Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ from scipy.optimize import fsolve
|
|
8 |
st.set_page_config(
|
9 |
page_title="Cubic Root Analysis",
|
10 |
layout="wide",
|
11 |
-
initial_sidebar_state="expanded"
|
12 |
)
|
13 |
|
14 |
# Move custom expression inputs to sidebar
|
@@ -28,6 +28,7 @@ with st.sidebar:
|
|
28 |
|
29 |
custom_num_expr = st.text_input("Numerator Expression", value=default_num)
|
30 |
custom_denom_expr = st.text_input("Denominator Expression", value=default_denom)
|
|
|
31 |
#############################
|
32 |
# 1) Define the discriminant
|
33 |
#############################
|
@@ -37,7 +38,7 @@ z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive
|
|
37 |
|
38 |
# Define a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
|
39 |
a_sym = z_sym * z_a_sym
|
40 |
-
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym
|
41 |
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
|
42 |
d_sym = 1
|
43 |
|
@@ -52,10 +53,6 @@ discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "
|
|
52 |
|
53 |
@st.cache_data
|
54 |
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
|
55 |
-
"""
|
56 |
-
Numerically scan z in [z_min, z_max] looking for sign changes of
|
57 |
-
Delta(z) = 0. Returns all roots found via bisection.
|
58 |
-
"""
|
59 |
z_grid = np.linspace(z_min, z_max, steps)
|
60 |
disc_vals = discriminant_func(z_grid, beta, z_a, y)
|
61 |
|
@@ -90,12 +87,9 @@ def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
|
|
90 |
roots_found.append(root_approx)
|
91 |
|
92 |
return np.array(roots_found)
|
|
|
93 |
@st.cache_data
|
94 |
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
|
95 |
-
"""
|
96 |
-
For each beta, find both the largest and smallest z where discriminant=0.
|
97 |
-
Returns (betas, z_min_values, z_max_values).
|
98 |
-
"""
|
99 |
betas = np.linspace(0, 1, beta_steps)
|
100 |
z_min_values = []
|
101 |
z_max_values = []
|
@@ -113,9 +107,6 @@ def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
|
|
113 |
|
114 |
@st.cache_data
|
115 |
def compute_low_y_curve(betas, z_a, y):
|
116 |
-
"""
|
117 |
-
Compute the additional curve with proper handling of divide by zero cases
|
118 |
-
"""
|
119 |
betas = np.array(betas)
|
120 |
with np.errstate(invalid='ignore', divide='ignore'):
|
121 |
sqrt_term = y * betas * (z_a - 1)
|
@@ -124,16 +115,12 @@ def compute_low_y_curve(betas, z_a, y):
|
|
124 |
term = (-1 + sqrt_term)/z_a
|
125 |
numerator = (y - 2)*term + y * betas * ((z_a - 1)/z_a) - 1/z_a - 1
|
126 |
denominator = term**2 + term
|
127 |
-
# Handle division by zero and invalid values
|
128 |
mask = (denominator != 0) & ~np.isnan(denominator) & ~np.isnan(numerator)
|
129 |
return np.where(mask, numerator/denominator, np.nan)
|
130 |
|
131 |
@st.cache_data
|
132 |
def compute_high_y_curve(betas, z_a, y):
|
133 |
-
|
134 |
-
Compute the expression: (-4a(a-1)yβ - 2ay + 2a(2a-1))/(1-2a)
|
135 |
-
"""
|
136 |
-
a = z_a # for clarity in the formula
|
137 |
betas = np.array(betas)
|
138 |
denominator = 1 - 2*a
|
139 |
|
@@ -145,28 +132,15 @@ def compute_high_y_curve(betas, z_a, y):
|
|
145 |
|
146 |
@st.cache_data
|
147 |
def compute_z_difference_and_derivatives(z_a, y, z_min, z_max, beta_steps, z_steps):
|
148 |
-
"""
|
149 |
-
Compute the difference between upper and lower z*(β) curves and their derivatives
|
150 |
-
"""
|
151 |
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
|
152 |
|
153 |
-
# Compute difference
|
154 |
z_difference = z_maxs - z_mins
|
155 |
-
|
156 |
-
# First derivatives
|
157 |
dz_diff_dbeta = np.gradient(z_difference, betas)
|
158 |
-
|
159 |
-
# Second derivatives
|
160 |
d2z_diff_dbeta2 = np.gradient(dz_diff_dbeta, betas)
|
161 |
|
162 |
return betas, z_difference, dz_diff_dbeta, d2z_diff_dbeta2
|
|
|
163 |
def compute_custom_expression(betas, z_a, y, num_expr_str, denom_expr_str):
|
164 |
-
"""
|
165 |
-
Compute a custom curve given numerator and denominator expressions
|
166 |
-
as strings that can depend on z_a, beta, and y.
|
167 |
-
Allows 'a' as an alias for z_a.
|
168 |
-
"""
|
169 |
-
# Define allowed symbols. Also allow 'a' as an alias for z_a.
|
170 |
beta_sym, z_a_sym, y_sym, a_sym = sp.symbols("beta z_a y a", positive=True)
|
171 |
local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "a": z_a_sym}
|
172 |
|
@@ -191,7 +165,6 @@ def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
|
|
191 |
return None, None
|
192 |
|
193 |
betas = np.linspace(0, 1, beta_steps)
|
194 |
-
|
195 |
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
|
196 |
low_y_curve = compute_low_y_curve(betas, z_a, y)
|
197 |
high_y_curve = compute_high_y_curve(betas, z_a, y)
|
@@ -219,7 +192,8 @@ def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps,
|
|
219 |
line=dict(color='lightblue'),
|
220 |
)
|
221 |
)
|
222 |
-
|
|
|
223 |
go.Scatter(
|
224 |
x=betas,
|
225 |
y=low_y_curve,
|
@@ -242,7 +216,6 @@ fig.add_trace(
|
|
242 |
)
|
243 |
|
244 |
custom_curve = None
|
245 |
-
# Add custom expression if both numerator and denominator are provided
|
246 |
if custom_num_expr and custom_denom_expr:
|
247 |
custom_curve = compute_custom_expression(betas, z_a, y, custom_num_expr, custom_denom_expr)
|
248 |
fig.add_trace(
|
@@ -263,7 +236,6 @@ fig.add_trace(
|
|
263 |
hovermode="x unified",
|
264 |
)
|
265 |
|
266 |
-
# Compute Derivatives with Respect to β
|
267 |
dzmax_dbeta = np.gradient(z_maxs, betas)
|
268 |
dzmin_dbeta = np.gradient(z_mins, betas)
|
269 |
dlowy_dbeta = np.gradient(low_y_curve, betas)
|
@@ -282,7 +254,8 @@ fig.add_trace(
|
|
282 |
line=dict(color='blue'),
|
283 |
)
|
284 |
)
|
285 |
-
|
|
|
286 |
go.Scatter(
|
287 |
x=betas,
|
288 |
y=dzmin_dbeta,
|
@@ -337,9 +310,6 @@ fig_deriv.add_trace(
|
|
337 |
return fig, fig_deriv
|
338 |
|
339 |
def compute_cubic_roots(z, beta, z_a, y):
|
340 |
-
"""
|
341 |
-
Compute the roots of the cubic equation for given parameters.
|
342 |
-
"""
|
343 |
a = z * z_a
|
344 |
b = z * z_a + z + z_a - z_a*y
|
345 |
c = z + z_a + 1 - y*(beta*z_a + 1 - beta)
|
@@ -348,8 +318,8 @@ def compute_cubic_roots(z, beta, z_a, y):
|
|
348 |
coeffs = [a, b, c, d]
|
349 |
roots = np.roots(coeffs)
|
350 |
return roots
|
|
|
351 |
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
352 |
-
"""Generate both Im(s) and Re(s) vs. z plots"""
|
353 |
if z_a <= 0 or y <= 0 or z_min >= z_max:
|
354 |
st.error("Invalid input parameters.")
|
355 |
return None, None
|
@@ -367,7 +337,6 @@ def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
|
367 |
ims = np.array(ims)
|
368 |
res = np.array(res)
|
369 |
|
370 |
-
# Create Im(s) plot
|
371 |
fig_im = go.Figure()
|
372 |
for i in range(3):
|
373 |
fig_im.add_trace(
|
@@ -386,7 +355,6 @@ def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
|
386 |
hovermode="x unified",
|
387 |
)
|
388 |
|
389 |
-
# Create Re(s) plot
|
390 |
fig_re = go.Figure()
|
391 |
for i in range(3):
|
392 |
fig_re.add_trace(
|
@@ -406,11 +374,12 @@ def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
|
406 |
)
|
407 |
|
408 |
return fig_im, fig_re
|
|
|
409 |
# ------------------- Streamlit UI -------------------
|
410 |
|
411 |
st.title("Cubic Root Analysis")
|
412 |
|
413 |
-
tab1, tab2, tab3
|
414 |
|
415 |
with tab1:
|
416 |
st.header("Find z Values where Cubic Roots Transition Between Real and Complex")
|
@@ -458,7 +427,7 @@ with tab2:
|
|
458 |
st.plotly_chart(fig_im, use_container_width=True)
|
459 |
st.plotly_chart(fig_re, use_container_width=True)
|
460 |
|
461 |
-
with
|
462 |
st.header("z*(β) Difference Analysis")
|
463 |
|
464 |
col1, col2 = st.columns([1, 2])
|
|
|
8 |
st.set_page_config(
|
9 |
page_title="Cubic Root Analysis",
|
10 |
layout="wide",
|
11 |
+
initial_sidebar_state="expanded"
|
12 |
)
|
13 |
|
14 |
# Move custom expression inputs to sidebar
|
|
|
28 |
|
29 |
custom_num_expr = st.text_input("Numerator Expression", value=default_num)
|
30 |
custom_denom_expr = st.text_input("Denominator Expression", value=default_denom)
|
31 |
+
|
32 |
#############################
|
33 |
# 1) Define the discriminant
|
34 |
#############################
|
|
|
38 |
|
39 |
# Define a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym
|
40 |
a_sym = z_sym * z_a_sym
|
41 |
+
b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym
|
42 |
c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym)
|
43 |
d_sym = 1
|
44 |
|
|
|
53 |
|
54 |
@st.cache_data
|
55 |
def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps):
|
|
|
|
|
|
|
|
|
56 |
z_grid = np.linspace(z_min, z_max, steps)
|
57 |
disc_vals = discriminant_func(z_grid, beta, z_a, y)
|
58 |
|
|
|
87 |
roots_found.append(root_approx)
|
88 |
|
89 |
return np.array(roots_found)
|
90 |
+
|
91 |
@st.cache_data
|
92 |
def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps):
|
|
|
|
|
|
|
|
|
93 |
betas = np.linspace(0, 1, beta_steps)
|
94 |
z_min_values = []
|
95 |
z_max_values = []
|
|
|
107 |
|
108 |
@st.cache_data
|
109 |
def compute_low_y_curve(betas, z_a, y):
|
|
|
|
|
|
|
110 |
betas = np.array(betas)
|
111 |
with np.errstate(invalid='ignore', divide='ignore'):
|
112 |
sqrt_term = y * betas * (z_a - 1)
|
|
|
115 |
term = (-1 + sqrt_term)/z_a
|
116 |
numerator = (y - 2)*term + y * betas * ((z_a - 1)/z_a) - 1/z_a - 1
|
117 |
denominator = term**2 + term
|
|
|
118 |
mask = (denominator != 0) & ~np.isnan(denominator) & ~np.isnan(numerator)
|
119 |
return np.where(mask, numerator/denominator, np.nan)
|
120 |
|
121 |
@st.cache_data
|
122 |
def compute_high_y_curve(betas, z_a, y):
|
123 |
+
a = z_a
|
|
|
|
|
|
|
124 |
betas = np.array(betas)
|
125 |
denominator = 1 - 2*a
|
126 |
|
|
|
132 |
|
133 |
@st.cache_data
|
134 |
def compute_z_difference_and_derivatives(z_a, y, z_min, z_max, beta_steps, z_steps):
|
|
|
|
|
|
|
135 |
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
|
136 |
|
|
|
137 |
z_difference = z_maxs - z_mins
|
|
|
|
|
138 |
dz_diff_dbeta = np.gradient(z_difference, betas)
|
|
|
|
|
139 |
d2z_diff_dbeta2 = np.gradient(dz_diff_dbeta, betas)
|
140 |
|
141 |
return betas, z_difference, dz_diff_dbeta, d2z_diff_dbeta2
|
142 |
+
|
143 |
def compute_custom_expression(betas, z_a, y, num_expr_str, denom_expr_str):
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
beta_sym, z_a_sym, y_sym, a_sym = sp.symbols("beta z_a y a", positive=True)
|
145 |
local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "a": z_a_sym}
|
146 |
|
|
|
165 |
return None, None
|
166 |
|
167 |
betas = np.linspace(0, 1, beta_steps)
|
|
|
168 |
betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps)
|
169 |
low_y_curve = compute_low_y_curve(betas, z_a, y)
|
170 |
high_y_curve = compute_high_y_curve(betas, z_a, y)
|
|
|
192 |
line=dict(color='lightblue'),
|
193 |
)
|
194 |
)
|
195 |
+
|
196 |
+
fig.add_trace(
|
197 |
go.Scatter(
|
198 |
x=betas,
|
199 |
y=low_y_curve,
|
|
|
216 |
)
|
217 |
|
218 |
custom_curve = None
|
|
|
219 |
if custom_num_expr and custom_denom_expr:
|
220 |
custom_curve = compute_custom_expression(betas, z_a, y, custom_num_expr, custom_denom_expr)
|
221 |
fig.add_trace(
|
|
|
236 |
hovermode="x unified",
|
237 |
)
|
238 |
|
|
|
239 |
dzmax_dbeta = np.gradient(z_maxs, betas)
|
240 |
dzmin_dbeta = np.gradient(z_mins, betas)
|
241 |
dlowy_dbeta = np.gradient(low_y_curve, betas)
|
|
|
254 |
line=dict(color='blue'),
|
255 |
)
|
256 |
)
|
257 |
+
|
258 |
+
fig_deriv.add_trace(
|
259 |
go.Scatter(
|
260 |
x=betas,
|
261 |
y=dzmin_dbeta,
|
|
|
310 |
return fig, fig_deriv
|
311 |
|
312 |
def compute_cubic_roots(z, beta, z_a, y):
|
|
|
|
|
|
|
313 |
a = z * z_a
|
314 |
b = z * z_a + z + z_a - z_a*y
|
315 |
c = z + z_a + 1 - y*(beta*z_a + 1 - beta)
|
|
|
318 |
coeffs = [a, b, c, d]
|
319 |
roots = np.roots(coeffs)
|
320 |
return roots
|
321 |
+
|
322 |
def generate_root_plots(beta, y, z_a, z_min, z_max, n_points):
|
|
|
323 |
if z_a <= 0 or y <= 0 or z_min >= z_max:
|
324 |
st.error("Invalid input parameters.")
|
325 |
return None, None
|
|
|
337 |
ims = np.array(ims)
|
338 |
res = np.array(res)
|
339 |
|
|
|
340 |
fig_im = go.Figure()
|
341 |
for i in range(3):
|
342 |
fig_im.add_trace(
|
|
|
355 |
hovermode="x unified",
|
356 |
)
|
357 |
|
|
|
358 |
fig_re = go.Figure()
|
359 |
for i in range(3):
|
360 |
fig_re.add_trace(
|
|
|
374 |
)
|
375 |
|
376 |
return fig_im, fig_re
|
377 |
+
|
378 |
# ------------------- Streamlit UI -------------------
|
379 |
|
380 |
st.title("Cubic Root Analysis")
|
381 |
|
382 |
+
tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Im{s} vs. z", "z*(β) Difference Analysis"])
|
383 |
|
384 |
with tab1:
|
385 |
st.header("Find z Values where Cubic Roots Transition Between Real and Complex")
|
|
|
427 |
st.plotly_chart(fig_im, use_container_width=True)
|
428 |
st.plotly_chart(fig_re, use_container_width=True)
|
429 |
|
430 |
+
with tab3:
|
431 |
st.header("z*(β) Difference Analysis")
|
432 |
|
433 |
col1, col2 = st.columns([1, 2])
|