// app.cpp - Modified version of eigen_analysis_corrected.cpp for Streamlit integration #include #include #include #include #include #include #include #include #include #include // Function to compute the theoretical max value double compute_theoretical_max(double a, double y, double beta) { auto f = [a, y, beta](double k) -> double { return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) / ((a * k + 1) * (k * k + k)); // Divide by y here }; // Use numerical optimization to find the maximum // Grid search followed by golden section search double best_k = 1.0; double best_val = f(best_k); // Initial grid search over a wide range const int num_grid_points = 200; for (int i = 0; i < num_grid_points; ++i) { double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100 double val = f(k); if (val > best_val) { best_val = val; best_k = k; } } // Refine with golden section search double a_gs = std::max(0.01, best_k / 10.0); double b_gs = best_k * 10.0; const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0; const double tolerance = 1e-10; double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; while (std::abs(b_gs - a_gs) > tolerance) { if (f(c_gs) > f(d_gs)) { b_gs = d_gs; d_gs = c_gs; c_gs = b_gs - (b_gs - a_gs) / golden_ratio; } else { a_gs = c_gs; c_gs = d_gs; d_gs = a_gs + (b_gs - a_gs) / golden_ratio; } } // Multiply the result by y before returning return f((a_gs + b_gs) / 2.0) *y ; } // Function to compute the theoretical min value double compute_theoretical_min(double a, double y, double beta) { auto f = [a, y, beta](double t) -> double { return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) / ((a * t + 1) * (t * t + t) * y); // Divide by y here }; // Use numerical optimization to find the minimum // Grid search followed by golden section search double best_t = -0.5 / a; // Midpoint of (-1/a, 0) double best_val = f(best_t); // Initial grid search over the range (-1/a, 0) const int num_grid_points = 200; for (int i = 1; i < num_grid_points; ++i) { // From slightly above -1/a to slightly below 0 double t = -0.999/a + 0.998/a * i / (num_grid_points - 1); if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0) double val = f(t); if (val < best_val) { best_val = val; best_t = t; } } // Refine with golden section search double a_gs = -0.999/a; // Slightly above -1/a double b_gs = -0.001/a; // Slightly below 0 const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0; const double tolerance = 1e-10; double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; while (std::abs(b_gs - a_gs) > tolerance) { if (f(c_gs) < f(d_gs)) { b_gs = d_gs; d_gs = c_gs; c_gs = b_gs - (b_gs - a_gs) / golden_ratio; } else { a_gs = c_gs; c_gs = d_gs; d_gs = a_gs + (b_gs - a_gs) / golden_ratio; } } // Multiply the result by y before returning return f((a_gs + b_gs) / 2.0) *y ; } int main(int argc, char* argv[]) { // ─── Inputs from command line ─────────────────────────────────────────── if (argc != 5) { std::cerr << "Usage: " << argv[0] << "

" << std::endl; return 1; } int n = std::stoi(argv[1]); int p = std::stoi(argv[2]); double a = std::stod(argv[3]); double y = std::stod(argv[4]); const double b = 1.0; std::cout << "Running with parameters: n = " << n << ", p = " << p << ", a = " << a << ", y = " << y << std::endl; // ─── Beta range parameters ──────────────────────────────────────── const int num_beta_points = 100; // More points for smoother curves std::vector beta_values(num_beta_points); for (int i = 0; i < num_beta_points; ++i) { beta_values[i] = static_cast(i) / (num_beta_points - 1); } // ─── Storage for results ──────────────────────────────────────── std::vector max_eigenvalues(num_beta_points); std::vector min_eigenvalues(num_beta_points); std::vector theoretical_max_values(num_beta_points); std::vector theoretical_min_values(num_beta_points); // ─── Random‐Gaussian X and S_n ──────────────────────────────── std::mt19937_64 rng{std::random_device{}()}; std::normal_distribution norm(0.0, 1.0); cv::Mat X(p, n, CV_64F); for(int i = 0; i < p; ++i) for(int j = 0; j < n; ++j) X.at(i,j) = norm(rng); // ─── Process each beta value ───────────────────────────────── for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) { double beta = beta_values[beta_idx]; // Compute theoretical values theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta); theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta); // ─── Build T_n matrix ────────────────────────────────── int k = static_cast(std::floor(beta * p)); std::vector diags(p); std::fill_n(diags.begin(), k, a); std::fill_n(diags.begin()+k, p-k, b); std::shuffle(diags.begin(), diags.end(), rng); cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F); for(int i = 0; i < p; ++i){ T_n.at(i,i) = diags[i]; } // ─── Form B_n = (1/n) * X * T_n * X^T ──────────── cv::Mat B = (X.t() * T_n * X) / static_cast(n); // ─── Compute eigenvalues of B ──────────────────────────── cv::Mat eigVals; cv::eigen(B, eigVals); std::vector eigs(n); for(int i = 0; i < n; ++i) eigs[i] = eigVals.at(i, 0); max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end()); min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end()); // Progress indicator - modified to be less verbose for Streamlit if (beta_idx % 20 == 0) { std::cout << "Processing beta = " << beta << " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl; } } // ─── Prepare canvas for plotting ──────────────────────────────── const int H = 950, W = 1200; // Taller canvas to accommodate legend below cv::Mat canvas(H, W, CV_8UC3, cv::Scalar(250, 250, 250)); // Slightly off-white background // ─── Find min/max for scaling ─────────────────────────────────── double min_y = std::numeric_limits::max(); double max_y = std::numeric_limits::lowest(); for (double v : max_eigenvalues) max_y = std::max(max_y, v); for (double v : min_eigenvalues) min_y = std::min(min_y, v); for (double v : theoretical_max_values) max_y = std::max(max_y, v); for (double v : theoretical_min_values) min_y = std::min(min_y, v); // Add some padding double y_padding = (max_y - min_y) * 0.15; // More padding for better spacing min_y -= y_padding; max_y += y_padding; // ─── Draw coordinate axes ─────────────────────────────────────── const int margin = 100; // Larger margin for better spacing const int plot_width = W - 2 * margin; const int plot_height = H - 2 * margin - 150; // Reduced height to make room for legend below // Plot area background (light gray) cv::rectangle(canvas, cv::Point(margin, margin), cv::Point(W - margin, margin + plot_height), cv::Scalar(245, 245, 245), cv::FILLED); // X-axis (beta) cv::line(canvas, cv::Point(margin, margin + plot_height), cv::Point(W - margin, margin + plot_height), cv::Scalar(40, 40, 40), 2); // Y-axis (eigenvalues) cv::line(canvas, cv::Point(margin, margin + plot_height), cv::Point(margin, margin), cv::Scalar(40, 40, 40), 2); // ─── Draw axes labels ──────────────────────────────────────────── cv::putText(canvas, "β", cv::Point(W - margin/2, margin + plot_height + 30), cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 0), 2); // Y-axis label (fixed - no rotation) cv::putText(canvas, "Eigenvalues", cv::Point(margin/4, margin/2 - 10), cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 0), 2); // ─── Draw title ─────────────────────────────────────────────────── std::stringstream title_ss; title_ss << std::fixed << std::setprecision(2); title_ss << "Eigenvalue Analysis: a = " << a << ", y = " << y; cv::putText(canvas, title_ss.str(), cv::Point(W/2 - 200, 45), cv::FONT_HERSHEY_COMPLEX, 1.2, cv::Scalar(0, 0, 0), 2); // ─── Draw grid lines ──────────────────────────────────────────────── const int num_grid_lines = 11; // 0.0, 0.1, 0.2, ..., 1.0 for beta for (int i = 0; i < num_grid_lines; ++i) { // Horizontal grid lines int y_pos = margin + i * (plot_height / (num_grid_lines - 1)); cv::line(canvas, cv::Point(margin, y_pos), cv::Point(W - margin, y_pos), cv::Scalar(220, 220, 220), 1); // Vertical grid lines int x_pos = margin + i * (plot_width / (num_grid_lines - 1)); cv::line(canvas, cv::Point(x_pos, margin), cv::Point(x_pos, margin + plot_height), cv::Scalar(220, 220, 220), 1); // X-axis labels (beta values) double beta_val = static_cast(i) / (num_grid_lines - 1); std::stringstream ss; ss << std::fixed << std::setprecision(1) << beta_val; cv::putText(canvas, ss.str(), cv::Point(x_pos - 10, margin + plot_height + 30), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1); // Y-axis labels (eigenvalue values) double eig_val = min_y + (max_y - min_y) * i / (num_grid_lines - 1); std::stringstream ss2; ss2 << std::fixed << std::setprecision(2) << eig_val; cv::putText(canvas, ss2.str(), cv::Point(margin/2 - 40, margin + plot_height - i * (plot_height / (num_grid_lines - 1)) + 5), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1); } // ─── Draw the four curves ─────────────────────────────────────────── // Convert data points to pixel coordinates auto to_point = [&](double beta, double val) -> cv::Point { int x = margin + static_cast(beta * plot_width); int y = margin + plot_height - static_cast((val - min_y) / (max_y - min_y) * plot_height); return cv::Point(x, y); }; // Better colors for visibility cv::Scalar emp_max_color(60, 60, 220); // Dark red cv::Scalar emp_min_color(220, 60, 60); // Dark blue cv::Scalar theo_max_color(30, 180, 30); // Dark green cv::Scalar theo_min_color(180, 30, 180); // Dark purple // Empirical max eigenvalues (red) std::vector max_eig_points; for (int i = 0; i < num_beta_points; ++i) { max_eig_points.push_back(to_point(beta_values[i], max_eigenvalues[i])); } cv::polylines(canvas, max_eig_points, false, emp_max_color, 3); // Empirical min eigenvalues (blue) std::vector min_eig_points; for (int i = 0; i < num_beta_points; ++i) { min_eig_points.push_back(to_point(beta_values[i], min_eigenvalues[i])); } cv::polylines(canvas, min_eig_points, false, emp_min_color, 3); // Theoretical max values (green) std::vector theo_max_points; for (int i = 0; i < num_beta_points; ++i) { theo_max_points.push_back(to_point(beta_values[i], theoretical_max_values[i])); } cv::polylines(canvas, theo_max_points, false, theo_max_color, 3); // Theoretical min values (purple) std::vector theo_min_points; for (int i = 0; i < num_beta_points; ++i) { theo_min_points.push_back(to_point(beta_values[i], theoretical_min_values[i])); } cv::polylines(canvas, theo_min_points, false, theo_min_color, 3); // ─── Draw markers on the curves for better visibility ────────────── const int marker_interval = 10; // Show markers every 10 points for (int i = 0; i < num_beta_points; i += marker_interval) { // Max empirical eigenvalue markers cv::circle(canvas, max_eig_points[i], 5, emp_max_color, cv::FILLED); cv::circle(canvas, max_eig_points[i], 5, cv::Scalar(255, 255, 255), 1); // Min empirical eigenvalue markers cv::circle(canvas, min_eig_points[i], 5, emp_min_color, cv::FILLED); cv::circle(canvas, min_eig_points[i], 5, cv::Scalar(255, 255, 255), 1); // Theoretical max markers cv::drawMarker(canvas, theo_max_points[i], theo_max_color, cv::MARKER_DIAMOND, 10, 2); // Theoretical min markers cv::drawMarker(canvas, theo_min_points[i], theo_min_color, cv::MARKER_DIAMOND, 10, 2); } // ─── Draw legend BELOW the graph ──────────────────────────────────── // Set up dimensions for the legend const int legend_width = 600; const int legend_height = 100; // Center the legend horizontally const int legend_x = W/2 - legend_width/2; // Position legend below the graph const int legend_y = margin + plot_height + 70; const int line_length = 40; const int line_spacing = 35; // Box around legend with shadow effect cv::rectangle(canvas, cv::Point(legend_x + 3, legend_y + 3), cv::Point(legend_x + legend_width + 3, legend_y + legend_height + 3), cv::Scalar(180, 180, 180), cv::FILLED); // Shadow cv::rectangle(canvas, cv::Point(legend_x, legend_y), cv::Point(legend_x + legend_width, legend_y + legend_height), cv::Scalar(240, 240, 240), cv::FILLED); // Main box cv::rectangle(canvas, cv::Point(legend_x, legend_y), cv::Point(legend_x + legend_width, legend_y + legend_height), cv::Scalar(0, 0, 0), 1); // Border // Legend title cv::putText(canvas, "Legend", cv::Point(legend_x + legend_width/2 - 30, legend_y + 20), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(0, 0, 0), 1); cv::line(canvas, cv::Point(legend_x + 5, legend_y + 30), cv::Point(legend_x + legend_width - 5, legend_y + 30), cv::Scalar(150, 150, 150), 1); // Two legend entries per row, in two columns // First row // Empirical max (red) cv::line(canvas, cv::Point(legend_x + 20, legend_y + 50), cv::Point(legend_x + 20 + line_length, legend_y + 50), emp_max_color, 3); cv::circle(canvas, cv::Point(legend_x + 20 + line_length/2, legend_y + 50), 5, emp_max_color, cv::FILLED); cv::putText(canvas, "Empirical Max Eigenvalue", cv::Point(legend_x + 20 + line_length + 10, legend_y + 50 + 5), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1); // Empirical min (blue) cv::line(canvas, cv::Point(legend_x + 20 + legend_width/2, legend_y + 50), cv::Point(legend_x + 20 + line_length + legend_width/2, legend_y + 50), emp_min_color, 3); cv::circle(canvas, cv::Point(legend_x + 20 + line_length/2 + legend_width/2, legend_y + 50), 5, emp_min_color, cv::FILLED); cv::putText(canvas, "Empirical Min Eigenvalue", cv::Point(legend_x + 20 + line_length + 10 + legend_width/2, legend_y + 50 + 5), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1); // Second row // Theoretical max (green) cv::line(canvas, cv::Point(legend_x + 20, legend_y + 80), cv::Point(legend_x + 20 + line_length, legend_y + 80), theo_max_color, 3); cv::drawMarker(canvas, cv::Point(legend_x + 20 + line_length/2, legend_y + 80), theo_max_color, cv::MARKER_DIAMOND, 10, 2); cv::putText(canvas, "Theoretical Max Function", cv::Point(legend_x + 20 + line_length + 10, legend_y + 80 + 5), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1); // Theoretical min (purple) cv::line(canvas, cv::Point(legend_x + 20 + legend_width/2, legend_y + 80), cv::Point(legend_x + 20 + line_length + legend_width/2, legend_y + 80), theo_min_color, 3); cv::drawMarker(canvas, cv::Point(legend_x + 20 + line_length/2 + legend_width/2, legend_y + 80), theo_min_color, cv::MARKER_DIAMOND, 10, 2); cv::putText(canvas, "Theoretical Min Function", cv::Point(legend_x + 20 + line_length + 10 + legend_width/2, legend_y + 80 + 5), cv::FONT_HERSHEY_SIMPLEX, 0.7, cv::Scalar(0, 0, 0), 1); // ─── Draw mathematical formulas in a box ────────────────────────────── cv::rectangle(canvas, cv::Point(margin + 3, H - 80 + 3), cv::Point(W - margin + 3, H - 20 + 3), cv::Scalar(180, 180, 180), cv::FILLED); // Shadow cv::rectangle(canvas, cv::Point(margin, H - 80), cv::Point(W - margin, H - 20), cv::Scalar(240, 240, 240), cv::FILLED); // Main box cv::rectangle(canvas, cv::Point(margin, H - 80), cv::Point(W - margin, H - 20), cv::Scalar(0, 0, 0), 1); // Border std::string formula_text1 = "Max Function: max{k ∈ (0,∞)} [yβ(a-1)k + (ak+1)((y-1)k-1)]/[(ak+1)(k²+k)y]"; std::string formula_text2 = "Min Function: min{t ∈ (-1/a,0)} [yβ(a-1)t + (at+1)((y-1)t-1)]/[(at+1)(t²+t)y]"; cv::putText(canvas, formula_text1, cv::Point(margin + 20, H - 55), cv::FONT_HERSHEY_SIMPLEX, 0.6, theo_max_color, 2); cv::putText(canvas, formula_text2, cv::Point(W/2 + 20, H - 55), cv::FONT_HERSHEY_SIMPLEX, 0.6, theo_min_color, 2); // ─── Draw parameter info ──────────────────────────────────────────── std::stringstream params_ss; params_ss << std::fixed << std::setprecision(2); params_ss << "Parameters: n = " << n << ", p = " << p << ", a = " << a << ", y = " << y; cv::putText(canvas, params_ss.str(), cv::Point(margin, 80), cv::FONT_HERSHEY_COMPLEX, 0.8, cv::Scalar(0, 0, 0), 1); // ─── Save the image to the output directory ─────────────────────────── std::string output_path = "/app/output/eigenvalue_analysis.png"; cv::imwrite(output_path, canvas); std::cout << "Plot saved as " << output_path << std::endl; return 0; }