import streamlit as st import sympy as sp import numpy as np import plotly.graph_objects as go from scipy.optimize import fsolve # Configure Streamlit for Hugging Face Spaces st.set_page_config( page_title="Cubic Root Analysis", layout="wide", initial_sidebar_state="expanded" ) # Move custom expression inputs to sidebar with st.sidebar: st.header("Custom Expression Settings") expression_type = st.radio( "Select Expression Type", ["Original Low y", "Alternative Low y"] ) if expression_type == "Original Low y": default_num = "(y - 2)*((-1 + sqrt(y*beta*(z_a - 1)))/z_a) + y*beta*((z_a-1)/z_a) - 1/z_a - 1" default_denom = "((-1 + sqrt(y*beta*(z_a - 1)))/z_a)**2 + ((-1 + sqrt(y*beta*(z_a - 1)))/z_a)" else: default_num = "1*z_a*y*beta*(z_a-1) - 2*z_a*(1 - y) - 2*z_a**2" default_denom = "2+2*z_a" custom_num_expr = st.text_input("Numerator Expression", value=default_num) custom_denom_expr = st.text_input("Denominator Expression", value=default_denom) ############################# # 1) Define the discriminant ############################# # Symbolic variables to build a symbolic expression of discriminant z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True) # Define a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym a_sym = z_sym * z_a_sym b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym) d_sym = 1 # Symbolic expression for the standard cubic discriminant Delta_expr = ( ((b_sym*c_sym)/(6*a_sym**2) - (b_sym**3)/(27*a_sym**3) - d_sym/(2*a_sym))**2 + (c_sym/(3*a_sym) - (b_sym**2)/(9*a_sym**2))**3 ) # Turn that into a fast numeric function: discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "numpy") @st.cache_data def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps): z_grid = np.linspace(z_min, z_max, steps) disc_vals = discriminant_func(z_grid, beta, z_a, y) roots_found = [] # Scan for sign changes for i in range(len(z_grid) - 1): f1, f2 = disc_vals[i], disc_vals[i+1] if np.isnan(f1) or np.isnan(f2): continue if f1 == 0.0: roots_found.append(z_grid[i]) elif f2 == 0.0: roots_found.append(z_grid[i+1]) elif f1*f2 < 0: zl = z_grid[i] zr = z_grid[i+1] for _ in range(50): mid = 0.5*(zl + zr) fm = discriminant_func(mid, beta, z_a, y) if fm == 0: zl = zr = mid break if np.sign(fm) == np.sign(f1): zl = mid f1 = fm else: zr = mid f2 = fm root_approx = 0.5*(zl + zr) roots_found.append(root_approx) return np.array(roots_found) @st.cache_data def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps): betas = np.linspace(0, 1, beta_steps) z_min_values = [] z_max_values = [] for b in betas: roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps) if len(roots) == 0: z_min_values.append(np.nan) z_max_values.append(np.nan) else: z_min_values.append(np.min(roots)) z_max_values.append(np.max(roots)) return betas, np.array(z_min_values), np.array(z_max_values) @st.cache_data def compute_low_y_curve(betas, z_a, y): betas = np.array(betas) with np.errstate(invalid='ignore', divide='ignore'): sqrt_term = y * betas * (z_a - 1) sqrt_term = np.where(sqrt_term < 0, np.nan, np.sqrt(sqrt_term)) term = (-1 + sqrt_term)/z_a numerator = (y - 2)*term + y * betas * ((z_a - 1)/z_a) - 1/z_a - 1 denominator = term**2 + term mask = (denominator != 0) & ~np.isnan(denominator) & ~np.isnan(numerator) return np.where(mask, numerator/denominator, np.nan) @st.cache_data def compute_high_y_curve(betas, z_a, y): a = z_a betas = np.array(betas) denominator = 1 - 2*a if denominator == 0: return np.full_like(betas, np.nan) numerator = -4*a*(a-1)*y*betas - 2*a*y - 2*a*(2*a-1) return numerator/denominator @st.cache_data def compute_z_difference_and_derivatives(z_a, y, z_min, z_max, beta_steps, z_steps): betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps) z_difference = z_maxs - z_mins dz_diff_dbeta = np.gradient(z_difference, betas) d2z_diff_dbeta2 = np.gradient(dz_diff_dbeta, betas) return betas, z_difference, dz_diff_dbeta, d2z_diff_dbeta2 def compute_custom_expression(betas, z_a, y, num_expr_str, denom_expr_str): beta_sym, z_a_sym, y_sym, a_sym = sp.symbols("beta z_a y a", positive=True) local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "a": z_a_sym} try: num_expr = sp.sympify(num_expr_str, locals=local_dict) denom_expr = sp.sympify(denom_expr_str, locals=local_dict) except sp.SympifyError as e: st.error(f"Error parsing expressions: {e}") return np.full_like(betas, np.nan) num_func = sp.lambdify((beta_sym, z_a_sym, y_sym), num_expr, modules=["numpy"]) denom_func = sp.lambdify((beta_sym, z_a_sym, y_sym), denom_expr, modules=["numpy"]) with np.errstate(divide='ignore', invalid='ignore'): result = num_func(betas, z_a, y) / denom_func(betas, z_a, y) return result def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps, custom_num_expr=None, custom_denom_expr=None): if z_a <= 0 or y <= 0 or z_min >= z_max: st.error("Invalid input parameters.") return None, None betas = np.linspace(0, 1, beta_steps) betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps) low_y_curve = compute_low_y_curve(betas, z_a, y) high_y_curve = compute_high_y_curve(betas, z_a, y) fig = go.Figure() fig.add_trace( go.Scatter( x=betas, y=z_maxs, mode="markers+lines", name="Upper z*(β)", marker=dict(size=5, color='blue'), line=dict(color='blue'), ) ) fig.add_trace( go.Scatter( x=betas, y=z_mins, mode="markers+lines", name="Lower z*(β)", marker=dict(size=5, color='lightblue'), line=dict(color='lightblue'), ) ) fig.add_trace( go.Scatter( x=betas, y=low_y_curve, mode="markers+lines", name="Low y Expression", marker=dict(size=5, color='red'), line=dict(color='red'), ) ) fig.add_trace( go.Scatter( x=betas, y=high_y_curve, mode="markers+lines", name="High y Expression", marker=dict(size=5, color='green'), line=dict(color='green'), ) ) custom_curve = None if custom_num_expr and custom_denom_expr: custom_curve = compute_custom_expression(betas, z_a, y, custom_num_expr, custom_denom_expr) fig.add_trace( go.Scatter( x=betas, y=custom_curve, mode="markers+lines", name="Custom Expression", marker=dict(size=5, color='purple'), line=dict(color='purple'), ) ) fig.update_layout( title="Curves vs β: z*(β) Boundaries and Asymptotic Expressions", xaxis_title="β", yaxis_title="Value", hovermode="x unified", ) dzmax_dbeta = np.gradient(z_maxs, betas) dzmin_dbeta = np.gradient(z_mins, betas) dlowy_dbeta = np.gradient(low_y_curve, betas) dhighy_dbeta = np.gradient(high_y_curve, betas) dcustom_dbeta = np.gradient(custom_curve, betas) if custom_curve is not None else None fig_deriv = go.Figure() fig_deriv.add_trace( go.Scatter( x=betas, y=dzmax_dbeta, mode="markers+lines", name="d/dβ Upper z*(β)", marker=dict(size=5, color='blue'), line=dict(color='blue'), ) ) fig_deriv.add_trace( go.Scatter( x=betas, y=dzmin_dbeta, mode="markers+lines", name="d/dβ Lower z*(β)", marker=dict(size=5, color='lightblue'), line=dict(color='lightblue'), ) ) fig_deriv.add_trace( go.Scatter( x=betas, y=dlowy_dbeta, mode="markers+lines", name="d/dβ Low y Expression", marker=dict(size=5, color='red'), line=dict(color='red'), ) ) fig_deriv.add_trace( go.Scatter( x=betas, y=dhighy_dbeta, mode="markers+lines", name="d/dβ High y Expression", marker=dict(size=5, color='green'), line=dict(color='green'), ) ) if dcustom_dbeta is not None: fig_deriv.add_trace( go.Scatter( x=betas, y=dcustom_dbeta, mode="markers+lines", name="d/dβ Custom Expression", marker=dict(size=5, color='purple'), line=dict(color='purple'), ) ) fig_deriv.update_layout( title="Derivatives vs β of Each Curve", xaxis_title="β", yaxis_title="d(Value)/dβ", hovermode="x unified", ) return fig, fig_deriv def compute_cubic_roots(z, beta, z_a, y): a = z * z_a b = z * z_a + z + z_a - z_a*y c = z + z_a + 1 - y*(beta*z_a + 1 - beta) d = 1 coeffs = [a, b, c, d] roots = np.roots(coeffs) return roots def generate_root_plots(beta, y, z_a, z_min, z_max, n_points): if z_a <= 0 or y <= 0 or z_min >= z_max: st.error("Invalid input parameters.") return None, None z_points = np.linspace(z_min, z_max, n_points) ims = [] res = [] for z in z_points: roots = compute_cubic_roots(z, beta, z_a, y) roots = sorted(roots, key=lambda x: abs(x.imag)) ims.append([root.imag for root in roots]) res.append([root.real for root in roots]) ims = np.array(ims) res = np.array(res) fig_im = go.Figure() for i in range(3): fig_im.add_trace( go.Scatter( x=z_points, y=ims[:,i], mode="lines", name=f"Im{{s{i+1}}}", line=dict(width=2), ) ) fig_im.update_layout( title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})", xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified", ) fig_re = go.Figure() for i in range(3): fig_re.add_trace( go.Scatter( x=z_points, y=res[:,i], mode="lines", name=f"Re{{s{i+1}}}", line=dict(width=2), ) ) fig_re.update_layout( title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})", xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified", ) return fig_im, fig_re # ------------------- Streamlit UI ------------------- st.title("Cubic Root Analysis") tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Im{s} vs. z", "z*(β) Difference Analysis"]) with tab1: st.header("Find z Values where Cubic Roots Transition Between Real and Complex") col1, col2 = st.columns([1, 2]) with col1: z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1") y_1 = st.number_input("y", value=1.0, key="y_1") z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1") z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1") with st.expander("Resolution Settings"): beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50) z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000) if st.button("Compute z vs. β Curves"): with col2: fig_main, fig_deriv = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps, custom_num_expr, custom_denom_expr) if fig_main is not None and fig_deriv is not None: st.plotly_chart(fig_main, use_container_width=True) st.plotly_chart(fig_deriv, use_container_width=True) with tab2: st.header("Plot Complex Roots vs. z") col1, col2 = st.columns([1, 2]) with col1: beta = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0) y_2 = st.number_input("y", value=1.0, key="y_2") z_a_2 = st.number_input("z_a", value=1.0, key="z_a_2") z_min_2 = st.number_input("z_min", value=-10.0, key="z_min_2") z_max_2 = st.number_input("z_max", value=10.0, key="z_max_2") with st.expander("Resolution Settings"): z_points = st.slider("z grid points", min_value=1000, max_value=10000, value=5000, step=500) if st.button("Compute Complex Roots vs. z"): with col2: fig_im, fig_re = generate_root_plots(beta, y_2, z_a_2, z_min_2, z_max_2, z_points) if fig_im is not None and fig_re is not None: st.plotly_chart(fig_im, use_container_width=True) st.plotly_chart(fig_re, use_container_width=True) with tab3: st.header("z*(β) Difference Analysis") col1, col2 = st.columns([1, 2]) with col1: z_a_4 = st.number_input("z_a", value=1.0, key="z_a_4") y_4 = st.number_input("y", value=1.0, key="y_4") z_min_4 = st.number_input("z_min", value=-10.0, key="z_min_4") z_max_4 = st.number_input("z_max", value=10.0, key="z_max_4") with st.expander("Resolution Settings"): beta_steps_4 = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps_4") z_steps_4 = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps_4") if st.button("Compute Difference Analysis"): with col2: betas, z_diff, dz_diff, d2z_diff = compute_z_difference_and_derivatives( z_a_4, y_4, z_min_4, z_max_4, beta_steps_4, z_steps_4 ) # Plot difference fig_diff = go.Figure() fig_diff.add_trace( go.Scatter( x=betas, y=z_diff, mode="lines", name="z*(β) Difference", line=dict(color='purple', width=2) ) ) fig_diff.update_layout( title="Difference between Upper and Lower z*(β)", xaxis_title="β", yaxis_title="z_max - z_min", hovermode="x unified" ) st.plotly_chart(fig_diff, use_container_width=True) # Plot first derivative fig_first_deriv = go.Figure() fig_first_deriv.add_trace( go.Scatter( x=betas, y=dz_diff, mode="lines", name="First Derivative", line=dict(color='blue', width=2) ) ) fig_first_deriv.update_layout( title="First Derivative of z*(β) Difference", xaxis_title="β", yaxis_title="d(z_max - z_min)/dβ", hovermode="x unified" ) st.plotly_chart(fig_first_deriv, use_container_width=True) # Plot second derivative fig_second_deriv = go.Figure() fig_second_deriv.add_trace( go.Scatter( x=betas, y=d2z_diff, mode="lines", name="Second Derivative", line=dict(color='green', width=2) ) ) fig_second_deriv.update_layout( title="Second Derivative of z*(β) Difference", xaxis_title="β", yaxis_title="d²(z_max - z_min)/dβ²", hovermode="x unified" ) st.plotly_chart(fig_second_deriv, use_container_width=True)