is not None: - st.plotly_chart(fig_im, use_container_width=True) - st.plotly_chart(fig_re, use_container_width=True) - st.plotly_chart(fig_disc, use_container_width=True) - - with st.expander("Root Structure Analysis", expanded=False): - st.markdown(""" - ### Root Structure Explanation - - The red dashed vertical lines mark the points where the cubic discriminant equals zero. - At these points, the cubic equation's root structure changes: - - - When the discriminant is positive, the cubic has three distinct real roots. - - When the discriminant is negative, the cubic has one real root and two complex conjugate roots. - - When the discriminant is exactly zero, the cubic has at least two equal roots. - - These transition points align perfectly with the z*(β) boundary curves from the first tab, - which represent exactly these transitions in the (β,z) plane. - """) - - # Tab for Im{s} vs. β plot - with plot_tabs[1]: - if 'tab2_beta_col1' not in st.session_state: - st.session_state.tab2_beta_col1 = st.empty() - st.session_state.tab2_beta_col2 = st.empty() - - with st.session_state.tab2_beta_col1: - col1, col2 = st.columns([1, 2]) - with col1: - z_beta = st.number_input("z", value=1.0, key="z_tab2_beta") - y_beta = st.number_input("y", value=1.0, key="y_tab2_beta") - z_a_beta = st.number_input("z_a", value=1.0, key="z_a_tab2_beta") - beta_min = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_tab2") - beta_max = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_tab2") - with st.expander("Resolution Settings", expanded=False): - beta_points = st.slider("β grid points", min_value=100, max_value=1000, value=500, step=100, key="beta_points") - compute_button_beta = st.button("Compute Complex Roots vs. β", key="tab2_button_beta") - - with st.session_state.tab2_beta_col2: - result_container_beta = st.empty() - - if compute_button_beta: - with result_container_beta: - fig_im_beta, fig_re_beta, fig_disc = generate_roots_vs_beta_plots( - z_beta, y_beta, z_a_beta, beta_min, beta_max, beta_points) + plot_tabs = st.tabs(["Im{s} vs. z", "Im{s} vs. β", "Phase Diagram", "Eigenvalue Distribution"]) + + # Tab for Im{s} vs. z plot + with plot_tabs[0]: + col1, col2 = st.columns([1, 2]) + with col1: + beta_z = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2_z") + y_z = st.number_input("y", value=1.0, key="y_tab2_z") + z_a_z = st.number_input("z_a", value=1.0, key="z_a_tab2_z") + z_min_z = st.number_input("z_min", value=-10.0, key="z_min_tab2_z") + z_max_z = st.number_input("z_max", value=10.0, key="z_max_tab2_z") + with st.expander("Resolution Settings", expanded=False): + z_points = st.slider("z grid points", min_value=100, max_value=2000, value=500, step=100, key="z_points_z") + if st.button("Compute Complex Roots vs. z", key="tab2_button_z"): + with col2: + fig_im, fig_re, fig_disc = generate_root_plots(beta_z, y_z, z_a_z, z_min_z, z_max_z, z_points) + if fig_im is not None and fig_re is not None and fig_disc is not None: + st.plotly_chart(fig_im, use_container_width=True) + st.plotly_chart(fig_re, use_container_width=True) + st.plotly_chart(fig_disc, use_container_width=True) - if fig_im_beta is not None and fig_re_beta is not None and fig_disc is not None: - st.plotly_chart(fig_im_beta, use_container_width=True) - st.plotly_chart(fig_re_beta, use_container_width=True) - st.plotly_chart(fig_disc, use_container_width=True) + with st.expander("Root Structure Analysis", expanded=False): + st.markdown(""" + ### Root Structure Explanation - # Add analysis of transition points - transition_points, structure_types = analyze_complex_root_structure( - np.linspace(beta_min, beta_max, beta_points), z_beta, z_a_beta, y_beta) + The red dashed vertical lines mark the points where the cubic discriminant equals zero. + At these points, the cubic equation's root structure changes: - if transition_points: - st.subheader("Root Structure Transition Points") - for i, beta in enumerate(transition_points): - prev_type = structure_types[i] - next_type = structure_types[i+1] if i+1 < len(structure_types) else "unknown" - st.markdown(f"- At β = {beta:.6f}: Transition from {prev_type} roots to {next_type} roots") - else: - st.info("No transitions detected in root structure across this β range.") + - When the discriminant is positive, the cubic has three distinct real roots. + - When the discriminant is negative, the cubic has one real root and two complex conjugate roots. + - When the discriminant is exactly zero, the cubic has at least two equal roots. - # Explanation - with st.expander("Analysis Explanation", expanded=False): - st.markdown(""" - ### Interpreting the Plots - - - **Im{s} vs. β**: Shows how the imaginary parts of the roots change with β. When all curves are at Im{s}=0, all roots are real. - - **Re{s} vs. β**: Shows how the real parts of the roots change with β. - - **Discriminant Plot**: The cubic discriminant changes sign at points where the root structure changes. - - When discriminant < 0: The cubic has one real root and two complex conjugate roots. - - When discriminant > 0: The cubic has three distinct real roots. - - When discriminant = 0: The cubic has multiple roots (at least two roots are equal). - - The vertical red dashed lines mark the transition points where the root structure changes. - """) - - # Tab for Phase Diagram - with plot_tabs[2]: - if 'tab2_phase_col1' not in st.session_state: - st.session_state.tab2_phase_col1 = st.empty() - st.session_state.tab2_phase_col2 = st.empty() - - with st.session_state.tab2_phase_col1: - col1, col2 = st.columns([1, 2]) - with col1: - z_a_phase = st.number_input("z_a", value=1.0, key="z_a_phase") - y_phase = st.number_input("y", value=1.0, key="y_phase") - beta_min_phase = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_phase") - beta_max_phase = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_phase") - z_min_phase = st.number_input("z_min", value=-10.0, key="z_min_phase") - z_max_phase = st.number_input("z_max", value=10.0, key="z_max_phase") + These transition points align perfectly with the z*(β) boundary curves from the first tab, + which represent exactly these transitions in the (β,z) plane. + """) + + # New tab for Im{s} vs. β plot + with plot_tabs[1]: + col1, col2 = st.columns([1, 2]) + with col1: + z_beta = st.number_input("z", value=1.0, key="z_tab2_beta") + y_beta = st.number_input("y", value=1.0, key="y_tab2_beta") + z_a_beta = st.number_input("z_a", value=1.0, key="z_a_tab2_beta") + beta_min = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_tab2") + beta_max = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_tab2") + with st.expander("Resolution Settings", expanded=False): + beta_points = st.slider("β grid points", min_value=100, max_value=1000, value=500, step=100, key="beta_points") + if st.button("Compute Complex Roots vs. β", key="tab2_button_beta"): + with col2: + fig_im_beta, fig_re_beta, fig_disc = generate_roots_vs_beta_plots( + z_beta, y_beta, z_a_beta, beta_min, beta_max, beta_points) + + if fig_im_beta is not None and fig_re_beta is not None and fig_disc is not None: + st.plotly_chart(fig_im_beta, use_container_width=True) + st.plotly_chart(fig_re_beta, use_container_width=True) + st.plotly_chart(fig_disc, use_container_width=True) - with st.expander("Resolution Settings", expanded=False): - beta_steps_phase = st.slider("β grid points", min_value=20, max_value=200, value=100, step=20, key="beta_steps_phase") - z_steps_phase = st.slider("z grid points", min_value=20, max_value=200, value=100, step=20, key="z_steps_phase") + # Add analysis of transition points + transition_points, structure_types = analyze_complex_root_structure( + np.linspace(beta_min, beta_max, beta_points), z_beta, z_a_beta, y_beta) - compute_button_phase = st.button("Generate Phase Diagram", key="tab2_button_phase") - - with st.session_state.tab2_phase_col2: - result_container_phase = st.empty() - - if compute_button_phase: - with result_container_phase: - st.info("Generating phase diagram. This may take a while depending on resolution...") - fig_phase = generate_phase_diagram( - z_a_phase, y_phase, beta_min_phase, beta_max_phase, z_min_phase, z_max_phase, - beta_steps_phase, z_steps_phase) + if transition_points: + st.subheader("Root Structure Transition Points") + for i, beta in enumerate(transition_points): + prev_type = structure_types[i] + next_type = structure_types[i+1] if i+1 < len(structure_types) else "unknown" + st.markdown(f"- At β = {beta:.6f}: Transition from {prev_type} roots to {next_type} roots") + else: + st.info("No transitions detected in root structure across this β range.") - if fig_phase is not None: - st.plotly_chart(fig_phase, use_container_width=True) + # Explanation + with st.expander("Analysis Explanation", expanded=False): + st.markdown(""" + ### Interpreting the Plots + + - **Im{s} vs. β**: Shows how the imaginary parts of the roots change with β. When all curves are at Im{s}=0, all roots are real. + - **Re{s} vs. β**: Shows how the real parts of the roots change with β. + - **Discriminant Plot**: The cubic discriminant changes sign at points where the root structure changes. + - When discriminant < 0: The cubic has one real root and two complex conjugate roots. + - When discriminant > 0: The cubic has three distinct real roots. + - When discriminant = 0: The cubic has multiple roots (at least two roots are equal). - with st.expander("Phase Diagram Explanation", expanded=False): - st.markdown(""" - ### Understanding the Phase Diagram - - This heatmap shows the regions in the (β, z) plane where: - - - **Red Regions**: The cubic equation has all real roots - - **Blue Regions**: The cubic equation has one real root and two complex conjugate roots - - The boundaries between these regions represent values where the discriminant is zero, - which are the exact same curves as the z*(β) boundaries in the first tab. This phase - diagram provides a comprehensive view of the eigenvalue support structure. - """) - - # Eigenvalue distribution tab - with plot_tabs[3]: - if 'tab2_eigen_col1' not in st.session_state: - st.session_state.tab2_eigen_col1 = st.empty() - st.session_state.tab2_eigen_col2 = st.empty() + The vertical red dashed lines mark the transition points where the root structure changes. + """) + + # Tab for Phase Diagram + with plot_tabs[2]: + col1, col2 = st.columns([1, 2]) + with col1: + z_a_phase = st.number_input("z_a", value=1.0, key="z_a_phase") + y_phase = st.number_input("y", value=1.0, key="y_phase") + beta_min_phase = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_phase") + beta_max_phase = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_phase") + z_min_phase = st.number_input("z_min", value=-10.0, key="z_min_phase") + z_max_phase = st.number_input("z_max", value=10.0, key="z_max_phase") - with st.session_state.tab2_eigen_col1: - st.subheader("Eigenvalue Distribution for B_n = S_n T_n") - with st.expander("Simulation Information", expanded=False): - st.markdown(""" - This simulation generates the eigenvalue distribution of B_n as n→∞, where: - - B_n = (1/n)XX^T with X being a p×n matrix - - p/n → y as n→∞ - - The diagonal entries of T_n follow distribution β·δ(z_a) + (1-β)·δ(1) - """) + with st.expander("Resolution Settings", expanded=False): + beta_steps_phase = st.slider("β grid points", min_value=20, max_value=200, value=100, step=20, key="beta_steps_phase") + z_steps_phase = st.slider("z grid points", min_value=20, max_value=200, value=100, step=20, key="z_steps_phase") + + if st.button("Generate Phase Diagram", key="tab2_button_phase"): + with col2: + st.info("Generating phase diagram. This may take a while depending on resolution...") + fig_phase = generate_phase_diagram( + z_a_phase, y_phase, beta_min_phase, beta_max_phase, z_min_phase, z_max_phase, + beta_steps_phase, z_steps_phase) - col_eigen1, col_eigen2 = st.columns([1, 2]) - with col_eigen1: - beta_eigen = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_eigen") - y_eigen = st.number_input("y", value=1.0, key="y_eigen") - z_a_eigen = st.number_input("z_a", value=1.0, key="z_a_eigen") - n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100) - sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1) - - # Add comparison option - show_theoretical = st.checkbox("Show theoretical boundaries", value=True) - show_empirical_stats = st.checkbox("Show empirical statistics", value=True) + if fig_phase is not None: + st.plotly_chart(fig_phase, use_container_width=True) - compute_button_eigen = st.button("Generate Eigenvalue Distribution", key="tab2_eigen_button") - - with st.session_state.tab2_eigen_col2: - result_container_eigen = st.empty() - - if compute_button_eigen: - with result_container_eigen: - # Generate the eigenvalue distribution - fig_eigen, eigenvalues = generate_eigenvalue_distribution(beta_eigen, y_eigen, z_a_eigen, n=n_samples, seed=sim_seed) - - # If requested, compute and add theoretical boundaries - if show_theoretical: - # Calculate min and max eigenvalues using the support boundary functions - betas = np.array([beta_eigen]) - min_eig, max_eig = compute_eigenvalue_support_boundaries(z_a_eigen, y_eigen, betas, n_samples=n_samples, seeds=5) + with st.expander("Phase Diagram Explanation", expanded=False): + st.markdown(""" + ### Understanding the Phase Diagram - # Add vertical lines for boundaries - fig_eigen.add_vline( - x=min_eig[0], - line=dict(color="red", width=2, dash="dash"), - annotation_text="Min theoretical", - annotation_position="top right" - ) - fig_eigen.add_vline( - x=max_eig[0], - line=dict(color="red", width=2, dash="dash"), - annotation_text="Max theoretical", - annotation_position="top left" - ) - - # Display the plot - st.plotly_chart(fig_eigen, use_container_width=True) - - # Add comparison of empirical vs theoretical bounds - if show_theoretical and show_empirical_stats: - empirical_min = eigenvalues.min() - empirical_max = eigenvalues.max() + This heatmap shows the regions in the (β, z) plane where: - st.markdown("### Comparison of Empirical vs Theoretical Bounds") - col1, col2, col3 = st.columns(3) - with col1: - st.metric("Theoretical Min", f"{min_eig[0]:.6f}") - st.metric("Theoretical Max", f"{max_eig[0]:.6f}") - st.metric("Theoretical Width", f"{max_eig[0] - min_eig[0]:.6f}") - with col2: - st.metric("Empirical Min", f"{empirical_min:.6f}") - st.metric("Empirical Max", f"{empirical_max:.6f}") - st.metric("Empirical Width", f"{empirical_max - empirical_min:.6f}") - with col3: - st.metric("Min Difference", f"{empirical_min - min_eig[0]:.6f}") - st.metric("Max Difference", f"{empirical_max - max_eig[0]:.6f}") - st.metric("Width Difference", f"{(empirical_max - empirical_min) - (max_eig[0] - min_eig[0]):.6f}") - - # Display additional statistics - if show_empirical_stats: - st.markdown("### Eigenvalue Statistics") - col1, col2 = st.columns(2) - with col1: - st.metric("Mean", f"{np.mean(eigenvalues):.6f}") - st.metric("Median", f"{np.median(eigenvalues):.6f}") - with col2: - st.metric("Standard Deviation", f"{np.std(eigenvalues):.6f}") - st.metric("Interquartile Range", f"{np.percentile(eigenvalues, 75) - np.percentile(eigenvalues, 25):.6f}") + - **Red Regions**: The cubic equation has all real roots + - **Blue Regions**: The cubic equation has one real root and two complex conjugate roots + + The boundaries between these regions represent values where the discriminant is zero, + which are the exact same curves as the z*(β) boundaries in the first tab. This phase + diagram provides a comprehensive view of the eigenvalue support structure. + """) + # Eigenvalue distribution tab + with plot_tabs[3]: + st.subheader("Eigenvalue Distribution for B_n = S_n T_n") + with st.expander("Simulation Information", expanded=False): + st.markdown(""" + This simulation generates the eigenvalue distribution of B_n as n→∞, where: + - B_n = (1/n)XX^T with X being a p×n matrix + - p/n → y as n→∞ + - The diagonal entries of T_n follow distribution β·δ(z_a) + (1-β)·δ(1) + """) + + col_eigen1, col_eigen2 = st.columns([1, 2]) + with col_eigen1: + beta_eigen = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_eigen") + y_eigen = st.number_input("y", value=1.0, key="y_eigen") + z_a_eigen = st.number_input("z_a", value=1.0, key="z_a_eigen") + n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100) + sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1) + + # Add comparison option + show_theoretical = st.checkbox("Show theoretical boundaries", value=True) + show_empirical_stats = st.checkbox("Show empirical statistics", value=True) + + if st.button("Generate Eigenvalue Distribution", key="tab2_eigen_button"): + with col_eigen2: + # Generate the eigenvalue distribution + fig_eigen, eigenvalues = generate_eigenvalue_distribution(beta_eigen, y_eigen, z_a_eigen, n=n_samples, seed=sim_seed) + + # If requested, compute and add theoretical boundaries + if show_theoretical: + # Calculate min and max eigenvalues using the support boundary functions + betas = np.array([beta_eigen]) + min_eig, max_eig = compute_eigenvalue_support_boundaries(z_a_eigen, y_eigen, betas, n_samples=n_samples, seeds=5) + + # Add vertical lines for boundaries + fig_eigen.add_vline( + x=min_eig[0], + line=dict(color="red", width=2, dash="dash"), + annotation_text="Min theoretical", + annotation_position="top right" + ) + fig_eigen.add_vline( + x=max_eig[0], + line=dict(color="red", width=2, dash="dash"), + annotation_text="Max theoretical", + annotation_position="top left" + ) + + # Display the plot + st.plotly_chart(fig_eigen, use_container_width=True) + + # Add comparison of empirical vs theoretical bounds + if show_theoretical and show_empirical_stats: + empirical_min = eigenvalues.min() + empirical_max = eigenvalues.max() + + st.markdown("### Comparison of Empirical vs Theoretical Bounds") + col1, col2, col3 = st.columns(3) + with col1: + st.metric("Theoretical Min", f"{min_eig[0]:.4f}") + st.metric("Theoretical Max", f"{max_eig[0]:.4f}") + st.metric("Theoretical Width", f"{max_eig[0] - min_eig[0]:.4f}") + with col2: + st.metric("Empirical Min", f"{empirical_min:.4f}") + st.metric("Empirical Max", f"{empirical_max:.4f}") + st.metric("Empirical Width", f"{empirical_max - empirical_min:.4f}") + with col3: + st.metric("Min Difference", f"{empirical_min - min_eig[0]:.4f}") + st.metric("Max Difference", f"{empirical_max - max_eig[0]:.4f}") + st.metric("Width Difference", f"{(empirical_max - empirical_min) - (max_eig[0] - min_eig[0]):.4f}") + + # Display additional statistics + if show_empirical_stats: + st.markdown("### Eigenvalue Statistics") + col1, col2 = st.columns(2) + with col1: + st.metric("Mean", f"{np.mean(eigenvalues):.4f}") + st.metric("Median", f"{np.median(eigenvalues):.4f}") + with col2: + st.metric("Standard Deviation", f"{np.std(eigenvalues):.4f}") + st.metric("Interquartile Range", f"{np.percentile(eigenvalues, 75) - np.percentile(eigenvalues, 25):.4f}") # ----- Tab 3: Differential Analysis ----- -with st.session_state.tab_placeholders[2]: - # Create persistent containers for this tab - if 'tab3_header' not in st.session_state: - st.session_state.tab3_header = st.empty() - st.session_state.tab3_col1 = st.empty() - st.session_state.tab3_col2 = st.empty() - - # Fill header - with st.session_state.tab3_header: - st.header("Differential Analysis vs. β") - with st.expander("Description", expanded=False): - st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.") - - # Create column layout - with st.session_state.tab3_col1: - col1, col2 = st.columns([1, 2]) - with col1: - z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff") - y_diff = st.number_input("y", value=1.0, key="y_diff") - z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff") - z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff") - - diff_method_type = st.radio( - "Boundary Calculation Method", - ["Eigenvalue Method", "Discriminant Method"], - index=0, - key="diff_method_type" - ) - - with st.expander("Resolution Settings", expanded=False): - if diff_method_type == "Eigenvalue Method": - beta_steps_diff = st.slider("β steps", min_value=21, max_value=101, value=51, step=10, - key="beta_steps_diff_eigen") - diff_n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000, - step=100, key="diff_n_samples") - diff_seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1, - key="diff_seeds") - else: - beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, - key="beta_steps_diff") - z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, - step=1000, key="z_steps_diff") - - # Add options for curve selection - st.subheader("Curves to Analyze") - analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True) - analyze_high_y = st.checkbox("High y Expression", value=False) - analyze_alt_low = st.checkbox("Low y Expression", value=False) - - compute_button_diff = st.button("Compute Differentials", key="tab3_button") - - # Results container - with st.session_state.tab3_col2: - result_container_diff = st.empty() - - # Compute if button pressed - if compute_button_diff: - with result_container_diff: +with tab3: + st.header("Differential Analysis vs. β") + with st.expander("Description", expanded=False): + st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.") + + col1, col2 = st.columns([1, 2]) + with col1: + z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff") + y_diff = st.number_input("y", value=1.0, key="y_diff") + z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff") + z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff") + + diff_method_type = st.radio( + "Boundary Calculation Method", + ["Eigenvalue Method", "Discriminant Method"], + index=0, + key="diff_method_type" + ) + + with st.expander("Resolution Settings", expanded=False): + if diff_method_type == "Eigenvalue Method": + beta_steps_diff = st.slider("β steps", min_value=21, max_value=101, value=51, step=10, + key="beta_steps_diff_eigen") + diff_n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000, + step=100, key="diff_n_samples") + diff_seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1, + key="diff_seeds") + else: + beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, + key="beta_steps_diff") + z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, + step=1000, key="z_steps_diff") + + # Add options for curve selection + st.subheader("Curves to Analyze") + analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True) + analyze_high_y = st.checkbox("High y Expression", value=False) + analyze_alt_low = st.checkbox("Low y Expression", value=False) + + if st.button("Compute Differentials", key="tab3_button"): + with col2: use_eigenvalue_method_diff = (diff_method_type == "Eigenvalue Method") - # Create a progress tracker - progress_key = f"diff_analysis_{z_a_diff}_{y_diff}" - progress = AdvancedProgressBar(progress_key, 5, "Computing differential analysis") - - progress.update(1, "Setting up β grid") if use_eigenvalue_method_diff: betas_diff = np.linspace(0, 1, beta_steps_diff) - progress.update(2, "Computing eigenvalue support boundaries") + st.info("Computing eigenvalue support boundaries. This may take a moment...") lower_vals, upper_vals = compute_eigenvalue_support_boundaries( z_a_diff, y_diff, betas_diff, diff_n_samples, diff_seeds) else: - progress.update(2, "Computing discriminant zeros") betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds( z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff) # Create figure - progress.update(3, "Creating plot") fig_diff = go.Figure() - progress.update(4, "Computing derivatives") if analyze_upper_lower: diff_curve = upper_vals - lower_vals d1 = np.gradient(diff_curve, betas_diff) @@ -2629,7 +1368,6 @@ with st.session_state.tab_placeholders[2]: fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", name="Low y d²/dβ²", line=dict(color="orange", dash='dot'))) - progress.update(5, "Finalizing plot") fig_diff.update_layout( title="Differential Analysis vs. β" + (" (Eigenvalue Method)" if use_eigenvalue_method_diff else " (Discriminant Method)"), @@ -2644,8 +1382,6 @@ with st.session_state.tab_placeholders[2]: x=0.01 ) ) - - progress.complete() st.plotly_chart(fig_diff, use_container_width=True) with st.expander("Curve Types", expanded=False): @@ -2653,24 +1389,4 @@ with st.session_state.tab_placeholders[2]: - Solid lines: Original curves - Dashed lines: First derivatives (d/dβ) - Dotted lines: Second derivatives (d²/dβ²) - """) - - -# Show high precision info -st.sidebar.markdown(f"#### Calculation Settings") -st.sidebar.info(f"Using high precision calculations with {mpmath.mp.dps} digits for accurate results.") - -# Add OpenMP thread control if C++ acceleration is available -if cpp_module is not None: - st.sidebar.markdown("#### C++ Acceleration Settings") - omp_threads = st.sidebar.slider("OpenMP Threads", min_value=1, max_value=12, value=4, step=1) - - # Set OpenMP threads - try: - # Try to import OpenMP control module - import ctypes - omp_lib = ctypes.CDLL("libgomp.so.1") - omp_lib.omp_set_num_threads(ctypes.c_int(omp_threads)) - st.sidebar.success(f"Set OpenMP to use {omp_threads} threads.") - except Exception as e: - st.sidebar.warning(f"Could not set OpenMP threads: {str(e)}") \ No newline at end of file + """) \ No newline at end of file