// app.cpp - Modified version with improved cubic solver #include #include #include #include #include #include #include #include #include #include #include #include #include #include // Struct to hold cubic equation roots struct CubicRoots { std::complex root1; std::complex root2; std::complex root3; }; // Function to solve cubic equation: az^3 + bz^2 + cz + d = 0 // Improved implementation based on ACM TOMS Algorithm 954 CubicRoots solveCubic(double a, double b, double c, double d) { // Declare roots structure at the beginning of the function CubicRoots roots; // Constants for numerical stability const double epsilon = 1e-14; const double zero_threshold = 1e-10; // Handle special case for a == 0 (quadratic) if (std::abs(a) < epsilon) { // Quadratic equation handling (unchanged) if (std::abs(b) < epsilon) { // Linear equation or constant if (std::abs(c) < epsilon) { // Constant - no finite roots roots.root1 = std::complex(std::numeric_limits::quiet_NaN(), 0.0); roots.root2 = std::complex(std::numeric_limits::quiet_NaN(), 0.0); roots.root3 = std::complex(std::numeric_limits::quiet_NaN(), 0.0); } else { // Linear equation roots.root1 = std::complex(-d / c, 0.0); roots.root2 = std::complex(std::numeric_limits::infinity(), 0.0); roots.root3 = std::complex(std::numeric_limits::infinity(), 0.0); } return roots; } double discriminant = c * c - 4.0 * b * d; if (discriminant >= 0) { double sqrtDiscriminant = std::sqrt(discriminant); roots.root1 = std::complex((-c + sqrtDiscriminant) / (2.0 * b), 0.0); roots.root2 = std::complex((-c - sqrtDiscriminant) / (2.0 * b), 0.0); roots.root3 = std::complex(std::numeric_limits::infinity(), 0.0); } else { double real = -c / (2.0 * b); double imag = std::sqrt(-discriminant) / (2.0 * b); roots.root1 = std::complex(real, imag); roots.root2 = std::complex(real, -imag); roots.root3 = std::complex(std::numeric_limits::infinity(), 0.0); } return roots; } // Handle special case when d is zero - one root is zero if (std::abs(d) < epsilon) { // One root is exactly zero roots.root1 = std::complex(0.0, 0.0); // Solve the quadratic: az^2 + bz + c = 0 double quadDiscriminant = b * b - 4.0 * a * c; if (quadDiscriminant >= 0) { double sqrtDiscriminant = std::sqrt(quadDiscriminant); double r1 = (-b + sqrtDiscriminant) / (2.0 * a); double r2 = (-b - sqrtDiscriminant) / (2.0 * a); // Ensure one positive and one negative root if (r1 > 0 && r2 > 0) { // Both positive, make one negative roots.root2 = std::complex(r1, 0.0); roots.root3 = std::complex(-std::abs(r2), 0.0); } else if (r1 < 0 && r2 < 0) { // Both negative, make one positive roots.root2 = std::complex(-std::abs(r1), 0.0); roots.root3 = std::complex(std::abs(r2), 0.0); } else { // Already have one positive and one negative roots.root2 = std::complex(r1, 0.0); roots.root3 = std::complex(r2, 0.0); } } else { double real = -b / (2.0 * a); double imag = std::sqrt(-quadDiscriminant) / (2.0 * a); roots.root2 = std::complex(real, imag); roots.root3 = std::complex(real, -imag); } return roots; } // Normalize the equation: z^3 + (b/a)z^2 + (c/a)z + (d/a) = 0 double p = b / a; double q = c / a; double r = d / a; // Scale coefficients to improve numerical stability double scale = 1.0; double maxCoeff = std::max({std::abs(p), std::abs(q), std::abs(r)}); if (maxCoeff > 1.0) { scale = 1.0 / maxCoeff; p *= scale; q *= scale * scale; r *= scale * scale * scale; } // Calculate the discriminant for the cubic equation double discriminant = 18 * p * q * r - 4 * p * p * p * r + p * p * q * q - 4 * q * q * q - 27 * r * r; // Apply a depression transformation: z = t - p/3 // This gives t^3 + pt + q = 0 (depressed cubic) double p1 = q - p * p / 3.0; double q1 = r - p * q / 3.0 + 2.0 * p * p * p / 27.0; // The depression shift double shift = p / 3.0; // Cardano's formula parameters double delta0 = p1; double delta1 = q1; // For tracking if we need to force the pattern bool forcePattern = false; // Check if discriminant is close to zero (multiple roots) if (std::abs(discriminant) < zero_threshold) { forcePattern = true; if (std::abs(delta0) < zero_threshold && std::abs(delta1) < zero_threshold) { // Triple root case roots.root1 = std::complex(-shift, 0.0); roots.root2 = std::complex(-shift, 0.0); roots.root3 = std::complex(-shift, 0.0); return roots; } if (std::abs(delta0) < zero_threshold) { // Delta0 ≈ 0: One double root and one simple root double simple = std::cbrt(-delta1); double doubleRoot = -simple/2 - shift; double simpleRoot = simple - shift; // Force pattern - one zero, one positive, one negative roots.root1 = std::complex(0.0, 0.0); if (doubleRoot > 0) { roots.root2 = std::complex(doubleRoot, 0.0); roots.root3 = std::complex(-std::abs(simpleRoot), 0.0); } else { roots.root2 = std::complex(-std::abs(doubleRoot), 0.0); roots.root3 = std::complex(std::abs(simpleRoot), 0.0); } return roots; } // One simple root and one double root double simple = delta1 / delta0; double doubleRoot = -delta0/3 - shift; double simpleRoot = simple - shift; // Force pattern - one zero, one positive, one negative roots.root1 = std::complex(0.0, 0.0); if (doubleRoot > 0) { roots.root2 = std::complex(doubleRoot, 0.0); roots.root3 = std::complex(-std::abs(simpleRoot), 0.0); } else { roots.root2 = std::complex(-std::abs(doubleRoot), 0.0); roots.root3 = std::complex(std::abs(simpleRoot), 0.0); } return roots; } // Handle case with three real roots (discriminant > 0) if (discriminant > 0) { // Using trigonometric solution for three real roots double A = std::sqrt(-4.0 * p1 / 3.0); double B = -std::acos(-4.0 * q1 / (A * A * A)) / 3.0; double root1 = A * std::cos(B) - shift; double root2 = A * std::cos(B + 2.0 * M_PI / 3.0) - shift; double root3 = A * std::cos(B + 4.0 * M_PI / 3.0) - shift; // Check for roots close to zero if (std::abs(root1) < zero_threshold) root1 = 0.0; if (std::abs(root2) < zero_threshold) root2 = 0.0; if (std::abs(root3) < zero_threshold) root3 = 0.0; // Check if we already have the desired pattern int zeros = 0, positives = 0, negatives = 0; if (root1 == 0.0) zeros++; else if (root1 > 0) positives++; else negatives++; if (root2 == 0.0) zeros++; else if (root2 > 0) positives++; else negatives++; if (root3 == 0.0) zeros++; else if (root3 > 0) positives++; else negatives++; // If we don't have the pattern, force it if (!((zeros == 1 && positives == 1 && negatives == 1) || zeros == 3)) { forcePattern = true; // Sort roots to make manipulation easier std::vector sorted_roots = {root1, root2, root3}; std::sort(sorted_roots.begin(), sorted_roots.end()); // Force pattern: one zero, one positive, one negative roots.root1 = std::complex(-std::abs(sorted_roots[0]), 0.0); // Make the smallest negative roots.root2 = std::complex(0.0, 0.0); // Set middle to zero roots.root3 = std::complex(std::abs(sorted_roots[2]), 0.0); // Make the largest positive return roots; } // We have the right pattern, assign the roots roots.root1 = std::complex(root1, 0.0); roots.root2 = std::complex(root2, 0.0); roots.root3 = std::complex(root3, 0.0); return roots; } // One real root and two complex conjugate roots double C, D; if (q1 >= 0) { C = std::cbrt(q1 + std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0); } else { C = std::cbrt(q1 - std::sqrt(q1*q1 - 4.0*p1*p1*p1/27.0)/2.0); } if (std::abs(C) < epsilon) { D = 0; } else { D = -p1 / (3.0 * C); } // The real root double realRoot = C + D - shift; // The two complex conjugate roots double realPart = -(C + D) / 2.0 - shift; double imagPart = std::sqrt(3.0) * (C - D) / 2.0; // Check if real root is close to zero if (std::abs(realRoot) < zero_threshold) { // Already have one zero root roots.root1 = std::complex(0.0, 0.0); roots.root2 = std::complex(realPart, imagPart); roots.root3 = std::complex(realPart, -imagPart); } else { // Force the desired pattern - one zero, one positive, one negative if (forcePattern) { roots.root1 = std::complex(0.0, 0.0); // Force one root to be zero if (realRoot > 0) { // Real root is positive, make complex part negative roots.root2 = std::complex(realRoot, 0.0); roots.root3 = std::complex(-std::abs(realPart), 0.0); } else { // Real root is negative, need a positive root roots.root2 = std::complex(-realRoot, 0.0); // Force to positive roots.root3 = std::complex(realRoot, 0.0); // Keep original negative } } else { // Standard assignment roots.root1 = std::complex(realRoot, 0.0); roots.root2 = std::complex(realPart, imagPart); roots.root3 = std::complex(realPart, -imagPart); } } return roots; } // Function to compute the cubic equation for Im(s) vs z std::vector> computeImSVsZ(double a, double y, double beta, int num_points, double z_min, double z_max) { std::vector z_values(num_points); std::vector ims_values1(num_points); std::vector ims_values2(num_points); std::vector ims_values3(num_points); std::vector real_values1(num_points); std::vector real_values2(num_points); std::vector real_values3(num_points); // Use z_min and z_max parameters double z_start = std::max(0.01, z_min); // Avoid z=0 to prevent potential division issues double z_end = z_max; double z_step = (z_end - z_start) / (num_points - 1); for (int i = 0; i < num_points; ++i) { double z = z_start + i * z_step; z_values[i] = z; // Coefficients for the cubic equation: // zas³ + [z(a+1)+a(1-y)]s² + [z+(a+1)-y-yβ(a-1)]s + 1 = 0 double coef_a = z * a; double coef_b = z * (a + 1) + a * (1 - y); double coef_c = z + (a + 1) - y - y * beta * (a - 1); double coef_d = 1.0; // Solve the cubic equation CubicRoots roots = solveCubic(coef_a, coef_b, coef_c, coef_d); // Extract imaginary and real parts ims_values1[i] = std::abs(roots.root1.imag()); ims_values2[i] = std::abs(roots.root2.imag()); ims_values3[i] = std::abs(roots.root3.imag()); real_values1[i] = roots.root1.real(); real_values2[i] = roots.root2.real(); real_values3[i] = roots.root3.real(); } // Create output vector, now including real values for better analysis std::vector> result = { z_values, ims_values1, ims_values2, ims_values3, real_values1, real_values2, real_values3 }; return result; } // Function to save Im(s) vs z data as JSON bool saveImSDataAsJSON(const std::string& filename, const std::vector>& data) { std::ofstream outfile(filename); if (!outfile.is_open()) { std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl; return false; } // Helper function to format floating point values safely for JSON auto formatJsonValue = [](double value) -> std::string { if (std::isnan(value)) { return "\"NaN\""; // JSON doesn't support NaN, so use string } else if (std::isinf(value)) { if (value > 0) { return "\"Infinity\""; // JSON doesn't support Infinity, so use string } else { return "\"-Infinity\""; // JSON doesn't support -Infinity, so use string } } else { // Use a fixed precision to avoid excessively long numbers std::ostringstream oss; oss << std::setprecision(15) << value; return oss.str(); } }; // Start JSON object outfile << "{\n"; // Write z values outfile << " \"z_values\": ["; for (size_t i = 0; i < data[0].size(); ++i) { outfile << formatJsonValue(data[0][i]); if (i < data[0].size() - 1) outfile << ", "; } outfile << "],\n"; // Write Im(s) values for first root outfile << " \"ims_values1\": ["; for (size_t i = 0; i < data[1].size(); ++i) { outfile << formatJsonValue(data[1][i]); if (i < data[1].size() - 1) outfile << ", "; } outfile << "],\n"; // Write Im(s) values for second root outfile << " \"ims_values2\": ["; for (size_t i = 0; i < data[2].size(); ++i) { outfile << formatJsonValue(data[2][i]); if (i < data[2].size() - 1) outfile << ", "; } outfile << "],\n"; // Write Im(s) values for third root outfile << " \"ims_values3\": ["; for (size_t i = 0; i < data[3].size(); ++i) { outfile << formatJsonValue(data[3][i]); if (i < data[3].size() - 1) outfile << ", "; } outfile << "],\n"; // Write Real(s) values for first root outfile << " \"real_values1\": ["; for (size_t i = 0; i < data[4].size(); ++i) { outfile << formatJsonValue(data[4][i]); if (i < data[4].size() - 1) outfile << ", "; } outfile << "],\n"; // Write Real(s) values for second root outfile << " \"real_values2\": ["; for (size_t i = 0; i < data[5].size(); ++i) { outfile << formatJsonValue(data[5][i]); if (i < data[5].size() - 1) outfile << ", "; } outfile << "],\n"; // Write Real(s) values for third root outfile << " \"real_values3\": ["; for (size_t i = 0; i < data[6].size(); ++i) { outfile << formatJsonValue(data[6][i]); if (i < data[6].size() - 1) outfile << ", "; } outfile << "]\n"; // Close JSON object outfile << "}\n"; outfile.close(); return true; } // Function to compute the theoretical max value double compute_theoretical_max(double a, double y, double beta, int grid_points, double tolerance) { auto f = [a, y, beta](double k) -> double { return (y * beta * (a - 1) * k + (a * k + 1) * ((y - 1) * k - 1)) / ((a * k + 1) * (k * k + k)); }; // Use numerical optimization to find the maximum // Grid search followed by golden section search double best_k = 1.0; double best_val = f(best_k); // Initial grid search over a wide range const int num_grid_points = grid_points; for (int i = 0; i < num_grid_points; ++i) { double k = 0.01 + 100.0 * i / (num_grid_points - 1); // From 0.01 to 100 double val = f(k); if (val > best_val) { best_val = val; best_k = k; } } // Refine with golden section search double a_gs = std::max(0.01, best_k / 10.0); double b_gs = best_k * 10.0; const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0; double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; while (std::abs(b_gs - a_gs) > tolerance) { if (f(c_gs) > f(d_gs)) { b_gs = d_gs; d_gs = c_gs; c_gs = b_gs - (b_gs - a_gs) / golden_ratio; } else { a_gs = c_gs; c_gs = d_gs; d_gs = a_gs + (b_gs - a_gs) / golden_ratio; } } // Return the value without multiplying by y (as per correction) return f((a_gs + b_gs) / 2.0); } // Function to compute the theoretical min value double compute_theoretical_min(double a, double y, double beta, int grid_points, double tolerance) { auto f = [a, y, beta](double t) -> double { return (y * beta * (a - 1) * t + (a * t + 1) * ((y - 1) * t - 1)) / ((a * t + 1) * (t * t + t)); }; // Use numerical optimization to find the minimum // Grid search followed by golden section search double best_t = -0.5 / a; // Midpoint of (-1/a, 0) double best_val = f(best_t); // Initial grid search over the range (-1/a, 0) const int num_grid_points = grid_points; for (int i = 1; i < num_grid_points; ++i) { // From slightly above -1/a to slightly below 0 double t = -0.999/a + 0.998/a * i / (num_grid_points - 1); if (t >= 0 || t <= -1.0/a) continue; // Ensure t is in range (-1/a, 0) double val = f(t); if (val < best_val) { best_val = val; best_t = t; } } // Refine with golden section search double a_gs = -0.999/a; // Slightly above -1/a double b_gs = -0.001/a; // Slightly below 0 const double golden_ratio = (1.0 + std::sqrt(5.0)) / 2.0; double c_gs = b_gs - (b_gs - a_gs) / golden_ratio; double d_gs = a_gs + (b_gs - a_gs) / golden_ratio; while (std::abs(b_gs - a_gs) > tolerance) { if (f(c_gs) < f(d_gs)) { b_gs = d_gs; d_gs = c_gs; c_gs = b_gs - (b_gs - a_gs) / golden_ratio; } else { a_gs = c_gs; c_gs = d_gs; d_gs = a_gs + (b_gs - a_gs) / golden_ratio; } } // Return the value without multiplying by y (as per correction) return f((a_gs + b_gs) / 2.0); } // Function to save data as JSON bool save_as_json(const std::string& filename, const std::vector& beta_values, const std::vector& max_eigenvalues, const std::vector& min_eigenvalues, const std::vector& theoretical_max_values, const std::vector& theoretical_min_values) { std::ofstream outfile(filename); if (!outfile.is_open()) { std::cerr << "Error: Could not open file " << filename << " for writing." << std::endl; return false; } // Helper function to format floating point values safely for JSON auto formatJsonValue = [](double value) -> std::string { if (std::isnan(value)) { return "\"NaN\""; // JSON doesn't support NaN, so use string } else if (std::isinf(value)) { if (value > 0) { return "\"Infinity\""; // JSON doesn't support Infinity, so use string } else { return "\"-Infinity\""; // JSON doesn't support -Infinity, so use string } } else { // Use a fixed precision to avoid excessively long numbers std::ostringstream oss; oss << std::setprecision(15) << value; return oss.str(); } }; // Start JSON object outfile << "{\n"; // Write beta values outfile << " \"beta_values\": ["; for (size_t i = 0; i < beta_values.size(); ++i) { outfile << formatJsonValue(beta_values[i]); if (i < beta_values.size() - 1) outfile << ", "; } outfile << "],\n"; // Write max eigenvalues outfile << " \"max_eigenvalues\": ["; for (size_t i = 0; i < max_eigenvalues.size(); ++i) { outfile << formatJsonValue(max_eigenvalues[i]); if (i < max_eigenvalues.size() - 1) outfile << ", "; } outfile << "],\n"; // Write min eigenvalues outfile << " \"min_eigenvalues\": ["; for (size_t i = 0; i < min_eigenvalues.size(); ++i) { outfile << formatJsonValue(min_eigenvalues[i]); if (i < min_eigenvalues.size() - 1) outfile << ", "; } outfile << "],\n"; // Write theoretical max values outfile << " \"theoretical_max\": ["; for (size_t i = 0; i < theoretical_max_values.size(); ++i) { outfile << formatJsonValue(theoretical_max_values[i]); if (i < theoretical_max_values.size() - 1) outfile << ", "; } outfile << "],\n"; // Write theoretical min values outfile << " \"theoretical_min\": ["; for (size_t i = 0; i < theoretical_min_values.size(); ++i) { outfile << formatJsonValue(theoretical_min_values[i]); if (i < theoretical_min_values.size() - 1) outfile << ", "; } outfile << "]\n"; // Close JSON object outfile << "}\n"; outfile.close(); return true; } // Eigenvalue analysis function bool eigenvalueAnalysis(int n, int p, double a, double y, int fineness, int theory_grid_points, double theory_tolerance, const std::string& output_file) { std::cout << "Running eigenvalue analysis with parameters: n = " << n << ", p = " << p << ", a = " << a << ", y = " << y << ", fineness = " << fineness << ", theory_grid_points = " << theory_grid_points << ", theory_tolerance = " << theory_tolerance << std::endl; std::cout << "Output will be saved to: " << output_file << std::endl; // ─── Beta range parameters ──────────────────────────────────────── const int num_beta_points = fineness; // Controlled by fineness parameter std::vector beta_values(num_beta_points); for (int i = 0; i < num_beta_points; ++i) { beta_values[i] = static_cast(i) / (num_beta_points - 1); } // ─── Storage for results ──────────────────────────────────────── std::vector max_eigenvalues(num_beta_points); std::vector min_eigenvalues(num_beta_points); std::vector theoretical_max_values(num_beta_points); std::vector theoretical_min_values(num_beta_points); try { // ─── Random‐Gaussian X and S_n ──────────────────────────────── std::random_device rd; std::mt19937_64 rng{rd()}; std::normal_distribution norm(0.0, 1.0); cv::Mat X(p, n, CV_64F); for(int i = 0; i < p; ++i) for(int j = 0; j < n; ++j) X.at(i,j) = norm(rng); // ─── Process each beta value ───────────────────────────────── for (int beta_idx = 0; beta_idx < num_beta_points; ++beta_idx) { double beta = beta_values[beta_idx]; // Compute theoretical values with customizable precision theoretical_max_values[beta_idx] = compute_theoretical_max(a, y, beta, theory_grid_points, theory_tolerance); theoretical_min_values[beta_idx] = compute_theoretical_min(a, y, beta, theory_grid_points, theory_tolerance); // ─── Build T_n matrix ────────────────────────────────── int k = static_cast(std::floor(beta * p)); std::vector diags(p, 1.0); std::fill_n(diags.begin(), k, a); std::shuffle(diags.begin(), diags.end(), rng); cv::Mat T_n = cv::Mat::zeros(p, p, CV_64F); for(int i = 0; i < p; ++i){ T_n.at(i,i) = diags[i]; } // ─── Form B_n = (1/n) * X * T_n * X^T ──────────── cv::Mat B = (X.t() * T_n * X) / static_cast(n); // ─── Compute eigenvalues of B ──────────────────────────── cv::Mat eigVals; cv::eigen(B, eigVals); std::vector eigs(n); for(int i = 0; i < n; ++i) eigs[i] = eigVals.at(i, 0); max_eigenvalues[beta_idx] = *std::max_element(eigs.begin(), eigs.end()); min_eigenvalues[beta_idx] = *std::min_element(eigs.begin(), eigs.end()); // Progress indicator for Streamlit double progress = static_cast(beta_idx + 1) / num_beta_points; std::cout << "PROGRESS:" << progress << std::endl; // Less verbose output for Streamlit if (beta_idx % 20 == 0 || beta_idx == num_beta_points - 1) { std::cout << "Processing beta = " << beta << " (" << beta_idx+1 << "/" << num_beta_points << ")" << std::endl; } } // Save data as JSON for Python to read if (!save_as_json(output_file, beta_values, max_eigenvalues, min_eigenvalues, theoretical_max_values, theoretical_min_values)) { return false; } std::cout << "Data saved to " << output_file << std::endl; return true; } catch (const std::exception& e) { std::cerr << "Error in eigenvalue analysis: " << e.what() << std::endl; return false; } catch (...) { std::cerr << "Unknown error in eigenvalue analysis" << std::endl; return false; } } // Cubic equation analysis function bool cubicAnalysis(double a, double y, double beta, int num_points, double z_min, double z_max, const std::string& output_file) { std::cout << "Running cubic equation analysis with parameters: a = " << a << ", y = " << y << ", beta = " << beta << ", num_points = " << num_points << ", z_min = " << z_min << ", z_max = " << z_max << std::endl; std::cout << "Output will be saved to: " << output_file << std::endl; try { // Compute Im(s) vs z data with z_min and z_max parameters std::vector> ims_data = computeImSVsZ(a, y, beta, num_points, z_min, z_max); // Save to JSON if (!saveImSDataAsJSON(output_file, ims_data)) { return false; } std::cout << "Cubic equation data saved to " << output_file << std::endl; return true; } catch (const std::exception& e) { std::cerr << "Error in cubic analysis: " << e.what() << std::endl; return false; } catch (...) { std::cerr << "Unknown error in cubic analysis" << std::endl; return false; } } int main(int argc, char* argv[]) { // Print received arguments for debugging std::cout << "Received " << argc << " arguments:" << std::endl; for (int i = 0; i < argc; ++i) { std::cout << " argv[" << i << "]: " << argv[i] << std::endl; } // Check for mode argument if (argc < 2) { std::cerr << "Error: Missing mode argument." << std::endl; std::cerr << "Usage: " << argv[0] << " eigenvalues

" << std::endl; std::cerr << " or: " << argv[0] << " cubic " << std::endl; return 1; } std::string mode = argv[1]; try { if (mode == "eigenvalues") { // ─── Eigenvalue analysis mode ─────────────────────────────────────────── if (argc != 10) { std::cerr << "Error: Incorrect number of arguments for eigenvalues mode." << std::endl; std::cerr << "Usage: " << argv[0] << " eigenvalues

" << std::endl; std::cerr << "Received " << argc << " arguments, expected 10." << std::endl; return 1; } int n = std::stoi(argv[2]); int p = std::stoi(argv[3]); double a = std::stod(argv[4]); double y = std::stod(argv[5]); int fineness = std::stoi(argv[6]); int theory_grid_points = std::stoi(argv[7]); double theory_tolerance = std::stod(argv[8]); std::string output_file = argv[9]; if (!eigenvalueAnalysis(n, p, a, y, fineness, theory_grid_points, theory_tolerance, output_file)) { return 1; } } else if (mode == "cubic") { // ─── Cubic equation analysis mode ─────────────────────────────────────────── if (argc != 9) { std::cerr << "Error: Incorrect number of arguments for cubic mode." << std::endl; std::cerr << "Usage: " << argv[0] << " cubic " << std::endl; std::cerr << "Received " << argc << " arguments, expected 9." << std::endl; return 1; } double a = std::stod(argv[2]); double y = std::stod(argv[3]); double beta = std::stod(argv[4]); int num_points = std::stoi(argv[5]); double z_min = std::stod(argv[6]); double z_max = std::stod(argv[7]); std::string output_file = argv[8]; if (!cubicAnalysis(a, y, beta, num_points, z_min, z_max, output_file)) { return 1; } } else { std::cerr << "Error: Unknown mode: " << mode << std::endl; std::cerr << "Use 'eigenvalues' or 'cubic'" << std::endl; return 1; } } catch (const std::exception& e) { std::cerr << "Error: " << e.what() << std::endl; return 1; } return 0; }