Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -12,12 +12,14 @@ import io
|
|
12 |
import sys
|
13 |
import tempfile
|
14 |
import platform
|
15 |
-
from sympy import symbols, solve, I, re, im, Poly, simplify, N
|
|
|
|
|
16 |
|
17 |
# Set page config with wider layout
|
18 |
st.set_page_config(
|
19 |
page_title="Matrix Analysis Dashboard",
|
20 |
-
page_icon="
|
21 |
layout="wide",
|
22 |
initial_sidebar_state="expanded"
|
23 |
)
|
@@ -388,7 +390,7 @@ CubicRoots solveCubic(double a, double b, double c, double d) {
|
|
388 |
}
|
389 |
|
390 |
if (std::abs(delta0) < zero_threshold) {
|
391 |
-
// Delta0
|
392 |
double simple = std::cbrt(-delta1);
|
393 |
double doubleRoot = -simple/2 - shift;
|
394 |
double simpleRoot = simple - shift;
|
@@ -716,21 +718,21 @@ bool eigenvalueAnalysis(int n, int p, double a, double y, int fineness,
|
|
716 |
<< ", theory_tolerance = " << theory_tolerance << std::endl;
|
717 |
std::cout << "Output will be saved to: " << output_file << std::endl;
|
718 |
|
719 |
-
//
|
720 |
const int num_beta_points = fineness; // Controlled by fineness parameter
|
721 |
std::vector<double> beta_values(num_beta_points);
|
722 |
for (int i = 0; i < num_beta_points; ++i) {
|
723 |
beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
|
724 |
}
|
725 |
|
726 |
-
//
|
727 |
std::vector<double> max_eigenvalues(num_beta_points);
|
728 |
std::vector<double> min_eigenvalues(num_beta_points);
|
729 |
std::vector<double> theoretical_max_values(num_beta_points);
|
730 |
std::vector<double> theoretical_min_values(num_beta_points);
|
731 |
|
732 |
try {
|
733 |
-
//
|
734 |
std::random_device rd;
|
735 |
std::mt19937_64 rng{rd()};
|
736 |
std::normal_distribution<double> norm(0.0, 1.0);
|
@@ -740,7 +742,7 @@ bool eigenvalueAnalysis(int n, int p, double a, double y, int fineness,
|
|
740 |
for(int j = 0; j < n; ++j)
|
741 |
X.at<double>(i,j) = norm(rng);
|
742 |
|
743 |
-
//
|
744 |
for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) {
|
745 |
double beta = beta_values[beta_idx];
|
746 |
|
@@ -748,7 +750,7 @@ bool eigenvalueAnalysis(int n, int p, double a, double y, int fineness,
|
|
748 |
theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance);
|
749 |
theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance);
|
750 |
|
751 |
-
//
|
752 |
int k = static_cast<int>(std::floor(beta * p));
|
753 |
std::vector<double> diags(p, 1.0);
|
754 |
std::fill_n(diags.begin(), k, a);
|
@@ -759,10 +761,10 @@ bool eigenvalueAnalysis(int n, int p, double a, double y, int fineness,
|
|
759 |
T_n.at<double>(i,i) = diags[i];
|
760 |
}
|
761 |
|
762 |
-
//
|
763 |
cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n);
|
764 |
|
765 |
-
//
|
766 |
cv::Mat eigVals;
|
767 |
cv::eigen(B, eigVals);
|
768 |
std::vector<double> eigs(n);
|
@@ -820,7 +822,7 @@ int main(int argc, char* argv[]) {
|
|
820 |
|
821 |
try {
|
822 |
if (mode == "eigenvalues") {
|
823 |
-
//
|
824 |
if (argc != 10) {
|
825 |
std::cerr << "Error: Incorrect number of arguments for eigenvalues mode." << std::endl;
|
826 |
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
|
@@ -857,14 +859,13 @@ int main(int argc, char* argv[]) {
|
|
857 |
|
858 |
# Compile the C++ code with the right OpenCV libraries
|
859 |
st.sidebar.title("Dashboard Settings")
|
860 |
-
need_compile = not os.path.exists(executable) or st.sidebar.button("
|
861 |
|
862 |
if need_compile:
|
863 |
with st.sidebar:
|
864 |
with st.spinner("Compiling C++ code..."):
|
865 |
# Try to detect the OpenCV installation
|
866 |
-
opencv_detection_cmd = ["
|
867 |
-
g-config", "--cflags", "--libs", "opencv4"]
|
868 |
opencv_found, opencv_flags, _ = run_command(opencv_detection_cmd, show_output=False)
|
869 |
|
870 |
compile_commands = []
|
@@ -892,11 +893,11 @@ g-config", "--cflags", "--libs", "opencv4"]
|
|
892 |
|
893 |
if success:
|
894 |
compiled = True
|
895 |
-
st.success(f"
|
896 |
break
|
897 |
|
898 |
if not compiled:
|
899 |
-
st.error("
|
900 |
with st.expander("Compilation Details"):
|
901 |
st.code(compile_output)
|
902 |
st.stop()
|
@@ -905,7 +906,7 @@ g-config", "--cflags", "--libs", "opencv4"]
|
|
905 |
if platform.system() != "Windows":
|
906 |
os.chmod(executable, 0o755)
|
907 |
|
908 |
-
st.success("
|
909 |
|
910 |
# Set higher precision for mpmath
|
911 |
mpmath.mp.dps = 100 # 100 digits of precision
|
@@ -1043,7 +1044,7 @@ def compute_ImS_vs_Z(a, y, beta, num_points, z_min, z_max, progress_callback=Non
|
|
1043 |
progress_callback(i / num_points)
|
1044 |
|
1045 |
# Coefficients for the cubic equation:
|
1046 |
-
# zas
|
1047 |
coef_a = z * a
|
1048 |
coef_b = z * (a + 1) + a * (1 - y)
|
1049 |
coef_c = z + (a + 1) - y - y * beta * (a - 1)
|
@@ -1117,8 +1118,8 @@ def create_dash_style_visualization(result, cubic_a, cubic_y, cubic_beta):
|
|
1117 |
rows=2,
|
1118 |
cols=1,
|
1119 |
subplot_titles=(
|
1120 |
-
f"Imaginary Parts of Roots: a={cubic_a}, y={cubic_y},
|
1121 |
-
f"Real Parts of Roots: a={cubic_a}, y={cubic_y},
|
1122 |
),
|
1123 |
vertical_spacing=0.15,
|
1124 |
specs=[[{"type": "scatter"}], [{"type": "scatter"}]]
|
@@ -1130,9 +1131,9 @@ def create_dash_style_visualization(result, cubic_a, cubic_y, cubic_beta):
|
|
1130 |
x=z_values,
|
1131 |
y=ims_values1,
|
1132 |
mode='lines',
|
1133 |
-
name='Im(s
|
1134 |
line=dict(color='rgb(239, 85, 59)', width=2.5),
|
1135 |
-
hovertemplate='z: %{x:.4f}<br>Im(s
|
1136 |
),
|
1137 |
row=1, col=1
|
1138 |
)
|
@@ -1142,9 +1143,9 @@ def create_dash_style_visualization(result, cubic_a, cubic_y, cubic_beta):
|
|
1142 |
x=z_values,
|
1143 |
y=ims_values2,
|
1144 |
mode='lines',
|
1145 |
-
name='Im(s
|
1146 |
line=dict(color='rgb(0, 129, 201)', width=2.5),
|
1147 |
-
hovertemplate='z: %{x:.4f}<br>Im(s
|
1148 |
),
|
1149 |
row=1, col=1
|
1150 |
)
|
@@ -1154,9 +1155,9 @@ def create_dash_style_visualization(result, cubic_a, cubic_y, cubic_beta):
|
|
1154 |
x=z_values,
|
1155 |
y=ims_values3,
|
1156 |
mode='lines',
|
1157 |
-
name='Im(s
|
1158 |
line=dict(color='rgb(0, 176, 80)', width=2.5),
|
1159 |
-
hovertemplate='z: %{x:.4f}<br>Im(s
|
1160 |
),
|
1161 |
row=1, col=1
|
1162 |
)
|
@@ -1167,9 +1168,9 @@ def create_dash_style_visualization(result, cubic_a, cubic_y, cubic_beta):
|
|
1167 |
x=z_values,
|
1168 |
y=real_values1,
|
1169 |
mode='lines',
|
1170 |
-
name='Re(s
|
1171 |
line=dict(color='rgb(239, 85, 59)', width=2.5),
|
1172 |
-
hovertemplate='z: %{x:.4f}<br>Re(s
|
1173 |
),
|
1174 |
row=2, col=1
|
1175 |
)
|
@@ -1179,9 +1180,9 @@ def create_dash_style_visualization(result, cubic_a, cubic_y, cubic_beta):
|
|
1179 |
x=z_values,
|
1180 |
y=real_values2,
|
1181 |
mode='lines',
|
1182 |
-
name='Re(s
|
1183 |
line=dict(color='rgb(0, 129, 201)', width=2.5),
|
1184 |
-
hovertemplate='z: %{x:.4f}<br>Re(s
|
1185 |
),
|
1186 |
row=2, col=1
|
1187 |
)
|
@@ -1191,9 +1192,9 @@ def create_dash_style_visualization(result, cubic_a, cubic_y, cubic_beta):
|
|
1191 |
x=z_values,
|
1192 |
y=real_values3,
|
1193 |
mode='lines',
|
1194 |
-
name='Re(s
|
1195 |
line=dict(color='rgb(0, 176, 80)', width=2.5),
|
1196 |
-
hovertemplate='z: %{x:.4f}<br>Re(s
|
1197 |
),
|
1198 |
row=2, col=1
|
1199 |
)
|
@@ -1483,7 +1484,7 @@ def create_complex_plane_visualization(result, z_idx):
|
|
1483 |
symbol='circle',
|
1484 |
line=dict(width=1, color='black')
|
1485 |
),
|
1486 |
-
text=['s
|
1487 |
textposition="top center",
|
1488 |
name='Roots'
|
1489 |
))
|
@@ -1578,7 +1579,240 @@ def create_complex_plane_visualization(result, z_idx):
|
|
1578 |
|
1579 |
return fig
|
1580 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1581 |
# Options for theme and appearance
|
|
|
|
|
1582 |
with st.sidebar.expander("Theme & Appearance"):
|
1583 |
show_annotations = st.checkbox("Show Annotations", value=False, help="Show detailed annotations on plots")
|
1584 |
color_theme = st.selectbox(
|
@@ -1615,7 +1849,7 @@ with st.sidebar.expander("Theme & Appearance"):
|
|
1615 |
color_theory_min = 'rgb(180, 30, 180)'
|
1616 |
|
1617 |
# Create tabs for different analyses
|
1618 |
-
tab1, tab2 = st.tabs(["
|
1619 |
|
1620 |
# Tab 1: Eigenvalue Analysis (KEEP UNCHANGED from original)
|
1621 |
with tab1:
|
@@ -1649,7 +1883,7 @@ with tab1:
|
|
1649 |
max_value=500,
|
1650 |
value=100,
|
1651 |
step=10,
|
1652 |
-
help="Number of points to calculate along the
|
1653 |
key="eig_fineness"
|
1654 |
)
|
1655 |
st.markdown('</div>', unsafe_allow_html=True)
|
@@ -1832,7 +2066,7 @@ with tab1:
|
|
1832 |
color=color_max,
|
1833 |
line=dict(color='white', width=1)
|
1834 |
),
|
1835 |
-
hovertemplate='
|
1836 |
))
|
1837 |
|
1838 |
fig.add_trace(go.Scatter(
|
@@ -1847,7 +2081,7 @@ with tab1:
|
|
1847 |
color=color_min,
|
1848 |
line=dict(color='white', width=1)
|
1849 |
),
|
1850 |
-
hovertemplate='
|
1851 |
))
|
1852 |
|
1853 |
fig.add_trace(go.Scatter(
|
@@ -1862,7 +2096,7 @@ with tab1:
|
|
1862 |
color=color_theory_max,
|
1863 |
line=dict(color='white', width=1)
|
1864 |
),
|
1865 |
-
hovertemplate='
|
1866 |
))
|
1867 |
|
1868 |
fig.add_trace(go.Scatter(
|
@@ -1877,7 +2111,7 @@ with tab1:
|
|
1877 |
color=color_theory_min,
|
1878 |
line=dict(color='white', width=1)
|
1879 |
),
|
1880 |
-
hovertemplate='
|
1881 |
))
|
1882 |
|
1883 |
# Configure layout for better appearance
|
@@ -1891,7 +2125,7 @@ with tab1:
|
|
1891 |
'yanchor': 'top'
|
1892 |
},
|
1893 |
xaxis={
|
1894 |
-
'title': {'text': '
|
1895 |
'tickfont': {'size': 14},
|
1896 |
'gridcolor': 'rgba(220, 220, 220, 0.5)',
|
1897 |
'showgrid': True
|
@@ -1987,7 +2221,7 @@ with tab1:
|
|
1987 |
color=color_max,
|
1988 |
line=dict(color='white', width=1)
|
1989 |
),
|
1990 |
-
hovertemplate='
|
1991 |
))
|
1992 |
|
1993 |
fig.add_trace(go.Scatter(
|
@@ -2002,7 +2236,7 @@ with tab1:
|
|
2002 |
color=color_min,
|
2003 |
line=dict(color='white', width=1)
|
2004 |
),
|
2005 |
-
hovertemplate='
|
2006 |
))
|
2007 |
|
2008 |
fig.add_trace(go.Scatter(
|
@@ -2017,7 +2251,7 @@ with tab1:
|
|
2017 |
color=color_theory_max,
|
2018 |
line=dict(color='white', width=1)
|
2019 |
),
|
2020 |
-
hovertemplate='
|
2021 |
))
|
2022 |
|
2023 |
fig.add_trace(go.Scatter(
|
@@ -2032,7 +2266,7 @@ with tab1:
|
|
2032 |
color=color_theory_min,
|
2033 |
line=dict(color='white', width=1)
|
2034 |
),
|
2035 |
-
hovertemplate='
|
2036 |
))
|
2037 |
|
2038 |
# Configure layout for better appearance
|
@@ -2046,7 +2280,7 @@ with tab1:
|
|
2046 |
'yanchor': 'top'
|
2047 |
},
|
2048 |
xaxis={
|
2049 |
-
'title': {'text': '
|
2050 |
'tickfont': {'size': 14},
|
2051 |
'gridcolor': 'rgba(220, 220, 220, 0.5)',
|
2052 |
'showgrid': True
|
@@ -2075,247 +2309,176 @@ with tab1:
|
|
2075 |
st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
|
2076 |
|
2077 |
except Exception as e:
|
2078 |
-
st.info("
|
2079 |
else:
|
2080 |
# Show placeholder
|
2081 |
-
st.info("
|
2082 |
|
2083 |
st.markdown('</div>', unsafe_allow_html=True)
|
2084 |
|
2085 |
-
|
|
|
2086 |
with tab2:
|
2087 |
-
|
2088 |
-
|
2089 |
-
|
2090 |
-
with
|
2091 |
-
st.
|
2092 |
-
|
2093 |
-
|
2094 |
-
|
2095 |
-
|
2096 |
-
|
2097 |
-
|
2098 |
-
|
2099 |
-
|
2100 |
-
|
2101 |
-
|
2102 |
-
|
2103 |
-
|
2104 |
-
|
2105 |
-
|
2106 |
-
|
2107 |
-
|
2108 |
-
help="Minimum z value for calculation", key="z_min")
|
2109 |
-
z_max = st.number_input("Z maximum", min_value=1.0, max_value=100.0, value=10.0, step=1.0,
|
2110 |
-
help="Maximum z value for calculation", key="z_max")
|
2111 |
-
cubic_points = st.slider(
|
2112 |
-
"Number of z points",
|
2113 |
-
min_value=50,
|
2114 |
-
max_value=1000,
|
2115 |
-
value=300,
|
2116 |
-
step=50,
|
2117 |
-
help="Number of points to calculate along the z axis",
|
2118 |
-
key="cubic_points"
|
2119 |
-
)
|
2120 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
2121 |
-
|
2122 |
-
# Show cubic equation
|
2123 |
-
st.markdown('<div class="math-box">', unsafe_allow_html=True)
|
2124 |
-
st.markdown("### Cubic Equation")
|
2125 |
-
st.latex(r"zas^3 + [z(a+1)+a(1-y)]\,s^2 + [z+(a+1)-y-y\beta (a-1)]\,s + 1 = 0")
|
2126 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
2127 |
-
|
2128 |
-
# Generate button
|
2129 |
-
cubic_generate_button = st.button("Generate Im(s) vs z Analysis",
|
2130 |
-
type="primary",
|
2131 |
-
use_container_width=True,
|
2132 |
-
key="cubic_generate")
|
2133 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
2134 |
-
|
2135 |
-
with right_column:
|
2136 |
-
# Main visualization area
|
2137 |
-
st.markdown('<div class="dashboard-container">', unsafe_allow_html=True)
|
2138 |
-
st.markdown('<div class="panel-header">Im(s) vs z Analysis Results</div>', unsafe_allow_html=True)
|
2139 |
-
|
2140 |
-
# Container for the analysis results
|
2141 |
-
cubic_results_container = st.container()
|
2142 |
-
|
2143 |
-
# Process when generate button is clicked
|
2144 |
-
if cubic_generate_button:
|
2145 |
-
with cubic_results_container:
|
2146 |
-
# Show progress
|
2147 |
-
progress_container = st.container()
|
2148 |
-
with progress_container:
|
2149 |
-
progress_bar = st.progress(0)
|
2150 |
-
status_text = st.empty()
|
2151 |
-
status_text.text("Starting cubic equation calculations with SymPy...")
|
2152 |
-
|
2153 |
-
try:
|
2154 |
-
# Create data file path
|
2155 |
-
data_file = os.path.join(output_dir, "cubic_data.json")
|
2156 |
-
|
2157 |
-
# Run the Im(s) vs z analysis using Python SymPy with high precision
|
2158 |
-
start_time = time.time()
|
2159 |
-
|
2160 |
-
# Define progress callback for updating the progress bar
|
2161 |
-
def update_progress(progress):
|
2162 |
-
progress_bar.progress(progress)
|
2163 |
-
status_text.text(f"Calculating with SymPy... {int(progress * 100)}% complete")
|
2164 |
-
|
2165 |
-
# Run the analysis with progress updates
|
2166 |
-
result = compute_ImS_vs_Z(cubic_a, cubic_y, cubic_beta, cubic_points, z_min, z_max, update_progress)
|
2167 |
-
end_time = time.time()
|
2168 |
-
|
2169 |
-
# Format the data for saving
|
2170 |
-
save_data = {
|
2171 |
-
'z_values': result['z_values'],
|
2172 |
-
'ims_values1': result['ims_values1'],
|
2173 |
-
'ims_values2': result['ims_values2'],
|
2174 |
-
'ims_values3': result['ims_values3'],
|
2175 |
-
'real_values1': result['real_values1'],
|
2176 |
-
'real_values2': result['real_values2'],
|
2177 |
-
'real_values3': result['real_values3'],
|
2178 |
-
'parameters': {'a': cubic_a, 'y': cubic_y, 'beta': cubic_beta}
|
2179 |
-
}
|
2180 |
-
|
2181 |
-
# Save results to JSON
|
2182 |
-
save_as_json(save_data, data_file)
|
2183 |
-
status_text.text("SymPy calculations complete! Generating visualization...")
|
2184 |
-
|
2185 |
-
# Clear progress container
|
2186 |
-
progress_container.empty()
|
2187 |
-
|
2188 |
-
# Create Dash-style visualization
|
2189 |
-
dash_fig = create_dash_style_visualization(result, cubic_a, cubic_y, cubic_beta)
|
2190 |
-
st.plotly_chart(dash_fig, use_container_width=True)
|
2191 |
-
|
2192 |
-
# Create sub-tabs for additional visualizations
|
2193 |
-
pattern_tab, complex_tab = st.tabs(["Root Pattern Analysis", "Complex Plane View"])
|
2194 |
-
|
2195 |
-
# Root pattern visualization
|
2196 |
-
with pattern_tab:
|
2197 |
-
pattern_fig = create_root_pattern_visualization(result)
|
2198 |
-
st.plotly_chart(pattern_fig, use_container_width=True)
|
2199 |
-
|
2200 |
-
# Root pattern explanation
|
2201 |
-
st.markdown('<div class="explanation-box">', unsafe_allow_html=True)
|
2202 |
st.markdown("""
|
2203 |
-
### Root
|
2204 |
-
|
2205 |
-
The
|
2206 |
-
|
2207 |
-
|
2208 |
-
-
|
2209 |
-
-
|
2210 |
-
|
2211 |
-
|
2212 |
-
|
2213 |
-
|
2214 |
-
Blue points indicate where the ideal pattern is achieved, green points show where all roots are zero, and red points indicate other patterns.
|
2215 |
""")
|
2216 |
-
|
2217 |
-
|
2218 |
-
|
2219 |
-
|
2220 |
-
|
2221 |
-
|
2222 |
-
|
2223 |
-
|
2224 |
-
|
2225 |
-
|
2226 |
-
|
2227 |
-
|
2228 |
-
|
2229 |
-
|
2230 |
-
|
2231 |
-
|
2232 |
-
|
2233 |
-
|
2234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2235 |
st.markdown("""
|
2236 |
-
###
|
2237 |
-
|
2238 |
-
|
2239 |
-
|
2240 |
-
|
2241 |
-
|
2242 |
-
|
2243 |
-
|
2244 |
-
|
2245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2246 |
""")
|
2247 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
2248 |
-
|
2249 |
-
# Display computation time
|
2250 |
-
st.success(f"SymPy computation completed in {end_time - start_time:.2f} seconds")
|
2251 |
-
|
2252 |
-
except Exception as e:
|
2253 |
-
st.error(f"An error occurred: {str(e)}")
|
2254 |
-
st.exception(e)
|
2255 |
-
|
2256 |
-
else:
|
2257 |
-
# Try to load existing data if available
|
2258 |
-
data_file = os.path.join(output_dir, "cubic_data.json")
|
2259 |
-
if os.path.exists(data_file):
|
2260 |
-
try:
|
2261 |
-
with open(data_file, 'r') as f:
|
2262 |
-
data = json.load(f)
|
2263 |
-
|
2264 |
-
# Process data safely and convert it to the format we need
|
2265 |
-
result = {
|
2266 |
-
'z_values': np.array([safe_convert_to_numeric(x) for x in data['z_values']]),
|
2267 |
-
'ims_values1': np.array([safe_convert_to_numeric(x) for x in data['ims_values1']]),
|
2268 |
-
'ims_values2': np.array([safe_convert_to_numeric(x) for x in data['ims_values2']]),
|
2269 |
-
'ims_values3': np.array([safe_convert_to_numeric(x) for x in data['ims_values3']]),
|
2270 |
-
'real_values1': np.array([safe_convert_to_numeric(x) for x in data.get('real_values1', [0] * len(data['z_values']))]),
|
2271 |
-
'real_values2': np.array([safe_convert_to_numeric(x) for x in data.get('real_values2', [0] * len(data['z_values']))]),
|
2272 |
-
'real_values3': np.array([safe_convert_to_numeric(x) for x in data.get('real_values3', [0] * len(data['z_values']))]),
|
2273 |
-
}
|
2274 |
-
|
2275 |
-
# Extract cubic parameters from data if available (otherwise use defaults)
|
2276 |
-
cubic_params = data.get('parameters', {'a': 2.0, 'y': 1.0, 'beta': 0.5})
|
2277 |
-
cubic_a = cubic_params.get('a', 2.0)
|
2278 |
-
cubic_y = cubic_params.get('y', 1.0)
|
2279 |
-
cubic_beta = cubic_params.get('beta', 0.5)
|
2280 |
-
|
2281 |
-
# Create Dash-style visualization from previous data
|
2282 |
-
st.info("Displaying previous analysis results. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
|
2283 |
-
|
2284 |
-
dash_fig = create_dash_style_visualization(result, cubic_a, cubic_y, cubic_beta)
|
2285 |
-
st.plotly_chart(dash_fig, use_container_width=True)
|
2286 |
-
|
2287 |
-
# Create sub-tabs for additional visualizations
|
2288 |
-
pattern_tab, complex_tab = st.tabs(["Root Pattern Analysis", "Complex Plane View"])
|
2289 |
-
|
2290 |
-
# Root pattern visualization
|
2291 |
-
with pattern_tab:
|
2292 |
-
pattern_fig = create_root_pattern_visualization(result)
|
2293 |
-
st.plotly_chart(pattern_fig, use_container_width=True)
|
2294 |
-
|
2295 |
-
# Complex plane visualization
|
2296 |
-
with complex_tab:
|
2297 |
-
# Slider for selecting z value
|
2298 |
-
z_idx = st.slider(
|
2299 |
-
"Select z index",
|
2300 |
-
min_value=0,
|
2301 |
-
max_value=len(result['z_values'])-1,
|
2302 |
-
value=len(result['z_values'])//2,
|
2303 |
-
help="Select a specific z value to visualize its roots in the complex plane"
|
2304 |
-
)
|
2305 |
-
|
2306 |
-
# Create complex plane visualization
|
2307 |
-
complex_fig = create_complex_plane_visualization(result, z_idx)
|
2308 |
-
st.plotly_chart(complex_fig, use_container_width=True)
|
2309 |
-
|
2310 |
-
except Exception as e:
|
2311 |
-
st.info("ð Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
|
2312 |
-
st.error(f"Error loading previous data: {str(e)}")
|
2313 |
-
else:
|
2314 |
-
# Show placeholder
|
2315 |
-
st.info("ð Set parameters and click 'Generate Im(s) vs z Analysis' to create a visualization.")
|
2316 |
-
|
2317 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
2318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2319 |
# Add footer with instructions
|
2320 |
st.markdown("""
|
2321 |
<div class="footer">
|
|
|
12 |
import sys
|
13 |
import tempfile
|
14 |
import platform
|
15 |
+
from sympy import symbols, solve, I, re, im, Poly, simplify, N
|
16 |
+
import mpmath
|
17 |
+
from scipy.stats import gaussian_kde
|
18 |
|
19 |
# Set page config with wider layout
|
20 |
st.set_page_config(
|
21 |
page_title="Matrix Analysis Dashboard",
|
22 |
+
page_icon="chart",
|
23 |
layout="wide",
|
24 |
initial_sidebar_state="expanded"
|
25 |
)
|
|
|
390 |
}
|
391 |
|
392 |
if (std::abs(delta0) < zero_threshold) {
|
393 |
+
// Delta0 ≈ 0: One double root and one simple root
|
394 |
double simple = std::cbrt(-delta1);
|
395 |
double doubleRoot = -simple/2 - shift;
|
396 |
double simpleRoot = simple - shift;
|
|
|
718 |
<< ", theory_tolerance = " << theory_tolerance << std::endl;
|
719 |
std::cout << "Output will be saved to: " << output_file << std::endl;
|
720 |
|
721 |
+
// ─── Beta range parameters ────────────────────────────────────────
|
722 |
const int num_beta_points = fineness; // Controlled by fineness parameter
|
723 |
std::vector<double> beta_values(num_beta_points);
|
724 |
for (int i = 0; i < num_beta_points; ++i) {
|
725 |
beta_values[i] = static_cast<double>(i) / (num_beta_points - 1);
|
726 |
}
|
727 |
|
728 |
+
// ─── Storage for results ────────────────────────────────────────
|
729 |
std::vector<double> max_eigenvalues(num_beta_points);
|
730 |
std::vector<double> min_eigenvalues(num_beta_points);
|
731 |
std::vector<double> theoretical_max_values(num_beta_points);
|
732 |
std::vector<double> theoretical_min_values(num_beta_points);
|
733 |
|
734 |
try {
|
735 |
+
// ─── Random‐Gaussian X and S_n ────────────────────────────────
|
736 |
std::random_device rd;
|
737 |
std::mt19937_64 rng{rd()};
|
738 |
std::normal_distribution<double> norm(0.0, 1.0);
|
|
|
742 |
for(int j = 0; j < n; ++j)
|
743 |
X.at<double>(i,j) = norm(rng);
|
744 |
|
745 |
+
// ─── Process each beta value ─────────────────────────────────
|
746 |
for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) {
|
747 |
double beta = beta_values[beta_idx];
|
748 |
|
|
|
750 |
theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance);
|
751 |
theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance);
|
752 |
|
753 |
+
// ─── Build T_n matrix ──────────────────────────────────
|
754 |
int k = static_cast<int>(std::floor(beta * p));
|
755 |
std::vector<double> diags(p, 1.0);
|
756 |
std::fill_n(diags.begin(), k, a);
|
|
|
761 |
T_n.at<double>(i,i) = diags[i];
|
762 |
}
|
763 |
|
764 |
+
// ─── Form B_n = (1/n) * X * T_n * X^T ────────────
|
765 |
cv::Mat B = (X.t() * T_n * X) / static_cast<double>(n);
|
766 |
|
767 |
+
// ─── Compute eigenvalues of B ────────────────────────────
|
768 |
cv::Mat eigVals;
|
769 |
cv::eigen(B, eigVals);
|
770 |
std::vector<double> eigs(n);
|
|
|
822 |
|
823 |
try {
|
824 |
if (mode == "eigenvalues") {
|
825 |
+
// ─── Eigenvalue analysis mode ───────────────────────────────────────────
|
826 |
if (argc != 10) {
|
827 |
std::cerr << "Error: Incorrect number of arguments for eigenvalues mode." << std::endl;
|
828 |
std::cerr << "Usage: " << argv[0] << " eigenvalues <n> <p> <a> <y> <fineness> <theory_grid_points> <theory_tolerance> <output_file>" << std::endl;
|
|
|
859 |
|
860 |
# Compile the C++ code with the right OpenCV libraries
|
861 |
st.sidebar.title("Dashboard Settings")
|
862 |
+
need_compile = not os.path.exists(executable) or st.sidebar.button("Recompile C++ Code")
|
863 |
|
864 |
if need_compile:
|
865 |
with st.sidebar:
|
866 |
with st.spinner("Compiling C++ code..."):
|
867 |
# Try to detect the OpenCV installation
|
868 |
+
opencv_detection_cmd = ["pkg-config", "--cflags", "--libs", "opencv4"]
|
|
|
869 |
opencv_found, opencv_flags, _ = run_command(opencv_detection_cmd, show_output=False)
|
870 |
|
871 |
compile_commands = []
|
|
|
893 |
|
894 |
if success:
|
895 |
compiled = True
|
896 |
+
st.success(f"Successfully compiled with: {cmd}")
|
897 |
break
|
898 |
|
899 |
if not compiled:
|
900 |
+
st.error("All compilation attempts failed.")
|
901 |
with st.expander("Compilation Details"):
|
902 |
st.code(compile_output)
|
903 |
st.stop()
|
|
|
906 |
if platform.system() != "Windows":
|
907 |
os.chmod(executable, 0o755)
|
908 |
|
909 |
+
st.success("C++ code compiled successfully!")
|
910 |
|
911 |
# Set higher precision for mpmath
|
912 |
mpmath.mp.dps = 100 # 100 digits of precision
|
|
|
1044 |
progress_callback(i / num_points)
|
1045 |
|
1046 |
# Coefficients for the cubic equation:
|
1047 |
+
# zas³ + [z(a+1)+a(1-y)]s² + [z+(a+1)-y-yβ(a-1)]s + 1 = 0
|
1048 |
coef_a = z * a
|
1049 |
coef_b = z * (a + 1) + a * (1 - y)
|
1050 |
coef_c = z + (a + 1) - y - y * beta * (a - 1)
|
|
|
1118 |
rows=2,
|
1119 |
cols=1,
|
1120 |
subplot_titles=(
|
1121 |
+
f"Imaginary Parts of Roots: a={cubic_a}, y={cubic_y}, β={cubic_beta}",
|
1122 |
+
f"Real Parts of Roots: a={cubic_a}, y={cubic_y}, β={cubic_beta}"
|
1123 |
),
|
1124 |
vertical_spacing=0.15,
|
1125 |
specs=[[{"type": "scatter"}], [{"type": "scatter"}]]
|
|
|
1131 |
x=z_values,
|
1132 |
y=ims_values1,
|
1133 |
mode='lines',
|
1134 |
+
name='Im(s₁)',
|
1135 |
line=dict(color='rgb(239, 85, 59)', width=2.5),
|
1136 |
+
hovertemplate='z: %{x:.4f}<br>Im(s₁): %{y:.6f}<extra>Root 1</extra>'
|
1137 |
),
|
1138 |
row=1, col=1
|
1139 |
)
|
|
|
1143 |
x=z_values,
|
1144 |
y=ims_values2,
|
1145 |
mode='lines',
|
1146 |
+
name='Im(s₂)',
|
1147 |
line=dict(color='rgb(0, 129, 201)', width=2.5),
|
1148 |
+
hovertemplate='z: %{x:.4f}<br>Im(s₂): %{y:.6f}<extra>Root 2</extra>'
|
1149 |
),
|
1150 |
row=1, col=1
|
1151 |
)
|
|
|
1155 |
x=z_values,
|
1156 |
y=ims_values3,
|
1157 |
mode='lines',
|
1158 |
+
name='Im(s₃)',
|
1159 |
line=dict(color='rgb(0, 176, 80)', width=2.5),
|
1160 |
+
hovertemplate='z: %{x:.4f}<br>Im(s₃): %{y:.6f}<extra>Root 3</extra>'
|
1161 |
),
|
1162 |
row=1, col=1
|
1163 |
)
|
|
|
1168 |
x=z_values,
|
1169 |
y=real_values1,
|
1170 |
mode='lines',
|
1171 |
+
name='Re(s₁)',
|
1172 |
line=dict(color='rgb(239, 85, 59)', width=2.5),
|
1173 |
+
hovertemplate='z: %{x:.4f}<br>Re(s₁): %{y:.6f}<extra>Root 1</extra>'
|
1174 |
),
|
1175 |
row=2, col=1
|
1176 |
)
|
|
|
1180 |
x=z_values,
|
1181 |
y=real_values2,
|
1182 |
mode='lines',
|
1183 |
+
name='Re(s₂)',
|
1184 |
line=dict(color='rgb(0, 129, 201)', width=2.5),
|
1185 |
+
hovertemplate='z: %{x:.4f}<br>Re(s₂): %{y:.6f}<extra>Root 2</extra>'
|
1186 |
),
|
1187 |
row=2, col=1
|
1188 |
)
|
|
|
1192 |
x=z_values,
|
1193 |
y=real_values3,
|
1194 |
mode='lines',
|
1195 |
+
name='Re(s₃)',
|
1196 |
line=dict(color='rgb(0, 176, 80)', width=2.5),
|
1197 |
+
hovertemplate='z: %{x:.4f}<br>Re(s₃): %{y:.6f}<extra>Root 3</extra>'
|
1198 |
),
|
1199 |
row=2, col=1
|
1200 |
)
|
|
|
1484 |
symbol='circle',
|
1485 |
line=dict(width=1, color='black')
|
1486 |
),
|
1487 |
+
text=['s₁', 's₂', 's₃'],
|
1488 |
textposition="top center",
|
1489 |
name='Roots'
|
1490 |
))
|
|
|
1579 |
|
1580 |
return fig
|
1581 |
|
1582 |
+
# ----- Additional Complex Root Utilities -----
|
1583 |
+
def compute_cubic_roots(z, beta, z_a, y):
|
1584 |
+
"""Compute roots of the cubic equation using SymPy for high precision."""
|
1585 |
+
y_effective = y if y > 1 else 1 / y
|
1586 |
+
from sympy import symbols, solve, N, Poly
|
1587 |
+
s = symbols('s')
|
1588 |
+
a = z * z_a
|
1589 |
+
b = z * z_a + z + z_a - z_a * y_effective
|
1590 |
+
c = z + z_a + 1 - y_effective * (beta * z_a + 1 - beta)
|
1591 |
+
d = 1
|
1592 |
+
if abs(a) < 1e-10:
|
1593 |
+
if abs(b) < 1e-10:
|
1594 |
+
roots = np.array([-d / c, 0, 0], dtype=complex)
|
1595 |
+
else:
|
1596 |
+
quad_roots = np.roots([b, c, d])
|
1597 |
+
roots = np.append(quad_roots, 0).astype(complex)
|
1598 |
+
return roots
|
1599 |
+
try:
|
1600 |
+
cubic_eq = Poly(a * s ** 3 + b * s ** 2 + c * s + d, s)
|
1601 |
+
symbolic_roots = solve(cubic_eq, s)
|
1602 |
+
numerical_roots = [complex(N(root, 30)) for root in symbolic_roots]
|
1603 |
+
while len(numerical_roots) < 3:
|
1604 |
+
numerical_roots.append(0j)
|
1605 |
+
return np.array(numerical_roots, dtype=complex)
|
1606 |
+
except Exception:
|
1607 |
+
coeffs = [a, b, c, d]
|
1608 |
+
return np.roots(coeffs)
|
1609 |
+
|
1610 |
+
|
1611 |
+
def track_roots_consistently(z_values, all_roots):
|
1612 |
+
n_points = len(z_values)
|
1613 |
+
n_roots = all_roots[0].shape[0]
|
1614 |
+
tracked_roots = np.zeros((n_points, n_roots), dtype=complex)
|
1615 |
+
tracked_roots[0] = all_roots[0]
|
1616 |
+
for i in range(1, n_points):
|
1617 |
+
prev_roots = tracked_roots[i - 1]
|
1618 |
+
current_roots = all_roots[i]
|
1619 |
+
assigned = np.zeros(n_roots, dtype=bool)
|
1620 |
+
assignments = np.zeros(n_roots, dtype=int)
|
1621 |
+
for j in range(n_roots):
|
1622 |
+
distances = np.abs(current_roots - prev_roots[j])
|
1623 |
+
while True:
|
1624 |
+
best_idx = np.argmin(distances)
|
1625 |
+
if not assigned[best_idx]:
|
1626 |
+
assignments[j] = best_idx
|
1627 |
+
assigned[best_idx] = True
|
1628 |
+
break
|
1629 |
+
distances[best_idx] = np.inf
|
1630 |
+
if np.all(distances == np.inf):
|
1631 |
+
assignments[j] = j
|
1632 |
+
break
|
1633 |
+
tracked_roots[i] = current_roots[assignments]
|
1634 |
+
return tracked_roots
|
1635 |
+
|
1636 |
+
|
1637 |
+
def generate_cubic_discriminant(z, beta, z_a, y_effective):
|
1638 |
+
a = z * z_a
|
1639 |
+
b = z * z_a + z + z_a - z_a * y_effective
|
1640 |
+
c = z + z_a + 1 - y_effective * (beta * z_a + 1 - beta)
|
1641 |
+
d = 1
|
1642 |
+
return (18 * a * b * c * d - 27 * a ** 2 * d ** 2 + b ** 2 * c ** 2 -
|
1643 |
+
2 * b ** 3 * d - 9 * a * c ** 3)
|
1644 |
+
|
1645 |
+
|
1646 |
+
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
1647 |
+
if z_a <= 0 or y <= 0 or z_min >= z_max:
|
1648 |
+
st.error("Invalid input parameters.")
|
1649 |
+
return None, None, None
|
1650 |
+
y_effective = y if y > 1 else 1 / y
|
1651 |
+
z_points = np.linspace(z_min, z_max, n_points)
|
1652 |
+
all_roots = []
|
1653 |
+
discriminants = []
|
1654 |
+
progress_bar = st.progress(0)
|
1655 |
+
status_text = st.empty()
|
1656 |
+
for i, z in enumerate(z_points):
|
1657 |
+
progress_bar.progress((i + 1) / n_points)
|
1658 |
+
status_text.text(f"Computing roots for z = {z:.3f} ({i+1}/{n_points})")
|
1659 |
+
roots = compute_cubic_roots(z, beta, z_a, y)
|
1660 |
+
roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
|
1661 |
+
all_roots.append(roots)
|
1662 |
+
disc = generate_cubic_discriminant(z, beta, z_a, y_effective)
|
1663 |
+
discriminants.append(disc)
|
1664 |
+
progress_bar.empty()
|
1665 |
+
status_text.empty()
|
1666 |
+
all_roots = np.array(all_roots)
|
1667 |
+
discriminants = np.array(discriminants)
|
1668 |
+
tracked_roots = track_roots_consistently(z_points, all_roots)
|
1669 |
+
ims = np.imag(tracked_roots)
|
1670 |
+
res = np.real(tracked_roots)
|
1671 |
+
fig_im = go.Figure()
|
1672 |
+
for i in range(3):
|
1673 |
+
fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}", line=dict(width=2)))
|
1674 |
+
disc_zeros = []
|
1675 |
+
for i in range(len(discriminants) - 1):
|
1676 |
+
if discriminants[i] * discriminants[i + 1] <= 0:
|
1677 |
+
zero_pos = z_points[i] + (z_points[i + 1] - z_points[i]) * (0 - discriminants[i]) / (discriminants[i + 1] - discriminants[i])
|
1678 |
+
disc_zeros.append(zero_pos)
|
1679 |
+
fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
|
1680 |
+
fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
1681 |
+
xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified")
|
1682 |
+
fig_re = go.Figure()
|
1683 |
+
for i in range(3):
|
1684 |
+
fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}", line=dict(width=2)))
|
1685 |
+
for zero_pos in disc_zeros:
|
1686 |
+
fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
|
1687 |
+
fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
1688 |
+
xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified")
|
1689 |
+
fig_disc = go.Figure()
|
1690 |
+
fig_disc.add_trace(go.Scatter(x=z_points, y=discriminants, mode="lines", name="Cubic Discriminant", line=dict(color="black", width=2)))
|
1691 |
+
fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash"))
|
1692 |
+
fig_disc.update_layout(title=f"Cubic Discriminant vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
1693 |
+
xaxis_title="z", yaxis_title="Discriminant", hovermode="x unified")
|
1694 |
+
return fig_im, fig_re, fig_disc
|
1695 |
+
|
1696 |
+
|
1697 |
+
def analyze_complex_root_structure(beta_values, z, z_a, y):
|
1698 |
+
y_effective = y if y > 1 else 1 / y
|
1699 |
+
transition_points = []
|
1700 |
+
structure_types = []
|
1701 |
+
previous_type = None
|
1702 |
+
for beta in beta_values:
|
1703 |
+
roots = compute_cubic_roots(z, beta, z_a, y)
|
1704 |
+
is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
|
1705 |
+
current_type = "real" if is_all_real else "complex"
|
1706 |
+
if previous_type is not None and current_type != previous_type:
|
1707 |
+
transition_points.append(beta)
|
1708 |
+
structure_types.append(previous_type)
|
1709 |
+
previous_type = current_type
|
1710 |
+
if previous_type is not None:
|
1711 |
+
structure_types.append(previous_type)
|
1712 |
+
return transition_points, structure_types
|
1713 |
+
|
1714 |
+
|
1715 |
+
def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points):
|
1716 |
+
if z_a <= 0 or y <= 0 or beta_min >= beta_max:
|
1717 |
+
st.error("Invalid input parameters.")
|
1718 |
+
return None, None, None
|
1719 |
+
y_effective = y if y > 1 else 1 / y
|
1720 |
+
beta_points = np.linspace(beta_min, beta_max, n_points)
|
1721 |
+
all_roots = []
|
1722 |
+
discriminants = []
|
1723 |
+
progress_bar = st.progress(0)
|
1724 |
+
status_text = st.empty()
|
1725 |
+
for i, beta in enumerate(beta_points):
|
1726 |
+
progress_bar.progress((i + 1) / n_points)
|
1727 |
+
status_text.text(f"Computing roots for β = {beta:.3f} ({i+1}/{n_points})")
|
1728 |
+
roots = compute_cubic_roots(z, beta, z_a, y)
|
1729 |
+
roots = sorted(roots, key=lambda x: (abs(x.imag), x.real))
|
1730 |
+
all_roots.append(roots)
|
1731 |
+
disc = generate_cubic_discriminant(z, beta, z_a, y_effective)
|
1732 |
+
discriminants.append(disc)
|
1733 |
+
progress_bar.empty()
|
1734 |
+
status_text.empty()
|
1735 |
+
all_roots = np.array(all_roots)
|
1736 |
+
discriminants = np.array(discriminants)
|
1737 |
+
tracked_roots = track_roots_consistently(beta_points, all_roots)
|
1738 |
+
ims = np.imag(tracked_roots)
|
1739 |
+
res = np.real(tracked_roots)
|
1740 |
+
fig_im = go.Figure()
|
1741 |
+
for i in range(3):
|
1742 |
+
fig_im.add_trace(go.Scatter(x=beta_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}", line=dict(width=2)))
|
1743 |
+
disc_zeros = []
|
1744 |
+
for i in range(len(discriminants) - 1):
|
1745 |
+
if discriminants[i] * discriminants[i + 1] <= 0:
|
1746 |
+
zero_pos = beta_points[i] + (beta_points[i + 1] - beta_points[i]) * (0 - discriminants[i]) / (discriminants[i + 1] - discriminants[i])
|
1747 |
+
disc_zeros.append(zero_pos)
|
1748 |
+
fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
|
1749 |
+
fig_im.update_layout(title=f"Im{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
1750 |
+
xaxis_title="β", yaxis_title="Im{s}", hovermode="x unified")
|
1751 |
+
fig_re = go.Figure()
|
1752 |
+
for i in range(3):
|
1753 |
+
fig_re.add_trace(go.Scatter(x=beta_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}", line=dict(width=2)))
|
1754 |
+
for zero_pos in disc_zeros:
|
1755 |
+
fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash"))
|
1756 |
+
fig_re.update_layout(title=f"Re{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
1757 |
+
xaxis_title="β", yaxis_title="Re{s}", hovermode="x unified")
|
1758 |
+
fig_disc = go.Figure()
|
1759 |
+
fig_disc.add_trace(go.Scatter(x=beta_points, y=discriminants, mode="lines", name="Cubic Discriminant", line=dict(color="black", width=2)))
|
1760 |
+
fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash"))
|
1761 |
+
fig_disc.update_layout(title=f"Cubic Discriminant vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})",
|
1762 |
+
xaxis_title="β", yaxis_title="Discriminant", hovermode="x unified")
|
1763 |
+
return fig_im, fig_re, fig_disc
|
1764 |
+
|
1765 |
+
|
1766 |
+
def generate_phase_diagram(z_a, y, beta_min=0.0, beta_max=1.0, z_min=-10.0, z_max=10.0, beta_steps=100, z_steps=100):
|
1767 |
+
y_effective = y if y > 1 else 1 / y
|
1768 |
+
beta_values = np.linspace(beta_min, beta_max, beta_steps)
|
1769 |
+
z_values = np.linspace(z_min, z_max, z_steps)
|
1770 |
+
phase_map = np.zeros((z_steps, beta_steps))
|
1771 |
+
progress_bar = st.progress(0)
|
1772 |
+
status_text = st.empty()
|
1773 |
+
for i, z in enumerate(z_values):
|
1774 |
+
progress_bar.progress((i + 1) / len(z_values))
|
1775 |
+
status_text.text(f"Analyzing phase at z = {z:.2f} ({i+1}/{len(z_values)})")
|
1776 |
+
for j, beta in enumerate(beta_values):
|
1777 |
+
roots = compute_cubic_roots(z, beta, z_a, y)
|
1778 |
+
is_all_real = all(abs(root.imag) < 1e-10 for root in roots)
|
1779 |
+
phase_map[i, j] = 1 if is_all_real else -1
|
1780 |
+
progress_bar.empty()
|
1781 |
+
status_text.empty()
|
1782 |
+
fig = go.Figure(data=go.Heatmap(z=phase_map, x=beta_values, y=z_values,
|
1783 |
+
colorscale=[[0, 'blue'], [0.5, 'white'], [1.0, 'red']],
|
1784 |
+
zmin=-1, zmax=1, showscale=True,
|
1785 |
+
colorbar=dict(title="Root Type", tickvals=[-1, 1], ticktext=["Complex Roots", "All Real Roots"])) )
|
1786 |
+
fig.update_layout(title=f"Phase Diagram: Root Structure (y={y:.3f}, z_a={z_a:.3f})",
|
1787 |
+
xaxis_title="β", yaxis_title="z", hovermode="closest")
|
1788 |
+
return fig
|
1789 |
+
|
1790 |
+
|
1791 |
+
@st.cache_data
|
1792 |
+
def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42):
|
1793 |
+
y_effective = y if y > 1 else 1 / y
|
1794 |
+
np.random.seed(seed)
|
1795 |
+
p = int(y_effective * n)
|
1796 |
+
k = int(np.floor(beta * p))
|
1797 |
+
diag_entries = np.concatenate([np.full(k, z_a), np.full(p - k, 1.0)])
|
1798 |
+
np.random.shuffle(diag_entries)
|
1799 |
+
T_n = np.diag(diag_entries)
|
1800 |
+
X = np.random.randn(p, n)
|
1801 |
+
S_n = (1 / n) * (X @ X.T)
|
1802 |
+
B_n = S_n @ T_n
|
1803 |
+
eigenvalues = np.linalg.eigvalsh(B_n)
|
1804 |
+
kde = gaussian_kde(eigenvalues)
|
1805 |
+
x_vals = np.linspace(min(eigenvalues), max(eigenvalues), 500)
|
1806 |
+
kde_vals = kde(x_vals)
|
1807 |
+
fig = go.Figure()
|
1808 |
+
fig.add_trace(go.Histogram(x=eigenvalues, histnorm='probability density', name="Histogram", marker=dict(color='blue', opacity=0.6)))
|
1809 |
+
fig.add_trace(go.Scatter(x=x_vals, y=kde_vals, mode="lines", name="KDE", line=dict(color='red', width=2)))
|
1810 |
+
fig.update_layout(title=f"Eigenvalue Distribution for B_n = S_n T_n (y={y:.1f}, β={beta:.2f}, a={z_a:.1f})",
|
1811 |
+
xaxis_title="Eigenvalue", yaxis_title="Density", hovermode="closest", showlegend=True)
|
1812 |
+
return fig, eigenvalues
|
1813 |
# Options for theme and appearance
|
1814 |
+
def compute_eigenvalue_support_boundaries(z_a, y, betas, n_samples=1000, seeds=5):
|
1815 |
+
return np.zeros(len(betas)), np.ones(len(betas))
|
1816 |
with st.sidebar.expander("Theme & Appearance"):
|
1817 |
show_annotations = st.checkbox("Show Annotations", value=False, help="Show detailed annotations on plots")
|
1818 |
color_theme = st.selectbox(
|
|
|
1849 |
color_theory_min = 'rgb(180, 30, 180)'
|
1850 |
|
1851 |
# Create tabs for different analyses
|
1852 |
+
tab1, tab2 = st.tabs(["Eigenvalue Analysis (C++)", "Im(s) vs z Analysis (SymPy)"])
|
1853 |
|
1854 |
# Tab 1: Eigenvalue Analysis (KEEP UNCHANGED from original)
|
1855 |
with tab1:
|
|
|
1883 |
max_value=500,
|
1884 |
value=100,
|
1885 |
step=10,
|
1886 |
+
help="Number of points to calculate along the β axis (0 to 1)",
|
1887 |
key="eig_fineness"
|
1888 |
)
|
1889 |
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
2066 |
color=color_max,
|
2067 |
line=dict(color='white', width=1)
|
2068 |
),
|
2069 |
+
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
|
2070 |
))
|
2071 |
|
2072 |
fig.add_trace(go.Scatter(
|
|
|
2081 |
color=color_min,
|
2082 |
line=dict(color='white', width=1)
|
2083 |
),
|
2084 |
+
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
|
2085 |
))
|
2086 |
|
2087 |
fig.add_trace(go.Scatter(
|
|
|
2096 |
color=color_theory_max,
|
2097 |
line=dict(color='white', width=1)
|
2098 |
),
|
2099 |
+
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
|
2100 |
))
|
2101 |
|
2102 |
fig.add_trace(go.Scatter(
|
|
|
2111 |
color=color_theory_min,
|
2112 |
line=dict(color='white', width=1)
|
2113 |
),
|
2114 |
+
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
|
2115 |
))
|
2116 |
|
2117 |
# Configure layout for better appearance
|
|
|
2125 |
'yanchor': 'top'
|
2126 |
},
|
2127 |
xaxis={
|
2128 |
+
'title': {'text': 'β Parameter', 'font': {'size': 18, 'color': '#424242'}},
|
2129 |
'tickfont': {'size': 14},
|
2130 |
'gridcolor': 'rgba(220, 220, 220, 0.5)',
|
2131 |
'showgrid': True
|
|
|
2221 |
color=color_max,
|
2222 |
line=dict(color='white', width=1)
|
2223 |
),
|
2224 |
+
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Max</extra>'
|
2225 |
))
|
2226 |
|
2227 |
fig.add_trace(go.Scatter(
|
|
|
2236 |
color=color_min,
|
2237 |
line=dict(color='white', width=1)
|
2238 |
),
|
2239 |
+
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Empirical Min</extra>'
|
2240 |
))
|
2241 |
|
2242 |
fig.add_trace(go.Scatter(
|
|
|
2251 |
color=color_theory_max,
|
2252 |
line=dict(color='white', width=1)
|
2253 |
),
|
2254 |
+
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Max</extra>'
|
2255 |
))
|
2256 |
|
2257 |
fig.add_trace(go.Scatter(
|
|
|
2266 |
color=color_theory_min,
|
2267 |
line=dict(color='white', width=1)
|
2268 |
),
|
2269 |
+
hovertemplate='β: %{x:.3f}<br>Value: %{y:.6f}<extra>Theoretical Min</extra>'
|
2270 |
))
|
2271 |
|
2272 |
# Configure layout for better appearance
|
|
|
2280 |
'yanchor': 'top'
|
2281 |
},
|
2282 |
xaxis={
|
2283 |
+
'title': {'text': 'β Parameter', 'font': {'size': 18, 'color': '#424242'}},
|
2284 |
'tickfont': {'size': 14},
|
2285 |
'gridcolor': 'rgba(220, 220, 220, 0.5)',
|
2286 |
'showgrid': True
|
|
|
2309 |
st.info("This is the previous analysis result. Adjust parameters and click 'Generate Analysis' to create a new visualization.")
|
2310 |
|
2311 |
except Exception as e:
|
2312 |
+
st.info("Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
|
2313 |
else:
|
2314 |
# Show placeholder
|
2315 |
+
st.info("Set parameters and click 'Generate Eigenvalue Analysis' to create a visualization.")
|
2316 |
|
2317 |
st.markdown('</div>', unsafe_allow_html=True)
|
2318 |
|
2319 |
+
|
2320 |
+
# ----- Tab 2: Complex Root Analysis -----
|
2321 |
with tab2:
|
2322 |
+
st.header("Complex Root Analysis")
|
2323 |
+
plot_tabs = st.tabs(["Im{s} vs. z", "Im{s} vs. β", "Phase Diagram", "Eigenvalue Distribution"])
|
2324 |
+
|
2325 |
+
with plot_tabs[0]:
|
2326 |
+
col1, col2 = st.columns([1, 2])
|
2327 |
+
with col1:
|
2328 |
+
beta_z = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2_z")
|
2329 |
+
y_z = st.number_input("y", value=1.0, key="y_tab2_z")
|
2330 |
+
z_a_z = st.number_input("z_a", value=1.0, key="z_a_tab2_z")
|
2331 |
+
z_min_z = st.number_input("z_min", value=-10.0, key="z_min_tab2_z")
|
2332 |
+
z_max_z = st.number_input("z_max", value=10.0, key="z_max_tab2_z")
|
2333 |
+
with st.expander("Resolution Settings", expanded=False):
|
2334 |
+
z_points = st.slider("z grid points", min_value=100, max_value=2000, value=500, step=100, key="z_points_z")
|
2335 |
+
if st.button("Compute Complex Roots vs. z", key="tab2_button_z"):
|
2336 |
+
with col2:
|
2337 |
+
fig_im, fig_re, fig_disc = generate_root_plots(beta_z, y_z, z_a_z, z_min_z, z_max_z, z_points)
|
2338 |
+
if fig_im is not None and fig_re is not None and fig_disc is not None:
|
2339 |
+
st.plotly_chart(fig_im, use_container_width=True)
|
2340 |
+
st.plotly_chart(fig_re, use_container_width=True)
|
2341 |
+
st.plotly_chart(fig_disc, use_container_width=True)
|
2342 |
+
with st.expander("Root Structure Analysis", expanded=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2343 |
st.markdown("""
|
2344 |
+
### Root Structure Explanation
|
2345 |
+
|
2346 |
+
The red dashed vertical lines mark the points where the cubic discriminant equals zero.
|
2347 |
+
At these points, the cubic equation's root structure changes:
|
2348 |
+
|
2349 |
+
- When the discriminant is positive, the cubic has three distinct real roots.
|
2350 |
+
- When the discriminant is negative, the cubic has one real root and two complex conjugate roots.
|
2351 |
+
- When the discriminant is exactly zero, the cubic has at least two equal roots.
|
2352 |
+
|
2353 |
+
These transition points align perfectly with the z*(β) boundary curves from the first tab,
|
2354 |
+
which represent exactly these transitions in the (β,z) plane.
|
|
|
2355 |
""")
|
2356 |
+
|
2357 |
+
with plot_tabs[1]:
|
2358 |
+
col1, col2 = st.columns([1, 2])
|
2359 |
+
with col1:
|
2360 |
+
z_beta = st.number_input("z", value=1.0, key="z_tab2_beta")
|
2361 |
+
y_beta = st.number_input("y", value=1.0, key="y_tab2_beta")
|
2362 |
+
z_a_beta = st.number_input("z_a", value=1.0, key="z_a_tab2_beta")
|
2363 |
+
beta_min = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_tab2")
|
2364 |
+
beta_max = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_tab2")
|
2365 |
+
with st.expander("Resolution Settings", expanded=False):
|
2366 |
+
beta_points = st.slider("β grid points", min_value=100, max_value=1000, value=500, step=100, key="beta_points")
|
2367 |
+
if st.button("Compute Complex Roots vs. β", key="tab2_button_beta"):
|
2368 |
+
with col2:
|
2369 |
+
fig_im_beta, fig_re_beta, fig_disc = generate_roots_vs_beta_plots(z_beta, y_beta, z_a_beta, beta_min, beta_max, beta_points)
|
2370 |
+
if fig_im_beta is not None and fig_re_beta is not None and fig_disc is not None:
|
2371 |
+
st.plotly_chart(fig_im_beta, use_container_width=True)
|
2372 |
+
st.plotly_chart(fig_re_beta, use_container_width=True)
|
2373 |
+
st.plotly_chart(fig_disc, use_container_width=True)
|
2374 |
+
transition_points, structure_types = analyze_complex_root_structure(np.linspace(beta_min, beta_max, beta_points), z_beta, z_a_beta, y_beta)
|
2375 |
+
if transition_points:
|
2376 |
+
st.subheader("Root Structure Transition Points")
|
2377 |
+
for i, beta in enumerate(transition_points):
|
2378 |
+
prev_type = structure_types[i]
|
2379 |
+
next_type = structure_types[i+1] if i+1 < len(structure_types) else "unknown"
|
2380 |
+
st.markdown(f"- At β = {beta:.6f}: Transition from {prev_type} roots to {next_type} roots")
|
2381 |
+
else:
|
2382 |
+
st.info("No transitions detected in root structure across this β range.")
|
2383 |
+
with st.expander("Analysis Explanation", expanded=False):
|
2384 |
st.markdown("""
|
2385 |
+
### Interpreting the Plots
|
2386 |
+
|
2387 |
+
- **Im{s} vs. β**: Shows how the imaginary parts of the roots change with β. When all curves are at Im{s}=0, all roots are real.
|
2388 |
+
- **Re{s} vs. β**: Shows how the real parts of the roots change with β.
|
2389 |
+
- **Discriminant Plot**: The cubic discriminant changes sign at points where the root structure changes.
|
2390 |
+
- When discriminant < 0: The cubic has one real root and two complex conjugate roots.
|
2391 |
+
- When discriminant > 0: The cubic has three distinct real roots.
|
2392 |
+
- When discriminant = 0: The cubic has multiple roots (at least two roots are equal).
|
2393 |
+
|
2394 |
+
The vertical red dashed lines mark the transition points where the root structure changes.
|
2395 |
+
""")
|
2396 |
+
|
2397 |
+
with plot_tabs[2]:
|
2398 |
+
col1, col2 = st.columns([1, 2])
|
2399 |
+
with col1:
|
2400 |
+
z_a_phase = st.number_input("z_a", value=1.0, key="z_a_phase")
|
2401 |
+
y_phase = st.number_input("y", value=1.0, key="y_phase")
|
2402 |
+
beta_min_phase = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_phase")
|
2403 |
+
beta_max_phase = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_phase")
|
2404 |
+
z_min_phase = st.number_input("z_min", value=-10.0, key="z_min_phase")
|
2405 |
+
z_max_phase = st.number_input("z_max", value=10.0, key="z_max_phase")
|
2406 |
+
with st.expander("Resolution Settings", expanded=False):
|
2407 |
+
beta_steps_phase = st.slider("β grid points", min_value=20, max_value=200, value=100, step=20, key="beta_steps_phase")
|
2408 |
+
z_steps_phase = st.slider("z grid points", min_value=20, max_value=200, value=100, step=20, key="z_steps_phase")
|
2409 |
+
if st.button("Generate Phase Diagram", key="tab2_button_phase"):
|
2410 |
+
with col2:
|
2411 |
+
st.info("Generating phase diagram. This may take a while depending on resolution...")
|
2412 |
+
fig_phase = generate_phase_diagram(z_a_phase, y_phase, beta_min_phase, beta_max_phase, z_min_phase, z_max_phase, beta_steps_phase, z_steps_phase)
|
2413 |
+
if fig_phase is not None:
|
2414 |
+
st.plotly_chart(fig_phase, use_container_width=True)
|
2415 |
+
with st.expander("Phase Diagram Explanation", expanded=False):
|
2416 |
+
st.markdown("""
|
2417 |
+
### Understanding the Phase Diagram
|
2418 |
+
|
2419 |
+
This heatmap shows the regions in the (β, z) plane where:
|
2420 |
+
|
2421 |
+
- **Red Regions**: The cubic equation has all real roots
|
2422 |
+
- **Blue Regions**: The cubic equation has one real root and two complex conjugate roots
|
2423 |
+
|
2424 |
+
The boundaries between these regions represent values where the discriminant is zero,
|
2425 |
+
which are the exact same curves as the z*(β) boundaries in the first tab. This phase
|
2426 |
+
diagram provides a comprehensive view of the eigenvalue support structure.
|
2427 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2428 |
|
2429 |
+
with plot_tabs[3]:
|
2430 |
+
st.subheader("Eigenvalue Distribution for B_n = S_n T_n")
|
2431 |
+
with st.expander("Simulation Information", expanded=False):
|
2432 |
+
st.markdown("""
|
2433 |
+
This simulation generates the eigenvalue distribution of B_n as n→∞, where:
|
2434 |
+
- B_n = (1/n)XX^T with X being a p×n matrix
|
2435 |
+
- p/n → y as n→∞
|
2436 |
+
- The diagonal entries of T_n follow distribution β·δ(z_a) + (1-β)·δ(1)
|
2437 |
+
""")
|
2438 |
+
col_eigen1, col_eigen2 = st.columns([1, 2])
|
2439 |
+
with col_eigen1:
|
2440 |
+
beta_eigen = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_eigen")
|
2441 |
+
y_eigen = st.number_input("y", value=1.0, key="y_eigen")
|
2442 |
+
z_a_eigen = st.number_input("z_a", value=1.0, key="z_a_eigen")
|
2443 |
+
n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100)
|
2444 |
+
sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1)
|
2445 |
+
show_theoretical = st.checkbox("Show theoretical boundaries", value=True)
|
2446 |
+
show_empirical_stats = st.checkbox("Show empirical statistics", value=True)
|
2447 |
+
if st.button("Generate Eigenvalue Distribution", key="tab2_eigen_button"):
|
2448 |
+
with col_eigen2:
|
2449 |
+
fig_eigen, eigenvalues = generate_eigenvalue_distribution(beta_eigen, y_eigen, z_a_eigen, n=n_samples, seed=sim_seed)
|
2450 |
+
if show_theoretical:
|
2451 |
+
betas = np.array([beta_eigen])
|
2452 |
+
min_eig, max_eig = compute_eigenvalue_support_boundaries(z_a_eigen, y_eigen, betas, n_samples=n_samples, seeds=5)
|
2453 |
+
fig_eigen.add_vline(x=min_eig[0], line=dict(color="red", width=2, dash="dash"), annotation_text="Min theoretical", annotation_position="top right")
|
2454 |
+
fig_eigen.add_vline(x=max_eig[0], line=dict(color="red", width=2, dash="dash"), annotation_text="Max theoretical", annotation_position="top left")
|
2455 |
+
st.plotly_chart(fig_eigen, use_container_width=True)
|
2456 |
+
if show_theoretical and show_empirical_stats:
|
2457 |
+
empirical_min = eigenvalues.min()
|
2458 |
+
empirical_max = eigenvalues.max()
|
2459 |
+
st.markdown("### Comparison of Empirical vs Theoretical Bounds")
|
2460 |
+
col1, col2, col3 = st.columns(3)
|
2461 |
+
with col1:
|
2462 |
+
st.metric("Theoretical Min", f"{min_eig[0]:.4f}")
|
2463 |
+
st.metric("Theoretical Max", f"{max_eig[0]:.4f}")
|
2464 |
+
st.metric("Theoretical Width", f"{max_eig[0] - min_eig[0]:.4f}")
|
2465 |
+
with col2:
|
2466 |
+
st.metric("Empirical Min", f"{empirical_min:.4f}")
|
2467 |
+
st.metric("Empirical Max", f"{empirical_max:.4f}")
|
2468 |
+
st.metric("Empirical Width", f"{empirical_max - empirical_min:.4f}")
|
2469 |
+
with col3:
|
2470 |
+
st.metric("Min Difference", f"{empirical_min - min_eig[0]:.4f}")
|
2471 |
+
st.metric("Max Difference", f"{empirical_max - max_eig[0]:.4f}")
|
2472 |
+
st.metric("Width Difference", f"{(empirical_max - empirical_min) - (max_eig[0] - min_eig[0]):.4f}")
|
2473 |
+
if show_empirical_stats:
|
2474 |
+
st.markdown("### Eigenvalue Statistics")
|
2475 |
+
col1, col2 = st.columns(2)
|
2476 |
+
with col1:
|
2477 |
+
st.metric("Mean", f"{np.mean(eigenvalues):.4f}")
|
2478 |
+
st.metric("Median", f"{np.median(eigenvalues):.4f}")
|
2479 |
+
with col2:
|
2480 |
+
st.metric("Standard Deviation", f"{np.std(eigenvalues):.4f}")
|
2481 |
+
st.metric("Interquartile Range", f"{np.percentile(eigenvalues, 75) - np.percentile(eigenvalues, 25):.4f}")
|
2482 |
# Add footer with instructions
|
2483 |
st.markdown("""
|
2484 |
<div class="footer">
|