import streamlit as st import sympy as sp import numpy as np import plotly.graph_objects as go from scipy.optimize import fsolve from scipy.stats import gaussian_kde import os import tempfile import subprocess import sys import importlib.util import time from datetime import timedelta # Configure Streamlit for Hugging Face Spaces st.set_page_config( page_title="Cubic Root Analysis (C++ Accelerated)", layout="wide", initial_sidebar_state="collapsed" ) # Create a class for advanced progress tracking class AdvancedProgressBar: def __init__(self, total_steps, description="Processing", auto_refresh=True): self.total_steps = total_steps self.current_step = 0 self.start_time = time.time() self.description = description self.auto_refresh = auto_refresh # Create UI elements self.status_container = st.empty() self.progress_bar = st.progress(0) self.metrics_cols = st.columns(4) self.step_metric = self.metrics_cols[0].empty() self.percent_metric = self.metrics_cols[1].empty() self.elapsed_metric = self.metrics_cols[2].empty() self.eta_metric = self.metrics_cols[3].empty() # Initialize with starting values self.update_status(f"Starting {self.description}...") self.update(0) def update(self, step=None, description=None): if step is not None: self.current_step = step else: self.current_step += 1 if description: self.description = description # Calculate progress percentage progress = min(self.current_step / self.total_steps, 1.0) # Update progress bar self.progress_bar.progress(progress) # Update metrics elapsed = time.time() - self.start_time elapsed_str = str(timedelta(seconds=int(elapsed))) if progress > 0: eta = elapsed * (1 - progress) / progress eta_str = str(timedelta(seconds=int(eta))) else: eta_str = "Calculating..." step_text = f"{self.current_step}/{self.total_steps}" percent_text = f"{progress*100:.1f}%" self.step_metric.metric("Steps", step_text) self.percent_metric.metric("Progress", percent_text) self.elapsed_metric.metric("Elapsed", elapsed_str) self.eta_metric.metric("ETA", eta_str) # Update status text self.update_status(f"{self.description} - Step {self.current_step} of {self.total_steps}") def update_status(self, text): self.status_container.text(text) def complete(self, success=True): if success: self.progress_bar.progress(1.0) self.update_status(f"✅ {self.description} completed successfully!") else: self.update_status(f"❌ {self.description} failed or was interrupted.") elapsed = time.time() - self.start_time elapsed_str = str(timedelta(seconds=int(elapsed))) self.elapsed_metric.metric("Total Time", elapsed_str) self.eta_metric.metric("ETA", "Completed") # Add small delay to show completion time.sleep(0.5) def clear(self): self.status_container.empty() self.progress_bar.empty() self.step_metric.empty() self.percent_metric.empty() self.elapsed_metric.empty() self.eta_metric.empty() # Initialize sympy precision settings for higher accuracy # With these lines: import mpmath mpmath.mp.dps = 50 # Set decimal precision to 50 digits # Check if C++ module is already compiled, otherwise compile it cpp_compiled = False def compile_cpp_module(): progress = AdvancedProgressBar(5, "Compiling C++ module") # Define C++ code as a string cpp_code = """ #include #include #include #include #include #include #include #include #include #include #include namespace py = pybind11; using namespace Eigen; // Fast discriminant computation function double compute_discriminant_fast(double z, double beta, double z_a, double y) { double a = z * z_a; double b = z * z_a + z + z_a - z_a*y; double c = z + z_a + 1 - y*(beta*z_a + 1 - beta); double d = 1.0; // Standard formula for cubic discriminant return 18*a*b*c*d - 27*a*a*d*d + b*b*c*c - 2*b*b*b*d - 9*a*c*c*c; } // Batch computation of discriminant for array of z values py::array_t discriminant_array(double beta, double z_a, double y, py::array_t z_values) { auto z_buf = z_values.request(); auto result = py::array_t(z_buf.size); auto result_buf = result.request(); double* z_ptr = static_cast(z_buf.ptr); double* result_ptr = static_cast(result_buf.ptr); #pragma omp parallel for for (size_t i = 0; i < z_buf.size; i++) { result_ptr[i] = compute_discriminant_fast(z_ptr[i], beta, z_a, y); } return result; } // Find zeros of discriminant function std::tuple, py::array_t, py::array_t> find_discriminant_zeros(double z_a, double y, double z_min, double z_max, int beta_steps, int z_steps) { // Create beta grid auto betas = py::array_t(beta_steps); auto betas_buf = betas.request(); double* betas_ptr = static_cast(betas_buf.ptr); for (int i = 0; i < beta_steps; i++) { betas_ptr[i] = static_cast(i) / (beta_steps - 1); } // Arrays for results auto z_mins = py::array_t(beta_steps); auto z_maxs = py::array_t(beta_steps); auto z_mins_buf = z_mins.request(); auto z_maxs_buf = z_maxs.request(); double* z_mins_ptr = static_cast(z_mins_buf.ptr); double* z_maxs_ptr = static_cast(z_maxs_buf.ptr); // Apply condition for y double y_effective = y > 1.0 ? y : 1.0/y; // Create z grid std::vector z_grid(z_steps); for (int i = 0; i < z_steps; i++) { z_grid[i] = z_min + (z_max - z_min) * static_cast(i) / (z_steps - 1); } // For each beta value, find min and max z where discriminant is zero #pragma omp parallel for for (int b_idx = 0; b_idx < beta_steps; b_idx++) { double beta = betas_ptr[b_idx]; std::vector roots_found; // Calculate discriminant for all z values std::vector disc_vals(z_steps); for (int i = 0; i < z_steps; i++) { disc_vals[i] = compute_discriminant_fast(z_grid[i], beta, z_a, y_effective); } // Find sign changes (zeros of discriminant) for (int i = 0; i < z_steps - 1; i++) { double f1 = disc_vals[i]; double f2 = disc_vals[i+1]; if (std::isnan(f1) || std::isnan(f2)) { continue; } if (f1 == 0.0) { roots_found.push_back(z_grid[i]); } else if (f2 == 0.0) { roots_found.push_back(z_grid[i+1]); } else if (f1 * f2 < 0) { // Binary search for more accurate root double zl = z_grid[i], zr = z_grid[i+1]; for (int j = 0; j < 50; j++) { double mid = 0.5 * (zl + zr); double fm = compute_discriminant_fast(mid, beta, z_a, y_effective); if (fm == 0) { zl = zr = mid; break; } if ((fm > 0 && f1 > 0) || (fm < 0 && f1 < 0)) { zl = mid; f1 = fm; } else { zr = mid; f2 = fm; } } roots_found.push_back(0.5 * (zl + zr)); } } // Store min and max roots if any found if (roots_found.empty()) { z_mins_ptr[b_idx] = std::numeric_limits::quiet_NaN(); z_maxs_ptr[b_idx] = std::numeric_limits::quiet_NaN(); } else { double min_root = *std::min_element(roots_found.begin(), roots_found.end()); double max_root = *std::max_element(roots_found.begin(), roots_found.end()); z_mins_ptr[b_idx] = min_root; z_maxs_ptr[b_idx] = max_root; } } return std::make_tuple(betas, z_mins, z_maxs); } // Compute eigenvalue support boundaries std::tuple, py::array_t> compute_eigenvalue_boundaries(double z_a, double y, py::array_t beta_values, int n_samples, int seeds) { auto beta_buf = beta_values.request(); int beta_steps = beta_buf.size; // Results arrays auto min_eigenvalues = py::array_t(beta_steps); auto max_eigenvalues = py::array_t(beta_steps); auto min_buf = min_eigenvalues.request(); auto max_buf = max_eigenvalues.request(); double* min_ptr = static_cast(min_buf.ptr); double* max_ptr = static_cast(max_buf.ptr); double* beta_ptr = static_cast(beta_buf.ptr); // Apply condition for y double y_effective = y > 1.0 ? y : 1.0/y; // Compute eigenvalues for each beta value #pragma omp parallel for for (int i = 0; i < beta_steps; i++) { double beta = beta_ptr[i]; std::vector min_vals; std::vector max_vals; // Run multiple trials with different seeds for (int seed = 0; seed < seeds; seed++) { // Set random seed std::mt19937 gen(seed * 100 + i); std::normal_distribution normal_dist(0.0, 1.0); // Compute dimension p based on aspect ratio y int p = static_cast(y_effective * n_samples); // Constructing T_n (Population / Shape Matrix) int k = static_cast(std::floor(beta * p)); // Create diagonal entries std::vector diag_entries(p); std::fill_n(diag_entries.begin(), k, z_a); std::fill_n(diag_entries.begin() + k, p - k, 1.0); // Shuffle the diagonal entries std::shuffle(diag_entries.begin(), diag_entries.end(), gen); // Create T_n matrix MatrixXd T_n = MatrixXd::Zero(p, p); for (int j = 0; j < p; j++) { T_n(j, j) = diag_entries[j]; } // Generate random data matrix X with standard normal entries MatrixXd X(p, n_samples); for (int r = 0; r < p; r++) { for (int c = 0; c < n_samples; c++) { X(r, c) = normal_dist(gen); } } // Compute sample covariance matrix S_n = (1/n) * XX^T MatrixXd S_n = (1.0 / n_samples) * (X * X.transpose()); // Compute B_n = S_n T_n MatrixXd B_n = S_n * T_n; // Compute eigenvalues SelfAdjointEigenSolver solver(B_n); VectorXd eigenvalues = solver.eigenvalues(); // Store min and max eigenvalues min_vals.push_back(eigenvalues.minCoeff()); max_vals.push_back(eigenvalues.maxCoeff()); } // Compute averages double min_avg = 0.0, max_avg = 0.0; for (double val : min_vals) min_avg += val; for (double val : max_vals) max_avg += val; min_ptr[i] = min_avg / seeds; max_ptr[i] = max_avg / seeds; } return std::make_tuple(min_eigenvalues, max_eigenvalues); } // Compute cubic roots using fast C++ implementation py::array_t> compute_cubic_roots_cpp(double z, double beta, double z_a, double y) { // Apply the condition for y double y_effective = y > 1.0 ? y : 1.0/y; // Coefficients in the form as³ + bs² + cs + d = 0 double a = z * z_a; double b = z * z_a + z + z_a - z_a*y_effective; double c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta); double d = 1.0; // Handle special cases if (std::abs(a) < 1e-10) { // Create result array auto result = py::array_t>(3); auto buf = result.request(); std::complex* ptr = static_cast*>(buf.ptr); if (std::abs(b) < 1e-10) { // Linear case ptr[0] = std::complex(-d/c, 0.0); ptr[1] = std::complex(0.0, 0.0); ptr[2] = std::complex(0.0, 0.0); } else { // Quadratic case double discriminant = c*c - 4*b*d; if (discriminant >= 0) { double sqrt_disc = std::sqrt(discriminant); ptr[0] = std::complex((-c + sqrt_disc) / (2*b), 0.0); ptr[1] = std::complex((-c - sqrt_disc) / (2*b), 0.0); } else { double sqrt_disc = std::sqrt(-discriminant); ptr[0] = std::complex(-c/(2*b), sqrt_disc/(2*b)); ptr[1] = std::complex(-c/(2*b), -sqrt_disc/(2*b)); } ptr[2] = std::complex(0.0, 0.0); } return result; } // For better numerical stability, normalize the equation: x³ + px² + qx + r = 0 double p = b / a; double q = c / a; double r = d / a; // Depressed cubic: t³ + pt + q = 0 where x = t - p/3 double p_prime = q - p*p/3.0; double q_prime = r - p*q/3.0 + 2.0*p*p*p/27.0; // Compute discriminant double discriminant = 4.0*p_prime*p_prime*p_prime/27.0 + q_prime*q_prime; // Create result array auto result = py::array_t>(3); auto buf = result.request(); std::complex* ptr = static_cast*>(buf.ptr); // Calculate roots based on discriminant if (std::abs(discriminant) < 1e-10) { // Discriminant ≈ 0 if (std::abs(q_prime) < 1e-10) { // Triple root ptr[0] = ptr[1] = ptr[2] = std::complex(-p/3.0, 0.0); } else { // One simple, one double root double u = std::cbrt(-q_prime/2.0); ptr[0] = std::complex(2*u - p/3.0, 0.0); ptr[1] = ptr[2] = std::complex(-u - p/3.0, 0.0); } } else if (discriminant > 0) { // One real, two complex conjugate roots double sqrt_disc = std::sqrt(discriminant); std::complex u = std::pow(std::complex(-q_prime/2.0 + sqrt_disc/2.0, 0.0), 1.0/3.0); std::complex v = std::pow(std::complex(-q_prime/2.0 - sqrt_disc/2.0, 0.0), 1.0/3.0); ptr[0] = std::complex(std::real(u + v) - p/3.0, 0.0); std::complex omega(-0.5, 0.866025403784439); // -1/2 + i*√3/2 std::complex omega2(-0.5, -0.866025403784439); // -1/2 - i*√3/2 ptr[1] = omega * u + omega2 * v - std::complex(p/3.0, 0.0); ptr[2] = omega2 * u + omega * v - std::complex(p/3.0, 0.0); } else { // Three distinct real roots double sqrt_disc = std::sqrt(-discriminant); double theta = std::atan2(sqrt_disc, -2.0*q_prime); double r_prime = std::pow(q_prime*q_prime + discriminant/4.0, 1.0/6.0); ptr[0] = std::complex(2.0*r_prime*std::cos(theta/3.0) - p/3.0, 0.0); ptr[1] = std::complex(2.0*r_prime*std::cos((theta + 2.0*M_PI)/3.0) - p/3.0, 0.0); ptr[2] = std::complex(2.0*r_prime*std::cos((theta + 4.0*M_PI)/3.0) - p/3.0, 0.0); } return result; } // Compute high y curve py::array_t compute_high_y_curve(py::array_t betas, double z_a, double y) { auto beta_buf = betas.request(); auto result = py::array_t(beta_buf.size); auto result_buf = result.request(); double* beta_ptr = static_cast(beta_buf.ptr); double* result_ptr = static_cast(result_buf.ptr); // Apply the condition for y double y_effective = y > 1.0 ? y : 1.0/y; double a = z_a; double denominator = 1.0 - 2.0*a; #pragma omp parallel for for (size_t i = 0; i < beta_buf.size; i++) { if (std::abs(denominator) < 1e-10) { result_ptr[i] = std::numeric_limits::quiet_NaN(); continue; } double beta = beta_ptr[i]; double numerator = -4.0*a*(a-1.0)*y_effective*beta - 2.0*a*y_effective - 2.0*a*(2.0*a-1.0); result_ptr[i] = numerator/denominator; } return result; } // Compute alternate low expression py::array_t compute_alternate_low_expr(py::array_t betas, double z_a, double y) { auto beta_buf = betas.request(); auto result = py::array_t(beta_buf.size); auto result_buf = result.request(); double* beta_ptr = static_cast(beta_buf.ptr); double* result_ptr = static_cast(result_buf.ptr); // Apply the condition for y double y_effective = y > 1.0 ? y : 1.0/y; #pragma omp parallel for for (size_t i = 0; i < beta_buf.size; i++) { double beta = beta_ptr[i]; result_ptr[i] = (z_a * y_effective * beta * (z_a - 1.0) - 2.0*z_a*(1.0 - y_effective) - 2.0*z_a*z_a) / (2.0 + 2.0*z_a); } return result; } // Compute max k expression py::array_t compute_max_k_expression(py::array_t betas, double z_a, double y, int k_samples=1000) { auto beta_buf = betas.request(); auto result = py::array_t(beta_buf.size); auto result_buf = result.request(); double* beta_ptr = static_cast(beta_buf.ptr); double* result_ptr = static_cast(result_buf.ptr); // Apply the condition for y double y_effective = y > 1.0 ? y : 1.0/y; double a = z_a; // Sample k values on a logarithmic scale std::vector k_values(k_samples); for (int j = 0; j < k_samples; j++) { k_values[j] = std::pow(10.0, -3.0 + 6.0 * static_cast(j) / (k_samples - 1)); } #pragma omp parallel for for (size_t i = 0; i < beta_buf.size; i++) { double beta = beta_ptr[i]; std::vector values(k_samples); // Compute expression value for each k for (int j = 0; j < k_samples; j++) { double k = k_values[j]; double numerator = y_effective*beta*(a-1.0)*k + (a*k+1.0)*((y_effective-1.0)*k-1.0); double denominator = (a*k+1.0)*(k*k+k); if (std::abs(denominator) < 1e-10) { values[j] = std::numeric_limits::quiet_NaN(); } else { values[j] = numerator/denominator; } } // Find maximum value (excluding NaNs) double max_val = -std::numeric_limits::infinity(); bool has_valid = false; for (double val : values) { if (!std::isnan(val)) { max_val = std::max(max_val, val); has_valid = true; } } result_ptr[i] = has_valid ? max_val : std::numeric_limits::quiet_NaN(); } return result; } // Compute min t expression py::array_t compute_min_t_expression(py::array_t betas, double z_a, double y, int t_samples=1000) { auto beta_buf = betas.request(); auto result = py::array_t(beta_buf.size); auto result_buf = result.request(); double* beta_ptr = static_cast(beta_buf.ptr); double* result_ptr = static_cast(result_buf.ptr); // Apply the condition for y double y_effective = y > 1.0 ? y : 1.0/y; double a = z_a; if (a <= 0) { for (size_t i = 0; i < beta_buf.size; i++) { result_ptr[i] = std::numeric_limits::quiet_NaN(); } return result; } double lower_bound = -1.0/a + 1e-10; // Avoid division by zero #pragma omp parallel for for (size_t i = 0; i < beta_buf.size; i++) { double beta = beta_ptr[i]; // Sample t values std::vector t_values(t_samples); for (int j = 0; j < t_samples; j++) { t_values[j] = lower_bound + (-1e-10 - lower_bound) * static_cast(j) / (t_samples - 1); } std::vector values(t_samples); // Compute expression value for each t for (int j = 0; j < t_samples; j++) { double t = t_values[j]; double numerator = y_effective*beta*(a-1.0)*t + (a*t+1.0)*((y_effective-1.0)*t-1.0); double denominator = (a*t+1.0)*(t*t+t); if (std::abs(denominator) < 1e-10) { values[j] = std::numeric_limits::quiet_NaN(); } else { values[j] = numerator/denominator; } } // Find minimum value (excluding NaNs) double min_val = std::numeric_limits::infinity(); bool has_valid = false; for (double val : values) { if (!std::isnan(val)) { min_val = std::min(min_val, val); has_valid = true; } } result_ptr[i] = has_valid ? min_val : std::numeric_limits::quiet_NaN(); } return result; } // Generate eigenvalue distribution std::tuple, py::array_t> generate_eigenvalue_distribution_cpp(double beta, double y, double z_a, int n, int seed) { // Apply the condition for y double y_effective = y > 1.0 ? y : 1.0/y; // Set random seed std::mt19937 gen(seed); std::normal_distribution normal_dist(0.0, 1.0); // Compute dimension p based on aspect ratio y int p = static_cast(y_effective * n); // Constructing T_n (Population / Shape Matrix) int k = static_cast(std::floor(beta * p)); // Create diagonal entries std::vector diag_entries(p); std::fill_n(diag_entries.begin(), k, z_a); std::fill_n(diag_entries.begin() + k, p - k, 1.0); // Shuffle the diagonal entries std::shuffle(diag_entries.begin(), diag_entries.end(), gen); // Create T_n matrix MatrixXd T_n = MatrixXd::Zero(p, p); for (int i = 0; i < p; i++) { T_n(i, i) = diag_entries[i]; } // Generate random data matrix X with standard normal entries MatrixXd X(p, n); for (int r = 0; r < p; r++) { for (int c = 0; c < n; c++) { X(r, c) = normal_dist(gen); } } // Compute sample covariance matrix S_n = (1/n) * XX^T MatrixXd S_n = (1.0 / n) * (X * X.transpose()); // Compute B_n = S_n T_n MatrixXd B_n = S_n * T_n; // Compute eigenvalues SelfAdjointEigenSolver solver(B_n); VectorXd eigenvalues = solver.eigenvalues(); // Return eigenvalues as numpy array auto result = py::array_t(p); auto result_buf = result.request(); double* result_ptr = static_cast(result_buf.ptr); for (int i = 0; i < p; i++) { result_ptr[i] = eigenvalues(i); } // Create x grid for KDE estimation (done in Python) auto x_grid = py::array_t(500); auto x_grid_buf = x_grid.request(); double* x_grid_ptr = static_cast(x_grid_buf.ptr); double min_eig = eigenvalues.minCoeff(); double max_eig = eigenvalues.maxCoeff(); for (int i = 0; i < 500; i++) { x_grid_ptr[i] = min_eig + (max_eig - min_eig) * static_cast(i) / 499.0; } return std::make_tuple(result, x_grid); } // Generate phase diagram py::array_t generate_phase_diagram_cpp( double z_a, double y, double beta_min, double beta_max, double z_min, double z_max, int beta_steps, int z_steps) { // Apply the condition for y double y_effective = y > 1.0 ? y : 1.0/y; // Create result array auto result = py::array_t({z_steps, beta_steps}); auto result_buf = result.request(); int* result_ptr = static_cast(result_buf.ptr); // Create beta and z grids std::vector beta_values(beta_steps); std::vector z_values(z_steps); for (int i = 0; i < beta_steps; i++) { beta_values[i] = beta_min + (beta_max - beta_min) * static_cast(i) / (beta_steps - 1); } for (int i = 0; i < z_steps; i++) { z_values[i] = z_min + (z_max - z_min) * static_cast(i) / (z_steps - 1); } // Analyze roots for each (z, beta) point #pragma omp parallel for collapse(2) for (int i = 0; i < z_steps; i++) { for (int j = 0; j < beta_steps; j++) { double z = z_values[i]; double beta = beta_values[j]; // Coefficients for cubic equation double a = z * z_a; double b = z * z_a + z + z_a - z_a*y_effective; double c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta); double d = 1.0; // Calculate discriminant double discriminant = 18*a*b*c*d - 27*a*a*d*d + b*b*c*c - 2*b*b*b*d - 9*a*c*c*c; // Set result based on sign of discriminant // 1 for all real roots (discriminant > 0), -1 for complex roots (discriminant < 0) result_ptr[i * beta_steps + j] = (discriminant > 0) ? 1 : -1; } } return result; } PYBIND11_MODULE(cubic_cpp, m) { m.doc() = "C++ accelerated cubic root analysis"; // Expose all the C++ functions to Python m.def("discriminant_array", &discriminant_array, "Compute cubic discriminant for array of z values"); m.def("find_discriminant_zeros", &find_discriminant_zeros, "Find zeros of the discriminant function"); m.def("compute_eigenvalue_boundaries", &compute_eigenvalue_boundaries, "Compute eigenvalue boundaries"); m.def("compute_cubic_roots_cpp", &compute_cubic_roots_cpp, "Compute cubic roots"); m.def("compute_high_y_curve", &compute_high_y_curve, "Compute high y curve"); m.def("compute_alternate_low_expr", &compute_alternate_low_expr, "Compute alternate low expression"); m.def("compute_max_k_expression", &compute_max_k_expression, "Compute max k expression"); m.def("compute_min_t_expression", &compute_min_t_expression, "Compute min t expression"); m.def("generate_eigenvalue_distribution_cpp", &generate_eigenvalue_distribution_cpp, "Generate eigenvalue distribution"); m.def("generate_phase_diagram_cpp", &generate_phase_diagram_cpp, "Generate phase diagram"); } """ progress.update(1, "Creating temporary directory for compilation") # Create a temporary directory to compile the C++ code with tempfile.TemporaryDirectory() as tmpdirname: # Write C++ code to file progress.update(2, "Writing C++ code to temporary file") with open(os.path.join(tmpdirname, "cubic_cpp.cpp"), "w") as f: f.write(cpp_code) # Write setup.py for compiling with pybind11 progress.update(3, "Creating setup.py file") setup_py = """ from setuptools import setup, Extension from pybind11.setup_helpers import Pybind11Extension, build_ext ext_modules = [ Pybind11Extension( "cubic_cpp", ["cubic_cpp.cpp"], include_dirs=["/usr/include/eigen3"], extra_compile_args=["-fopenmp", "-O3", "-march=native", "-ffast-math"], extra_link_args=["-fopenmp"], cxx_std=17, ), ] setup( name="cubic_cpp", ext_modules=ext_modules, cmdclass={"build_ext": build_ext}, ) """ with open(os.path.join(tmpdirname, "setup.py"), "w") as f: f.write(setup_py) # Compile the module progress.update(4, "Running compilation process") try: result = subprocess.run( [sys.executable, "setup.py", "build_ext", "--inplace"], cwd=tmpdirname, capture_output=True, text=True, check=True ) # Get the compiled module path module_path = None for file in os.listdir(tmpdirname): if file.startswith("cubic_cpp") and file.endswith(".so"): module_path = os.path.join(tmpdirname, file) break if not module_path: progress.complete(False) st.error("Failed to find compiled module.") st.code(result.stdout) st.code(result.stderr) return False # Import the module progress.update(5, "Importing compiled module") spec = importlib.util.spec_from_file_location("cubic_cpp", module_path) cubic_cpp = importlib.util.module_from_spec(spec) spec.loader.exec_module(cubic_cpp) # Make functions available globally globals()["discriminant_array"] = cubic_cpp.discriminant_array globals()["find_discriminant_zeros"] = cubic_cpp.find_discriminant_zeros globals()["compute_eigenvalue_boundaries"] = cubic_cpp.compute_eigenvalue_boundaries globals()["compute_cubic_roots_cpp"] = cubic_cpp.compute_cubic_roots_cpp globals()["compute_high_y_curve"] = cubic_cpp.compute_high_y_curve globals()["compute_alternate_low_expr"] = cubic_cpp.compute_alternate_low_expr globals()["compute_max_k_expression"] = cubic_cpp.compute_max_k_expression globals()["compute_min_t_expression"] = cubic_cpp.compute_min_t_expression globals()["generate_eigenvalue_distribution_cpp"] = cubic_cpp.generate_eigenvalue_distribution_cpp globals()["generate_phase_diagram_cpp"] = cubic_cpp.generate_phase_diagram_cpp progress.complete(True) return True except subprocess.CalledProcessError as e: progress.complete(False) st.error(f"Compilation failed: {e}") st.code(e.stdout) st.code(e.stderr) return False # Try to compile the C++ module cpp_compiled = compile_cpp_module() # Python fallback functions if C++ compilation failed def add_sqrt_support(expr_str): """Replace 'sqrt(' with 'sp.sqrt(' for sympy compatibility""" return expr_str.replace('sqrt(', 'sp.sqrt(') @st.cache_data def find_z_at_discriminant_zero(z_a, y, beta, z_min, z_max, steps): """ Scan z in [z_min, z_max] for sign changes in the discriminant, and return approximated roots (where the discriminant is zero). """ # Create progress bar progress = AdvancedProgressBar(steps, "Finding discriminant zeros") # Apply the condition for y y_effective = y if y > 1 else 1/y # Symbolic variables for the cubic discriminant with higher precision z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True, positive=True) # Define coefficients a, b, c, d in terms of z_sym, beta_sym, z_a_sym, y_sym a_sym = z_sym * z_a_sym b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym) d_sym = 1 # Symbolic expression for the cubic discriminant using standard form Delta_expr = 18*a_sym*b_sym*c_sym*d_sym - 27*a_sym**2*d_sym**2 + b_sym**2*c_sym**2 - 2*b_sym**3*d_sym - 9*a_sym*c_sym**3 # Fast numeric function for the discriminant discriminant_func = sp.lambdify((z_sym, beta_sym, z_a_sym, y_sym), Delta_expr, "mpmath") z_grid = np.linspace(z_min, z_max, steps) disc_vals = [] # Calculate discriminant values with progress tracking for i, z in enumerate(z_grid): progress.update(i+1, f"Computing discriminant at z = {z:.4f}") disc_vals.append(float(discriminant_func(z, beta, z_a, y_effective))) disc_vals = np.array(disc_vals) roots_found = [] # Find sign changes with high-precision refinement progress.update_status("Finding and refining discriminant zero locations") for i in range(len(z_grid) - 1): f1, f2 = disc_vals[i], disc_vals[i+1] if np.isnan(f1) or np.isnan(f2): continue if abs(f1) < 1e-12: roots_found.append(z_grid[i]) elif abs(f2) < 1e-12: roots_found.append(z_grid[i+1]) elif f1 * f2 < 0: # High-precision binary search for more accurate root zl, zr = z_grid[i], z_grid[i+1] f1 = discriminant_func(zl, beta, z_a, y_effective) f2 = discriminant_func(zr, beta, z_a, y_effective) for _ in range(50): mid = sp.Float(0.5) * (zl + zr) fm = discriminant_func(mid, beta, z_a, y_effective) if abs(fm) < 1e-15: zl = zr = mid break if fm * f1 > 0: zl, f1 = mid, fm else: zr, f2 = mid, fm # Convert back to float for NumPy compatibility roots_found.append(float(0.5 * (zl + zr))) progress.complete() return np.array(roots_found) @st.cache_data def sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps): """ Python fallback. For each beta in [0,1] (with beta_steps points), find the minimum and maximum z for which the discriminant is zero. Returns: betas, lower z*(β) values, and upper z*(β) values. """ if cpp_compiled: return find_discriminant_zeros(z_a, y, z_min, z_max, beta_steps, z_steps) # Create progress tracking progress = AdvancedProgressBar(beta_steps, "Computing discriminant zeros across β values") betas = np.linspace(0, 1, beta_steps) z_min_values = [] z_max_values = [] for i, b in enumerate(betas): progress.update(i+1, f"Processing β = {b:.4f}") roots = find_z_at_discriminant_zero(z_a, y, b, z_min, z_max, z_steps) if len(roots) == 0: z_min_values.append(np.nan) z_max_values.append(np.nan) else: z_min_values.append(np.min(roots)) z_max_values.append(np.max(roots)) progress.complete() return betas, np.array(z_min_values), np.array(z_max_values) @st.cache_data def compute_eigenvalue_support_boundaries(z_a, y, beta_values, n_samples=100, seeds=5): """ Python fallback. Compute the support boundaries of the eigenvalue distribution by directly finding the minimum and maximum eigenvalues of B_n = S_n T_n for different beta values. """ if cpp_compiled: return compute_eigenvalue_boundaries(z_a, y, beta_values, n_samples, seeds) # Create progress tracking progress = AdvancedProgressBar(len(beta_values), "Computing eigenvalue support boundaries") # Apply the condition for y y_effective = y if y > 1 else 1/y min_eigenvalues = np.zeros_like(beta_values) max_eigenvalues = np.zeros_like(beta_values) for i, beta in enumerate(beta_values): # Update progress progress.update(i+1, f"Processing β = {beta:.4f}") min_vals = [] max_vals = [] # Run multiple trials with different seeds for more stable results for seed in range(seeds): # Set random seed np.random.seed(seed * 100 + i) # Compute dimension p based on aspect ratio y n = n_samples p = int(y_effective * n) # Constructing T_n (Population / Shape Matrix) k = int(np.floor(beta * p)) diag_entries = np.concatenate([ np.full(k, z_a), np.full(p - k, 1.0) ]) np.random.shuffle(diag_entries) T_n = np.diag(diag_entries) # Generate the data matrix X with i.i.d. standard normal entries X = np.random.randn(p, n) # Compute the sample covariance matrix S_n = (1/n) * XX^T S_n = (1 / n) * (X @ X.T) # Compute B_n = S_n T_n B_n = S_n @ T_n # Compute eigenvalues of B_n eigenvalues = np.linalg.eigvalsh(B_n) # Find minimum and maximum eigenvalues min_vals.append(np.min(eigenvalues)) max_vals.append(np.max(eigenvalues)) # Average over seeds for stability min_eigenvalues[i] = np.mean(min_vals) max_eigenvalues[i] = np.mean(max_vals) progress.complete() return min_eigenvalues, max_eigenvalues @st.cache_data def compute_high_y_curve(betas, z_a, y): """ Compute the "High y Expression" curve with high precision. """ if cpp_compiled: return compute_high_y_curve(betas, z_a, y) # Create progress tracking progress = AdvancedProgressBar(1, "Computing high y expression") # Apply the condition for y y_effective = y if y > 1 else 1/y # Use SymPy for higher precision beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True) a = z_a_sym denominator = 1 - 2*a numerator = -4*a*(a-1)*y_sym*beta_sym - 2*a*y_sym - 2*a*(2*a-1) # Create the high precision expression expr = numerator / denominator # Convert to a high-precision numeric function func = sp.lambdify((beta_sym, z_a_sym, y_sym), expr, "mpmath") # Compute values with high precision result = np.zeros_like(betas) if abs(float(denominator.subs(z_a_sym, z_a))) < 1e-12: result.fill(np.nan) else: for i, beta in enumerate(betas): result[i] = float(func(beta, z_a, y_effective)) progress.complete() return result @st.cache_data def compute_alternate_low_expr(betas, z_a, y): """ Compute the alternate low expression with high precision. """ if cpp_compiled: return compute_alternate_low_expr(betas, z_a, y) # Create progress tracking progress = AdvancedProgressBar(1, "Computing low y expression") # Apply the condition for y y_effective = y if y > 1 else 1/y # Use SymPy for higher precision beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True) expr = (z_a_sym * y_sym * beta_sym * (z_a_sym - 1) - 2*z_a_sym*(1 - y_sym) - 2*z_a_sym**2) / (2 + 2*z_a_sym) # Convert to a high-precision numeric function func = sp.lambdify((beta_sym, z_a_sym, y_sym), expr, "mpmath") # Compute values with high precision result = np.zeros_like(betas) for i, beta in enumerate(betas): result[i] = float(func(beta, z_a, y_effective)) progress.complete() return result @st.cache_data def compute_max_k_expression(betas, z_a, y, k_samples=1000): """ Compute max_{k ∈ (0,∞)} (y*beta*(a-1)*k + (a*k+1)*((y-1)*k-1)) / ((a*k+1)*(k^2+k)) with high precision. """ if cpp_compiled: return compute_max_k_expression(betas, z_a, y, k_samples) # Create progress tracking progress = AdvancedProgressBar(len(betas), "Computing max k expression") # Apply the condition for y y_effective = y if y > 1 else 1/y # Use SymPy for symbolic expression k_sym, beta_sym, z_a_sym, y_sym = sp.symbols("k beta z_a y", positive=True) a = z_a_sym numerator = y_sym*beta_sym*(a-1)*k_sym + (a*k_sym+1)*((y_sym-1)*k_sym-1) denominator = (a*k_sym+1)*(k_sym**2+k_sym) expr = numerator / denominator # Convert to high-precision function func = sp.lambdify((k_sym, beta_sym, z_a_sym, y_sym), expr, "mpmath") # Sample k values on a logarithmic scale k_values = np.logspace(-3, 3, k_samples) max_vals = np.zeros_like(betas) for i, beta in enumerate(betas): progress.update(i+1, f"Processing β = {beta:.4f}") values = np.zeros_like(k_values) for j, k in enumerate(k_values): try: val = float(func(k, beta, z_a, y_effective)) if np.isfinite(val): values[j] = val else: values[j] = np.nan except (ZeroDivisionError, OverflowError): values[j] = np.nan valid_indices = ~np.isnan(values) if np.any(valid_indices): max_vals[i] = np.max(values[valid_indices]) else: max_vals[i] = np.nan progress.complete() return max_vals @st.cache_data def compute_min_t_expression(betas, z_a, y, t_samples=1000): """ Compute min_{t ∈ (-1/a, 0)} (y*beta*(a-1)*t + (a*t+1)*((y-1)*t-1)) / ((a*t+1)*(t^2+t)) with high precision. """ if cpp_compiled: return compute_min_t_expression(betas, z_a, y, t_samples) # Create progress tracking progress = AdvancedProgressBar(len(betas), "Computing min t expression") # Apply the condition for y y_effective = y if y > 1 else 1/y # Use SymPy for symbolic expression t_sym, beta_sym, z_a_sym, y_sym = sp.symbols("t beta z_a y") a = z_a_sym numerator = y_sym*beta_sym*(a-1)*t_sym + (a*t_sym+1)*((y_sym-1)*t_sym-1) denominator = (a*t_sym+1)*(t_sym**2+t_sym) expr = numerator / denominator # Convert to high-precision function func = sp.lambdify((t_sym, beta_sym, z_a_sym, y_sym), expr, "mpmath") a = z_a if a <= 0: progress.complete(False) return np.full_like(betas, np.nan) lower_bound = -1/a + 1e-10 # Avoid division by zero t_values = np.linspace(lower_bound, -1e-10, t_samples) min_vals = np.zeros_like(betas) for i, beta in enumerate(betas): progress.update(i+1, f"Processing β = {beta:.4f}") values = np.zeros_like(t_values) for j, t in enumerate(t_values): try: val = float(func(t, beta, z_a, y_effective)) if np.isfinite(val): values[j] = val else: values[j] = np.nan except (ZeroDivisionError, OverflowError): values[j] = np.nan valid_indices = ~np.isnan(values) if np.any(valid_indices): min_vals[i] = np.min(values[valid_indices]) else: min_vals[i] = np.nan progress.complete() return min_vals @st.cache_data def compute_derivatives(curve, betas): """Compute first and second derivatives of a curve using SymPy for accuracy.""" # Create a spline representation for smoother derivatives from scipy.interpolate import CubicSpline # Filter out NaN values valid_idx = ~np.isnan(curve) if not np.any(valid_idx): return np.full_like(betas, np.nan), np.full_like(betas, np.nan) valid_betas = betas[valid_idx] valid_curve = curve[valid_idx] if len(valid_betas) < 4: # Need at least 4 points for cubic spline # Fall back to numpy gradient d1 = np.gradient(curve, betas) d2 = np.gradient(d1, betas) return d1, d2 # Create cubic spline for smoother derivatives cs = CubicSpline(valid_betas, valid_curve) # Evaluate first and second derivatives d1 = np.zeros_like(betas) d2 = np.zeros_like(betas) for i, beta in enumerate(betas): if np.isnan(curve[i]): d1[i] = np.nan d2[i] = np.nan else: d1[i] = cs(beta, 1) # First derivative d2[i] = cs(beta, 2) # Second derivative return d1, d2 def compute_all_derivatives(betas, z_mins, z_maxs, low_y_curve, high_y_curve, alt_low_expr, custom_curve1=None, custom_curve2=None): """Compute derivatives for all curves""" progress = AdvancedProgressBar(7, "Computing derivatives") derivatives = {} # Upper z*(β) progress.update(1, "Computing upper z*(β) derivatives") derivatives['upper'] = compute_derivatives(z_maxs, betas) # Lower z*(β) progress.update(2, "Computing lower z*(β) derivatives") derivatives['lower'] = compute_derivatives(z_mins, betas) # Low y Expression (only if provided) if low_y_curve is not None: progress.update(3, "Computing low y expression derivatives") derivatives['low_y'] = compute_derivatives(low_y_curve, betas) else: progress.update(3, "Skipping low y expression (not provided)") # High y Expression if high_y_curve is not None: progress.update(4, "Computing high y expression derivatives") derivatives['high_y'] = compute_derivatives(high_y_curve, betas) else: progress.update(4, "Skipping high y expression (not provided)") # Alternate Low Expression if alt_low_expr is not None: progress.update(5, "Computing alternate low expression derivatives") derivatives['alt_low'] = compute_derivatives(alt_low_expr, betas) else: progress.update(5, "Skipping alternate low expression (not provided)") # Custom Expression 1 (if provided) if custom_curve1 is not None: progress.update(6, "Computing custom expression 1 derivatives") derivatives['custom1'] = compute_derivatives(custom_curve1, betas) else: progress.update(6, "Skipping custom expression 1 (not provided)") # Custom Expression 2 (if provided) if custom_curve2 is not None: progress.update(7, "Computing custom expression 2 derivatives") derivatives['custom2'] = compute_derivatives(custom_curve2, betas) else: progress.update(7, "Skipping custom expression 2 (not provided)") progress.complete() return derivatives def compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, is_s_based=True): """ Compute custom curve with high precision using SymPy. If is_s_based=True, compute using s substitution. Otherwise, compute direct z(β) expression. """ progress = AdvancedProgressBar(4, "Computing custom expression") # Apply the condition for y y_effective = y if y > 1 else 1/y # Create SymPy symbols beta_sym, z_a_sym, y_sym = sp.symbols("beta z_a y", positive=True) local_dict = {"beta": beta_sym, "z_a": z_a_sym, "y": y_sym, "sp": sp} try: # Add sqrt support progress.update(1, "Parsing expression") s_num_expr = add_sqrt_support(s_num_expr) s_denom_expr = add_sqrt_support(s_denom_expr) num_expr = sp.sympify(s_num_expr, locals=local_dict) denom_expr = sp.sympify(s_denom_expr, locals=local_dict) if is_s_based: # Compute s and substitute into main expression progress.update(2, "Computing s-based expression") s_expr = num_expr / denom_expr a = z_a_sym numerator = y_sym*beta_sym*(z_a_sym-1)*s_expr + (a*s_expr+1)*((y_sym-1)*s_expr-1) denominator = (a*s_expr+1)*(s_expr**2 + s_expr) final_expr = numerator/denominator else: # Direct z(β) expression progress.update(2, "Computing direct z(β) expression") final_expr = num_expr / denom_expr except sp.SympifyError as e: progress.complete(False) st.error(f"Error parsing expressions: {e}") return np.full_like(betas, np.nan) progress.update(3, "Creating lambda function") # Convert to high-precision numeric function final_func = sp.lambdify((beta_sym, z_a_sym, y_sym), final_expr, modules=["mpmath"]) progress.update(4, "Evaluating expression") # Compute values for each beta result = np.zeros_like(betas) for i, beta in enumerate(betas): try: # Calculate with high precision val = final_func(beta, z_a, y_effective) # Convert to float for compatibility result[i] = float(val) except Exception as e: result[i] = np.nan progress.complete() return result def compute_cubic_roots(z, beta, z_a, y): """ Compute the roots of the cubic equation for given parameters with high precision using SymPy. """ if cpp_compiled: roots = compute_cubic_roots_cpp(z, beta, z_a, y) return roots # Apply the condition for y y_effective = y if y > 1 else 1/y # Create a symbolic variable for the equation s = sp.Symbol('s') # Coefficients in the form as^3 + bs^2 + cs + d = 0 a = z * z_a b = z * z_a + z + z_a - z_a*y_effective c = z + z_a + 1 - y_effective*(beta*z_a + 1 - beta) d = 1 # Handle special cases if abs(a) < 1e-12: if abs(b) < 1e-12: # Linear case roots = np.array([-d/c, 0, 0], dtype=complex) else: # Quadratic case # Use SymPy for higher precision quad_eq = b*s**2 + c*s + d symbolic_roots = sp.solve(quad_eq, s) numerical_roots = [complex(float(sp.N(root.evalf(50)).real), float(sp.N(root.evalf(50)).imag)) for root in symbolic_roots] roots = np.array(numerical_roots + [0], dtype=complex) return roots try: # Create the cubic equation with high precision cubic_eq = a*s**3 + b*s**2 + c*s + d # Solve using SymPy's solver with high precision symbolic_roots = sp.solve(cubic_eq, s) # Convert to high-precision complex numbers numerical_roots = [] for root in symbolic_roots: # Use SymPy's N function with high precision (50 digits) high_prec_root = root.evalf(50) numerical_root = complex(float(sp.re(high_prec_root)), float(sp.im(high_prec_root))) numerical_roots.append(numerical_root) # If we got fewer than 3 roots (due to multiplicity), pad with zeros while len(numerical_roots) < 3: numerical_roots.append(0j) return np.array(numerical_roots, dtype=complex) except Exception as e: # Fallback to numpy if SymPy has issues coeffs = [a, b, c, d] return np.roots(coeffs) def track_roots_consistently(z_values, all_roots): """ Ensure consistent tracking of roots across z values by minimizing discontinuity. """ n_points = len(z_values) n_roots = all_roots[0].shape[0] tracked_roots = np.zeros((n_points, n_roots), dtype=complex) tracked_roots[0] = all_roots[0] for i in range(1, n_points): prev_roots = tracked_roots[i-1] current_roots = all_roots[i] # For each previous root, find the closest current root assigned = np.zeros(n_roots, dtype=bool) assignments = np.zeros(n_roots, dtype=int) for j in range(n_roots): distances = np.abs(current_roots - prev_roots[j]) # Find the closest unassigned root while True: best_idx = np.argmin(distances) if not assigned[best_idx]: assignments[j] = best_idx assigned[best_idx] = True break else: # Mark as infinite distance and try again distances[best_idx] = np.inf # Safety check if all are assigned (shouldn't happen) if np.all(distances == np.inf): assignments[j] = j # Default to same index break # Reorder current roots based on assignments tracked_roots[i] = current_roots[assignments] return tracked_roots def generate_cubic_discriminant(z, beta, z_a, y_effective): """ Calculate the cubic discriminant with high precision using SymPy's standard formula. For a cubic ax^3 + bx^2 + cx + d: Δ = 18abcd - 27a^2d^2 + b^2c^2 - 2b^3d - 9ac^3 """ # Create symbolic variables for more accurate calculation z_sym, beta_sym, z_a_sym, y_sym = sp.symbols("z beta z_a y", real=True) # Define coefficients with symbols a_sym = z_sym * z_a_sym b_sym = z_sym * z_a_sym + z_sym + z_a_sym - z_a_sym*y_sym c_sym = z_sym + z_a_sym + 1 - y_sym*(beta_sym*z_a_sym + 1 - beta_sym) d_sym = 1 # Standard formula for cubic discriminant discriminant_expr = ( 18*a_sym*b_sym*c_sym*d_sym - 27*a_sym**2*d_sym**2 + b_sym**2*c_sym**2 - 2*b_sym**3*d_sym - 9*a_sym*c_sym**3 ) # Create a high-precision lambda function discriminant_func = sp.lambdify( (z_sym, beta_sym, z_a_sym, y_sym), discriminant_expr, modules="mpmath" ) # Evaluate with high precision return float(discriminant_func(z, beta, z_a, y_effective)) def generate_root_plots(beta, y, z_a, z_min, z_max, n_points): """ Generate Im(s) and Re(s) vs. z plots with improved accuracy using SymPy. """ if z_a <= 0 or y <= 0 or z_min >= z_max: st.error("Invalid input parameters.") return None, None, None # Apply the condition for y y_effective = y if y > 1 else 1/y # Create progress bar progress = AdvancedProgressBar(n_points, "Computing cubic roots vs. z") z_points = np.linspace(z_min, z_max, n_points) # Collect all roots first all_roots = [] discriminants = [] for i, z in enumerate(z_points): # Update progress progress.update(i+1, f"Computing roots for z = {z:.3f}") # Calculate roots using SymPy roots = compute_cubic_roots(z, beta, z_a, y) # Initial sorting to help with tracking roots = sorted(roots, key=lambda x: (abs(x.imag), x.real)) all_roots.append(roots) # Calculate discriminant with high precision disc = generate_cubic_discriminant(z, beta, z_a, y_effective) discriminants.append(disc) progress.complete() # Create secondary progress bar for root tracking track_progress = AdvancedProgressBar(1, "Tracking roots consistently across z values") all_roots = np.array(all_roots) discriminants = np.array(discriminants) # Track roots consistently across z values tracked_roots = track_roots_consistently(z_points, all_roots) track_progress.complete() # Extract imaginary and real parts ims = np.imag(tracked_roots) res = np.real(tracked_roots) # Create figure for imaginary parts fig_im = go.Figure() for i in range(3): fig_im.add_trace(go.Scatter(x=z_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}", line=dict(width=2))) # Add vertical lines at discriminant zero crossings disc_zeros = [] for i in range(len(discriminants)-1): if discriminants[i] * discriminants[i+1] <= 0: # Sign change zero_pos = z_points[i] + (z_points[i+1] - z_points[i]) * (0 - discriminants[i]) / (discriminants[i+1] - discriminants[i]) disc_zeros.append(zero_pos) fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash")) fig_im.update_layout(title=f"Im{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})", xaxis_title="z", yaxis_title="Im{s}", hovermode="x unified") # Create figure for real parts fig_re = go.Figure() for i in range(3): fig_re.add_trace(go.Scatter(x=z_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}", line=dict(width=2))) # Add vertical lines at discriminant zero crossings for zero_pos in disc_zeros: fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash")) fig_re.update_layout(title=f"Re{{s}} vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})", xaxis_title="z", yaxis_title="Re{s}", hovermode="x unified") # Create discriminant plot fig_disc = go.Figure() fig_disc.add_trace(go.Scatter(x=z_points, y=discriminants, mode="lines", name="Cubic Discriminant", line=dict(color="black", width=2))) fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash")) fig_disc.update_layout(title=f"Cubic Discriminant vs. z (β={beta:.3f}, y={y:.3f}, z_a={z_a:.3f})", xaxis_title="z", yaxis_title="Discriminant", hovermode="x unified") return fig_im, fig_re, fig_disc def generate_roots_vs_beta_plots(z, y, z_a, beta_min, beta_max, n_points): """ Generate Im(s) and Re(s) vs. β plots with improved accuracy using SymPy. """ if z_a <= 0 or y <= 0 or beta_min >= beta_max: st.error("Invalid input parameters.") return None, None, None # Apply the condition for y y_effective = y if y > 1 else 1/y # Create progress bar progress = AdvancedProgressBar(n_points, "Computing cubic roots vs. β") beta_points = np.linspace(beta_min, beta_max, n_points) # Collect all roots first all_roots = [] discriminants = [] for i, beta in enumerate(beta_points): # Update progress progress.update(i+1, f"Computing roots for β = {beta:.3f}") # Calculate roots using SymPy for higher precision roots = compute_cubic_roots(z, beta, z_a, y) # Initial sorting to help with tracking roots = sorted(roots, key=lambda x: (abs(x.imag), x.real)) all_roots.append(roots) # Calculate discriminant with high precision disc = generate_cubic_discriminant(z, beta, z_a, y_effective) discriminants.append(disc) progress.complete() # Create secondary progress bar for root tracking track_progress = AdvancedProgressBar(1, "Tracking roots consistently across β values") all_roots = np.array(all_roots) discriminants = np.array(discriminants) # Track roots consistently across beta values tracked_roots = track_roots_consistently(beta_points, all_roots) track_progress.complete() # Extract imaginary and real parts ims = np.imag(tracked_roots) res = np.real(tracked_roots) # Create figure for imaginary parts fig_im = go.Figure() for i in range(3): fig_im.add_trace(go.Scatter(x=beta_points, y=ims[:, i], mode="lines", name=f"Im{{s{i+1}}}", line=dict(width=2))) # Add vertical lines at discriminant zero crossings disc_zeros = [] for i in range(len(discriminants)-1): if discriminants[i] * discriminants[i+1] <= 0: # Sign change zero_pos = beta_points[i] + (beta_points[i+1] - beta_points[i]) * (0 - discriminants[i]) / (discriminants[i+1] - discriminants[i]) disc_zeros.append(zero_pos) fig_im.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash")) fig_im.update_layout(title=f"Im{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})", xaxis_title="β", yaxis_title="Im{s}", hovermode="x unified") # Create figure for real parts fig_re = go.Figure() for i in range(3): fig_re.add_trace(go.Scatter(x=beta_points, y=res[:, i], mode="lines", name=f"Re{{s{i+1}}}", line=dict(width=2))) # Add vertical lines at discriminant zero crossings for zero_pos in disc_zeros: fig_re.add_vline(x=zero_pos, line=dict(color="red", width=1, dash="dash")) fig_re.update_layout(title=f"Re{{s}} vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})", xaxis_title="β", yaxis_title="Re{s}", hovermode="x unified") # Create discriminant plot fig_disc = go.Figure() fig_disc.add_trace(go.Scatter(x=beta_points, y=discriminants, mode="lines", name="Cubic Discriminant", line=dict(color="black", width=2))) fig_disc.add_hline(y=0, line=dict(color="red", width=1, dash="dash")) fig_disc.update_layout(title=f"Cubic Discriminant vs. β (z={z:.3f}, y={y:.3f}, z_a={z_a:.3f})", xaxis_title="β", yaxis_title="Discriminant", hovermode="x unified") return fig_im, fig_re, fig_disc def generate_phase_diagram(z_a, y, beta_min=0.0, beta_max=1.0, z_min=-10.0, z_max=10.0, beta_steps=100, z_steps=100): """ Generate a phase diagram showing regions of complex and real roots with high precision. """ if cpp_compiled: phase_map = generate_phase_diagram_cpp(z_a, y, beta_min, beta_max, z_min, z_max, beta_steps, z_steps) beta_values = np.linspace(beta_min, beta_max, beta_steps) z_values = np.linspace(z_min, z_max, z_steps) else: # Create progress tracking progress = AdvancedProgressBar(z_steps, "Generating phase diagram") # Apply the condition for y y_effective = y if y > 1 else 1/y beta_values = np.linspace(beta_min, beta_max, beta_steps) z_values = np.linspace(z_min, z_max, z_steps) # Initialize phase map phase_map = np.zeros((z_steps, beta_steps)) for i, z in enumerate(z_values): # Update progress progress.update(i+1, f"Analyzing z = {z:.2f}") for j, beta in enumerate(beta_values): # Calculate discriminant with high precision disc = generate_cubic_discriminant(z, beta, z_a, y_effective) # Set result based on sign of discriminant # 1 for all real roots (discriminant > 0), -1 for complex roots (discriminant < 0) phase_map[i, j] = 1 if disc > 0 else -1 progress.complete() # Create heatmap fig = go.Figure(data=go.Heatmap( z=phase_map, x=beta_values, y=z_values, colorscale=[[0, 'blue'], [0.5, 'white'], [1.0, 'red']], zmin=-1, zmax=1, showscale=True, colorbar=dict( title="Root Type", tickvals=[-1, 1], ticktext=["Complex Roots", "All Real Roots"] ) )) fig.update_layout( title=f"Phase Diagram: Root Structure (y={y:.3f}, z_a={z_a:.3f})", xaxis_title="β", yaxis_title="z", hovermode="closest" ) return fig def generate_eigenvalue_distribution(beta, y, z_a, n=1000, seed=42): """ Generate the eigenvalue distribution of B_n = S_n T_n as n→∞ with high precision. """ # Create progress tracking progress = AdvancedProgressBar(7, "Computing eigenvalue distribution") if cpp_compiled: progress.update(1, "Using C++ accelerated implementation") eigenvalues, x_vals = generate_eigenvalue_distribution_cpp(beta, y, z_a, n, seed) progress.update(6, "Eigenvalues computed successfully") else: # Apply the condition for y y_effective = y if y > 1 else 1/y # Set random seed progress.update(1, "Setting up random seed") np.random.seed(seed) # Compute dimension p based on aspect ratio y progress.update(2, "Initializing matrices") p = int(y_effective * n) # Constructing T_n (Population / Shape Matrix) k = int(np.floor(beta * p)) diag_entries = np.concatenate([ np.full(k, z_a), np.full(p - k, 1.0) ]) np.random.shuffle(diag_entries) T_n = np.diag(diag_entries) # Generate the data matrix X with i.i.d. standard normal entries progress.update(3, "Generating random data matrix") X = np.random.randn(p, n) # Compute the sample covariance matrix S_n = (1/n) * XX^T progress.update(4, "Computing sample covariance matrix") S_n = (1 / n) * (X @ X.T) # Compute B_n = S_n T_n progress.update(5, "Computing B_n matrix") B_n = S_n @ T_n # Compute eigenvalues of B_n with high precision progress.update(6, "Computing eigenvalues") eigenvalues = np.linalg.eigvalsh(B_n) # Generate x values for KDE x_vals = np.linspace(min(eigenvalues), max(eigenvalues), 500) # Use KDE to compute a smooth density estimate progress.update(7, "Computing kernel density estimate") kde = gaussian_kde(eigenvalues) kde_vals = kde(x_vals) progress.complete() # Create figure fig = go.Figure() # Add histogram trace fig.add_trace(go.Histogram(x=eigenvalues, histnorm='probability density', name="Histogram", marker=dict(color='blue', opacity=0.6))) # Add KDE trace fig.add_trace(go.Scatter(x=x_vals, y=kde_vals, mode="lines", name="KDE", line=dict(color='red', width=2))) fig.update_layout( title=f"Eigenvalue Distribution for B_n = S_n T_n (y={y:.1f}, β={beta:.2f}, a={z_a:.1f})", xaxis_title="Eigenvalue", yaxis_title="Density", hovermode="closest", showlegend=True ) return fig, eigenvalues def generate_z_vs_beta_plot(z_a, y, z_min, z_max, beta_steps, z_steps, s_num_expr=None, s_denom_expr=None, z_num_expr=None, z_denom_expr=None, show_derivatives=False, show_high_y=False, show_low_y=False, show_max_k=True, show_min_t=True, use_eigenvalue_method=True, n_samples=1000, seeds=5): """ Generate z vs beta plot with high precision calculations. """ # Create main progress tracking main_progress = AdvancedProgressBar(5, "Computing z*(β) curves") if z_a <= 0 or y <= 0 or z_min >= z_max: main_progress.complete(False) st.error("Invalid input parameters.") return None main_progress.update(1, "Creating β grid") betas = np.linspace(0, 1, beta_steps) if use_eigenvalue_method: # Use the eigenvalue method to compute boundaries main_progress.update(2, "Computing eigenvalue support boundaries") min_eigs, max_eigs = compute_eigenvalue_support_boundaries(z_a, y, betas, n_samples, seeds) z_mins, z_maxs = min_eigs, max_eigs else: # Use the original discriminant method main_progress.update(2, "Computing discriminant zeros") betas, z_mins, z_maxs = sweep_beta_and_find_z_bounds(z_a, y, z_min, z_max, beta_steps, z_steps) main_progress.update(3, "Computing additional curves") # Compute additional curves high_y_curve = compute_high_y_curve(betas, z_a, y) if show_high_y else None alt_low_expr = compute_alternate_low_expr(betas, z_a, y) if show_low_y else None # Compute the max/min expressions max_k_curve = compute_max_k_expression(betas, z_a, y) if show_max_k else None min_t_curve = compute_min_t_expression(betas, z_a, y) if show_min_t else None # Compute both custom curves custom_curve1 = None custom_curve2 = None if s_num_expr and s_denom_expr: custom_curve1 = compute_custom_expression(betas, z_a, y, s_num_expr, s_denom_expr, True) if z_num_expr and z_denom_expr: custom_curve2 = compute_custom_expression(betas, z_a, y, z_num_expr, z_denom_expr, False) # Compute derivatives if needed if show_derivatives: main_progress.update(4, "Computing derivatives") derivatives = compute_all_derivatives(betas, z_mins, z_maxs, None, high_y_curve, alt_low_expr, custom_curve1, custom_curve2) # Calculate derivatives for max_k and min_t curves if they exist if show_max_k and max_k_curve is not None: max_k_derivatives = compute_derivatives(max_k_curve, betas) if show_min_t and min_t_curve is not None: min_t_derivatives = compute_derivatives(min_t_curve, betas) main_progress.update(5, "Creating plot") fig = go.Figure() # Original curves if use_eigenvalue_method: fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines", name="Upper Bound (Max Eigenvalue)", line=dict(color='blue'))) fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines", name="Lower Bound (Min Eigenvalue)", line=dict(color='blue'))) # Add shaded region between curves fig.add_trace(go.Scatter( x=np.concatenate([betas, betas[::-1]]), y=np.concatenate([z_maxs, z_mins[::-1]]), fill='toself', fillcolor='rgba(0,0,255,0.2)', line=dict(color='rgba(255,255,255,0)'), showlegend=False, hoverinfo='skip' )) else: fig.add_trace(go.Scatter(x=betas, y=z_maxs, mode="markers+lines", name="Upper z*(β)", line=dict(color='blue'))) fig.add_trace(go.Scatter(x=betas, y=z_mins, mode="markers+lines", name="Lower z*(β)", line=dict(color='blue'))) # Add High y Expression only if selected if show_high_y and high_y_curve is not None: fig.add_trace(go.Scatter(x=betas, y=high_y_curve, mode="markers+lines", name="High y Expression", line=dict(color='green'))) # Add Low Expression only if selected if show_low_y and alt_low_expr is not None: fig.add_trace(go.Scatter(x=betas, y=alt_low_expr, mode="markers+lines", name="Low Expression", line=dict(color='orange'))) # Add the max/min curves if selected if show_max_k and max_k_curve is not None: fig.add_trace(go.Scatter(x=betas, y=max_k_curve, mode="lines", name="Max k Expression", line=dict(color='red', width=2))) if show_min_t and min_t_curve is not None: fig.add_trace(go.Scatter(x=betas, y=min_t_curve, mode="lines", name="Min t Expression", line=dict(color='purple', width=2))) if custom_curve1 is not None: fig.add_trace(go.Scatter(x=betas, y=custom_curve1, mode="markers+lines", name="Custom 1 (s-based)", line=dict(color='magenta'))) if custom_curve2 is not None: fig.add_trace(go.Scatter(x=betas, y=custom_curve2, mode="markers+lines", name="Custom 2 (direct)", line=dict(color='brown'))) if show_derivatives: # First derivatives curve_info = [ ('upper', 'Upper Bound' if use_eigenvalue_method else 'Upper z*(β)', 'blue'), ('lower', 'Lower Bound' if use_eigenvalue_method else 'Lower z*(β)', 'lightblue'), ] if show_high_y and high_y_curve is not None: curve_info.append(('high_y', 'High y', 'green')) if show_low_y and alt_low_expr is not None: curve_info.append(('alt_low', 'Alt Low', 'orange')) if custom_curve1 is not None: curve_info.append(('custom1', 'Custom 1', 'magenta')) if custom_curve2 is not None: curve_info.append(('custom2', 'Custom 2', 'brown')) for key, name, color in curve_info: if key in derivatives: fig.add_trace(go.Scatter(x=betas, y=derivatives[key][0], mode="lines", name=f"{name} d/dβ", line=dict(color=color, dash='dash'))) fig.add_trace(go.Scatter(x=betas, y=derivatives[key][1], mode="lines", name=f"{name} d²/dβ²", line=dict(color=color, dash='dot'))) # Add derivatives for max_k and min_t curves if they exist if show_max_k and max_k_curve is not None and 'max_k_derivatives' in locals(): fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[0], mode="lines", name="Max k d/dβ", line=dict(color='red', dash='dash'))) fig.add_trace(go.Scatter(x=betas, y=max_k_derivatives[1], mode="lines", name="Max k d²/dβ²", line=dict(color='red', dash='dot'))) if show_min_t and min_t_curve is not None and 'min_t_derivatives' in locals(): fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[0], mode="lines", name="Min t d/dβ", line=dict(color='purple', dash='dash'))) fig.add_trace(go.Scatter(x=betas, y=min_t_derivatives[1], mode="lines", name="Min t d²/dβ²", line=dict(color='purple', dash='dot'))) fig.update_layout( title="Curves vs β: Eigenvalue Support Boundaries and Asymptotic Expressions" if use_eigenvalue_method else "Curves vs β: z*(β) Boundaries and Asymptotic Expressions", xaxis_title="β", yaxis_title="Value", hovermode="x unified", showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ) ) main_progress.complete() return fig def analyze_complex_root_structure(beta_values, z, z_a, y): """ Analyze when the cubic equation switches between having all real roots and having a complex conjugate pair plus one real root. Returns: - transition_points: beta values where the root structure changes - structure_types: list indicating whether each interval has all real roots or complex roots """ # Create progress tracking progress = AdvancedProgressBar(len(beta_values), "Analyzing root structure") # Apply the condition for y y_effective = y if y > 1 else 1/y transition_points = [] structure_types = [] previous_type = None for i, beta in enumerate(beta_values): progress.update(i+1, f"Analyzing root structure at β = {beta:.4f}") roots = compute_cubic_roots(z, beta, z_a, y) # Check if all roots are real (imaginary parts close to zero) is_all_real = all(abs(root.imag) < 1e-10 for root in roots) current_type = "real" if is_all_real else "complex" if previous_type is not None and current_type != previous_type: # Found a transition point transition_points.append(beta) structure_types.append(previous_type) previous_type = current_type # Add the final interval type if previous_type is not None: structure_types.append(previous_type) progress.complete() return transition_points, structure_types # ----------------- Streamlit UI ----------------- st.title("Cubic Root Analysis (C++ Accelerated)") # Add a note about C++ acceleration and high precision if cpp_compiled: st.success("✅ C++ acceleration module loaded successfully. Calculations will run faster!") else: st.warning("⚠️ C++ module compilation failed. Falling back to Python implementations with high precision SymPy calculations.") st.info(f"Using SymPy with {sp.mpmath.mp.dps} decimal digits of precision for accurate calculations.") # Define three tabs tab1, tab2, tab3 = st.tabs(["z*(β) Curves", "Complex Root Analysis", "Differential Analysis"]) # ----- Tab 1: z*(β) Curves ----- with tab1: st.header("Eigenvalue Support Boundaries") # Cleaner layout with better column organization col1, col2, col3 = st.columns([1, 1, 2]) with col1: z_a_1 = st.number_input("z_a", value=1.0, key="z_a_1") y_1 = st.number_input("y", value=1.0, key="y_1") with col2: z_min_1 = st.number_input("z_min", value=-10.0, key="z_min_1") z_max_1 = st.number_input("z_max", value=10.0, key="z_max_1") with col1: method_type = st.radio( "Calculation Method", ["Eigenvalue Method", "Discriminant Method"], index=0 # Default to eigenvalue method ) # Advanced settings in collapsed expanders with st.expander("Method Settings", expanded=False): if method_type == "Eigenvalue Method": beta_steps = st.slider("β steps", min_value=21, max_value=101, value=51, step=10, key="beta_steps_eigen") n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000, step=100) seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1) else: beta_steps = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps") z_steps = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps") # Curve visibility options with st.expander("Curve Visibility", expanded=False): col_vis1, col_vis2 = st.columns(2) with col_vis1: show_high_y = st.checkbox("Show High y Expression", value=False, key="show_high_y") show_max_k = st.checkbox("Show Max k Expression", value=True, key="show_max_k") with col_vis2: show_low_y = st.checkbox("Show Low y Expression", value=False, key="show_low_y") show_min_t = st.checkbox("Show Min t Expression", value=True, key="show_min_t") # Custom expressions collapsed by default with st.expander("Custom Expression 1 (s-based)", expanded=False): st.markdown("""Enter expressions for s = numerator/denominator (using variables `y`, `beta`, `z_a`, and `sqrt()`)""") st.latex(r"\text{This s will be inserted into:}") st.latex(r"\frac{y\beta(z_a-1)\underline{s}+(a\underline{s}+1)((y-1)\underline{s}-1)}{(a\underline{s}+1)(\underline{s}^2 + \underline{s})}") s_num = st.text_input("s numerator", value="", key="s_num") s_denom = st.text_input("s denominator", value="", key="s_denom") with st.expander("Custom Expression 2 (direct z(β))", expanded=False): st.markdown("""Enter direct expression for z(β) = numerator/denominator (using variables `y`, `beta`, `z_a`, and `sqrt()`)""") z_num = st.text_input("z(β) numerator", value="", key="z_num") z_denom = st.text_input("z(β) denominator", value="", key="z_denom") # Move show_derivatives to main UI level for better visibility with col2: show_derivatives = st.checkbox("Show derivatives", value=False) # Compute button if st.button("Compute Curves", key="tab1_button"): with col3: use_eigenvalue_method = (method_type == "Eigenvalue Method") if use_eigenvalue_method: fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, None, s_num, s_denom, z_num, z_denom, show_derivatives, show_high_y, show_low_y, show_max_k, show_min_t, use_eigenvalue_method=True, n_samples=n_samples, seeds=seeds) else: fig = generate_z_vs_beta_plot(z_a_1, y_1, z_min_1, z_max_1, beta_steps, z_steps, s_num, s_denom, z_num, z_denom, show_derivatives, show_high_y, show_low_y, show_max_k, show_min_t, use_eigenvalue_method=False) if fig is not None: st.plotly_chart(fig, use_container_width=True) # Curve explanations in collapsed expander with st.expander("Curve Explanations", expanded=False): if use_eigenvalue_method: st.markdown(""" - **Upper/Lower Bounds** (Blue): Maximum/minimum eigenvalues of B_n = S_n T_n - **Shaded Region**: Eigenvalue support region - **High y Expression** (Green): Asymptotic approximation for high y values - **Low Expression** (Orange): Alternative asymptotic expression - **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$ - **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$ - **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula - **Custom Expression 2** (Brown): Direct z(β) expression """) else: st.markdown(""" - **Upper z*(β)** (Blue): Maximum z value where discriminant is zero - **Lower z*(β)** (Blue): Minimum z value where discriminant is zero - **High y Expression** (Green): Asymptotic approximation for high y values - **Low Expression** (Orange): Alternative asymptotic expression - **Max k Expression** (Red): $\\max_{k \\in (0,\\infty)} \\frac{y\\beta (a-1)k + \\bigl(ak+1\\bigr)\\bigl((y-1)k-1\\bigr)}{(ak+1)(k^2+k)}$ - **Min t Expression** (Purple): $\\min_{t \\in \\left(-\\frac{1}{a},\\, 0\\right)} \\frac{y\\beta (a-1)t + \\bigl(at+1\\bigr)\\bigl((y-1)t-1\\bigr)}{(at+1)(t^2+t)}$ - **Custom Expression 1** (Magenta): Result from user-defined s substituted into the main formula - **Custom Expression 2** (Brown): Direct z(β) expression """) if show_derivatives: st.markdown(""" Derivatives are shown as: - Dashed lines: First derivatives (d/dβ) - Dotted lines: Second derivatives (d²/dβ²) """) # ----- Tab 2: Complex Root Analysis ----- with tab2: st.header("Complex Root Analysis") # Create tabs within the page for different plots plot_tabs = st.tabs(["Im{s} vs. z", "Im{s} vs. β", "Phase Diagram", "Eigenvalue Distribution"]) # Tab for Im{s} vs. z plot with plot_tabs[0]: col1, col2 = st.columns([1, 2]) with col1: beta_z = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_tab2_z") y_z = st.number_input("y", value=1.0, key="y_tab2_z") z_a_z = st.number_input("z_a", value=1.0, key="z_a_tab2_z") z_min_z = st.number_input("z_min", value=-10.0, key="z_min_tab2_z") z_max_z = st.number_input("z_max", value=10.0, key="z_max_tab2_z") with st.expander("Resolution Settings", expanded=False): z_points = st.slider("z grid points", min_value=100, max_value=2000, value=500, step=100, key="z_points_z") if st.button("Compute Complex Roots vs. z", key="tab2_button_z"): with col2: fig_im, fig_re, fig_disc = generate_root_plots(beta_z, y_z, z_a_z, z_min_z, z_max_z, z_points) if fig_im is not None and fig_re is not None and fig_disc is not None: st.plotly_chart(fig_im, use_container_width=True) st.plotly_chart(fig_re, use_container_width=True) st.plotly_chart(fig_disc, use_container_width=True) with st.expander("Root Structure Analysis", expanded=False): st.markdown(""" ### Root Structure Explanation The red dashed vertical lines mark the points where the cubic discriminant equals zero. At these points, the cubic equation's root structure changes: - When the discriminant is positive, the cubic has three distinct real roots. - When the discriminant is negative, the cubic has one real root and two complex conjugate roots. - When the discriminant is exactly zero, the cubic has at least two equal roots. These transition points align perfectly with the z*(β) boundary curves from the first tab, which represent exactly these transitions in the (β,z) plane. """) # New tab for Im{s} vs. β plot with plot_tabs[1]: col1, col2 = st.columns([1, 2]) with col1: z_beta = st.number_input("z", value=1.0, key="z_tab2_beta") y_beta = st.number_input("y", value=1.0, key="y_tab2_beta") z_a_beta = st.number_input("z_a", value=1.0, key="z_a_tab2_beta") beta_min = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_tab2") beta_max = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_tab2") with st.expander("Resolution Settings", expanded=False): beta_points = st.slider("β grid points", min_value=100, max_value=1000, value=500, step=100, key="beta_points") if st.button("Compute Complex Roots vs. β", key="tab2_button_beta"): with col2: fig_im_beta, fig_re_beta, fig_disc = generate_roots_vs_beta_plots( z_beta, y_beta, z_a_beta, beta_min, beta_max, beta_points) if fig_im_beta is not None and fig_re_beta is not None and fig_disc is not None: st.plotly_chart(fig_im_beta, use_container_width=True) st.plotly_chart(fig_re_beta, use_container_width=True) st.plotly_chart(fig_disc, use_container_width=True) # Add analysis of transition points transition_points, structure_types = analyze_complex_root_structure( np.linspace(beta_min, beta_max, beta_points), z_beta, z_a_beta, y_beta) if transition_points: st.subheader("Root Structure Transition Points") for i, beta in enumerate(transition_points): prev_type = structure_types[i] next_type = structure_types[i+1] if i+1 < len(structure_types) else "unknown" st.markdown(f"- At β = {beta:.6f}: Transition from {prev_type} roots to {next_type} roots") else: st.info("No transitions detected in root structure across this β range.") # Explanation with st.expander("Analysis Explanation", expanded=False): st.markdown(""" ### Interpreting the Plots - **Im{s} vs. β**: Shows how the imaginary parts of the roots change with β. When all curves are at Im{s}=0, all roots are real. - **Re{s} vs. β**: Shows how the real parts of the roots change with β. - **Discriminant Plot**: The cubic discriminant changes sign at points where the root structure changes. - When discriminant < 0: The cubic has one real root and two complex conjugate roots. - When discriminant > 0: The cubic has three distinct real roots. - When discriminant = 0: The cubic has multiple roots (at least two roots are equal). The vertical red dashed lines mark the transition points where the root structure changes. """) # Tab for Phase Diagram with plot_tabs[2]: col1, col2 = st.columns([1, 2]) with col1: z_a_phase = st.number_input("z_a", value=1.0, key="z_a_phase") y_phase = st.number_input("y", value=1.0, key="y_phase") beta_min_phase = st.number_input("β_min", value=0.0, min_value=0.0, max_value=1.0, key="beta_min_phase") beta_max_phase = st.number_input("β_max", value=1.0, min_value=0.0, max_value=1.0, key="beta_max_phase") z_min_phase = st.number_input("z_min", value=-10.0, key="z_min_phase") z_max_phase = st.number_input("z_max", value=10.0, key="z_max_phase") with st.expander("Resolution Settings", expanded=False): beta_steps_phase = st.slider("β grid points", min_value=20, max_value=200, value=100, step=20, key="beta_steps_phase") z_steps_phase = st.slider("z grid points", min_value=20, max_value=200, value=100, step=20, key="z_steps_phase") if st.button("Generate Phase Diagram", key="tab2_button_phase"): with col2: st.info("Generating phase diagram. This may take a while depending on resolution...") fig_phase = generate_phase_diagram( z_a_phase, y_phase, beta_min_phase, beta_max_phase, z_min_phase, z_max_phase, beta_steps_phase, z_steps_phase) if fig_phase is not None: st.plotly_chart(fig_phase, use_container_width=True) with st.expander("Phase Diagram Explanation", expanded=False): st.markdown(""" ### Understanding the Phase Diagram This heatmap shows the regions in the (β, z) plane where: - **Red Regions**: The cubic equation has all real roots - **Blue Regions**: The cubic equation has one real root and two complex conjugate roots The boundaries between these regions represent values where the discriminant is zero, which are the exact same curves as the z*(β) boundaries in the first tab. This phase diagram provides a comprehensive view of the eigenvalue support structure. """) # Eigenvalue distribution tab with plot_tabs[3]: st.subheader("Eigenvalue Distribution for B_n = S_n T_n") with st.expander("Simulation Information", expanded=False): st.markdown(""" This simulation generates the eigenvalue distribution of B_n as n→∞, where: - B_n = (1/n)XX^T with X being a p×n matrix - p/n → y as n→∞ - The diagonal entries of T_n follow distribution β·δ(z_a) + (1-β)·δ(1) """) col_eigen1, col_eigen2 = st.columns([1, 2]) with col_eigen1: beta_eigen = st.number_input("β", value=0.5, min_value=0.0, max_value=1.0, key="beta_eigen") y_eigen = st.number_input("y", value=1.0, key="y_eigen") z_a_eigen = st.number_input("z_a", value=1.0, key="z_a_eigen") n_samples = st.slider("Number of samples (n)", min_value=100, max_value=2000, value=1000, step=100) sim_seed = st.number_input("Random seed", min_value=1, max_value=1000, value=42, step=1) # Add comparison option show_theoretical = st.checkbox("Show theoretical boundaries", value=True) show_empirical_stats = st.checkbox("Show empirical statistics", value=True) if st.button("Generate Eigenvalue Distribution", key="tab2_eigen_button"): with col_eigen2: # Generate the eigenvalue distribution fig_eigen, eigenvalues = generate_eigenvalue_distribution(beta_eigen, y_eigen, z_a_eigen, n=n_samples, seed=sim_seed) # If requested, compute and add theoretical boundaries if show_theoretical: # Calculate min and max eigenvalues using the support boundary functions betas = np.array([beta_eigen]) min_eig, max_eig = compute_eigenvalue_support_boundaries(z_a_eigen, y_eigen, betas, n_samples=n_samples, seeds=5) # Add vertical lines for boundaries fig_eigen.add_vline( x=min_eig[0], line=dict(color="red", width=2, dash="dash"), annotation_text="Min theoretical", annotation_position="top right" ) fig_eigen.add_vline( x=max_eig[0], line=dict(color="red", width=2, dash="dash"), annotation_text="Max theoretical", annotation_position="top left" ) # Display the plot st.plotly_chart(fig_eigen, use_container_width=True) # Add comparison of empirical vs theoretical bounds if show_theoretical and show_empirical_stats: empirical_min = eigenvalues.min() empirical_max = eigenvalues.max() st.markdown("### Comparison of Empirical vs Theoretical Bounds") col1, col2, col3 = st.columns(3) with col1: st.metric("Theoretical Min", f"{min_eig[0]:.6f}") st.metric("Theoretical Max", f"{max_eig[0]:.6f}") st.metric("Theoretical Width", f"{max_eig[0] - min_eig[0]:.6f}") with col2: st.metric("Empirical Min", f"{empirical_min:.6f}") st.metric("Empirical Max", f"{empirical_max:.6f}") st.metric("Empirical Width", f"{empirical_max - empirical_min:.6f}") with col3: st.metric("Min Difference", f"{empirical_min - min_eig[0]:.6f}") st.metric("Max Difference", f"{empirical_max - max_eig[0]:.6f}") st.metric("Width Difference", f"{(empirical_max - empirical_min) - (max_eig[0] - min_eig[0]):.6f}") # Display additional statistics if show_empirical_stats: st.markdown("### Eigenvalue Statistics") col1, col2 = st.columns(2) with col1: st.metric("Mean", f"{np.mean(eigenvalues):.6f}") st.metric("Median", f"{np.median(eigenvalues):.6f}") with col2: st.metric("Standard Deviation", f"{np.std(eigenvalues):.6f}") st.metric("Interquartile Range", f"{np.percentile(eigenvalues, 75) - np.percentile(eigenvalues, 25):.6f}") # ----- Tab 3: Differential Analysis ----- with tab3: st.header("Differential Analysis vs. β") with st.expander("Description", expanded=False): st.markdown("This page shows the difference between the Upper (blue) and Lower (lightblue) z*(β) curves, along with their first and second derivatives with respect to β.") col1, col2 = st.columns([1, 2]) with col1: z_a_diff = st.number_input("z_a", value=1.0, key="z_a_diff") y_diff = st.number_input("y", value=1.0, key="y_diff") z_min_diff = st.number_input("z_min", value=-10.0, key="z_min_diff") z_max_diff = st.number_input("z_max", value=10.0, key="z_max_diff") diff_method_type = st.radio( "Boundary Calculation Method", ["Eigenvalue Method", "Discriminant Method"], index=0, key="diff_method_type" ) with st.expander("Resolution Settings", expanded=False): if diff_method_type == "Eigenvalue Method": beta_steps_diff = st.slider("β steps", min_value=21, max_value=101, value=51, step=10, key="beta_steps_diff_eigen") diff_n_samples = st.slider("Matrix size (n)", min_value=100, max_value=2000, value=1000, step=100, key="diff_n_samples") diff_seeds = st.slider("Number of seeds", min_value=1, max_value=10, value=5, step=1, key="diff_seeds") else: beta_steps_diff = st.slider("β steps", min_value=51, max_value=501, value=201, step=50, key="beta_steps_diff") z_steps_diff = st.slider("z grid steps", min_value=1000, max_value=100000, value=50000, step=1000, key="z_steps_diff") # Add options for curve selection st.subheader("Curves to Analyze") analyze_upper_lower = st.checkbox("Upper-Lower Difference", value=True) analyze_high_y = st.checkbox("High y Expression", value=False) analyze_alt_low = st.checkbox("Low y Expression", value=False) if st.button("Compute Differentials", key="tab3_button"): with col2: use_eigenvalue_method_diff = (diff_method_type == "Eigenvalue Method") # Create a progress tracker progress = AdvancedProgressBar(5, "Computing differential analysis") progress.update(1, "Setting up β grid") if use_eigenvalue_method_diff: betas_diff = np.linspace(0, 1, beta_steps_diff) progress.update(2, "Computing eigenvalue support boundaries") lower_vals, upper_vals = compute_eigenvalue_support_boundaries( z_a_diff, y_diff, betas_diff, diff_n_samples, diff_seeds) else: progress.update(2, "Computing discriminant zeros") betas_diff, lower_vals, upper_vals = sweep_beta_and_find_z_bounds( z_a_diff, y_diff, z_min_diff, z_max_diff, beta_steps_diff, z_steps_diff) # Create figure progress.update(3, "Creating plot") fig_diff = go.Figure() progress.update(4, "Computing derivatives") if analyze_upper_lower: diff_curve = upper_vals - lower_vals d1 = np.gradient(diff_curve, betas_diff) d2 = np.gradient(d1, betas_diff) fig_diff.add_trace(go.Scatter(x=betas_diff, y=diff_curve, mode="lines", name="Upper-Lower Difference", line=dict(color="magenta", width=2))) fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", name="Upper-Lower d/dβ", line=dict(color="magenta", dash='dash'))) fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", name="Upper-Lower d²/dβ²", line=dict(color="magenta", dash='dot'))) if analyze_high_y: high_y_curve = compute_high_y_curve(betas_diff, z_a_diff, y_diff) d1 = np.gradient(high_y_curve, betas_diff) d2 = np.gradient(d1, betas_diff) fig_diff.add_trace(go.Scatter(x=betas_diff, y=high_y_curve, mode="lines", name="High y", line=dict(color="green", width=2))) fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", name="High y d/dβ", line=dict(color="green", dash='dash'))) fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", name="High y d²/dβ²", line=dict(color="green", dash='dot'))) if analyze_alt_low: alt_low_curve = compute_alternate_low_expr(betas_diff, z_a_diff, y_diff) d1 = np.gradient(alt_low_curve, betas_diff) d2 = np.gradient(d1, betas_diff) fig_diff.add_trace(go.Scatter(x=betas_diff, y=alt_low_curve, mode="lines", name="Low y", line=dict(color="orange", width=2))) fig_diff.add_trace(go.Scatter(x=betas_diff, y=d1, mode="lines", name="Low y d/dβ", line=dict(color="orange", dash='dash'))) fig_diff.add_trace(go.Scatter(x=betas_diff, y=d2, mode="lines", name="Low y d²/dβ²", line=dict(color="orange", dash='dot'))) progress.update(5, "Finalizing plot") fig_diff.update_layout( title="Differential Analysis vs. β" + (" (Eigenvalue Method)" if use_eigenvalue_method_diff else " (Discriminant Method)"), xaxis_title="β", yaxis_title="Value", hovermode="x unified", showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 ) ) progress.complete() st.plotly_chart(fig_diff, use_container_width=True) with st.expander("Curve Types", expanded=False): st.markdown(""" - Solid lines: Original curves - Dashed lines: First derivatives (d/dβ) - Dotted lines: Second derivatives (d²/dβ²) """)