File size: 8,655 Bytes
3ea658b
 
4a851e9
599c56e
 
3ea658b
 
 
 
4a851e9
 
 
 
3ea658b
599c56e
4a851e9
3ea658b
599c56e
4a851e9
 
3ea658b
4a851e9
 
 
 
3ea658b
4a851e9
 
 
3ea658b
4a851e9
599c56e
4a851e9
 
 
599c56e
4a851e9
 
599c56e
 
 
4a851e9
3ea658b
599c56e
4a851e9
 
 
 
6988d0c
4a851e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599c56e
4a851e9
 
599c56e
4a851e9
599c56e
 
 
4a851e9
 
599c56e
3ea658b
4a851e9
599c56e
 
 
 
4a851e9
 
 
 
599c56e
 
4a851e9
599c56e
 
 
 
 
 
3ea658b
599c56e
 
 
 
 
3ea658b
4a851e9
 
3ea658b
4a851e9
599c56e
3ea658b
4a851e9
599c56e
3ea658b
 
599c56e
f953fb1
4a851e9
 
 
 
 
 
 
599c56e
4a851e9
 
 
 
3ea658b
4a851e9
 
3ea658b
599c56e
 
4a851e9
599c56e
 
3ea658b
599c56e
 
4a851e9
 
 
 
 
 
599c56e
6988d0c
 
599c56e
4a851e9
599c56e
 
 
 
4a851e9
 
 
 
 
 
 
599c56e
 
 
 
 
4a851e9
599c56e
3ea658b
599c56e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import io
import textwrap
import itertools
import zipfile
from typing import List, Tuple

import numpy as np
import pandas as pd
import streamlit as st
from sklearn.manifold import TSNE, trustworthiness
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans, DBSCAN
import umap.umap_ as umap
import plotly.express as px
from scipy.spatial.distance import cdist
from sklearn.datasets import make_swiss_roll

# ── Example shapes (some generated on demand) ────────────────────────────────
def generate_hypercube(n=4):
    return np.array(list(itertools.product([0, 1], repeat=n)), dtype=float)

def generate_simplex(n=3):
    eye = np.eye(n, dtype=float)
    origin = np.zeros((1, n), dtype=float)
    return np.vstack([eye, origin])

def generate_swiss_roll(n_samples=500, noise=0.05):
    X, _ = make_swiss_roll(n_samples=n_samples, noise=noise)
    return X

EXAMPLE_SHAPES = {
    "Cube (3‑D, 8 pts)": np.array([
        [0,0,0],[0,0,1],[0,1,0],[0,1,1],
        [1,0,0],[1,0,1],[1,1,0],[1,1,1]
    ], dtype=float),
    "Square pyramid (3‑D, 5 pts)": np.array([
        [-1,-1,0],[1,-1,0],[1,1,0],[-1,1,0],[0,0,1]
    ], dtype=float),
    "4‑D hypercube (16 pts)": generate_hypercube(4),
    "3‑simplex (4 pts in 3‑D)": generate_simplex(3),
    "Swiss roll (500 pts, 3‑D)": generate_swiss_roll,
}

# ── Helpers ──────────────────────────────────────────────────────────────────
def parse_text_points(text: str) -> np.ndarray:
    txt = textwrap.dedent(text.strip())
    rows = [r for r in txt.splitlines() if r.strip()]
    data = [list(map(float, r.replace(",", " ").split())) for r in rows]
    return np.array(data, dtype=float)

def run_tsne(data, perp, seed):
    ts = TSNE(n_components=2, perplexity=perp, random_state=seed, init="pca")
    emb = ts.fit_transform(data)
    return emb, ts.kl_divergence_

def run_pca(data):
    pca = PCA(n_components=2)
    return pca.fit_transform(data), None

def run_umap(data, n_neighbors, min_dist, seed):
    um = umap.UMAP(n_components=2, n_neighbors=n_neighbors,
                  min_dist=min_dist, random_state=seed)
    return um.fit_transform(data), None

# ── Streamlit UI ─────────────────────────────────────────────────────────────
st.set_page_config(layout="wide")
st.title("πŸŒ€ Dimensionality Reduction Explorer")

st.write("""
Upload **one or many** CSV/TXT files *or* use the other sources, pick an algorithm,
(optionally cluster), and explore the 2‑D embedding.  Each result is downloadable
with a full pair‑wise distance table.
""")

# Sidebar ────────────────────────────────────────────────────────────────────
with st.sidebar:
    st.header("1️⃣ Data Input")
    mode = st.radio("Source", ["Example shape", "Upload CSV/TXT", "Paste text"])

    datasets: List[Tuple[str, np.ndarray]] = []

    if mode == "Example shape":
        key = st.selectbox("Choose example", list(EXAMPLE_SHAPES.keys()))
        src = EXAMPLE_SHAPES[key]
        data_raw = src() if callable(src) else src
        datasets.append((key.replace(" ", "_"), data_raw))

    elif mode == "Upload CSV/TXT":
        uploads = st.file_uploader(
            "Upload one **or many** files",
            type=["csv", "txt"],
            accept_multiple_files=True
        )
        if not uploads:
            st.stop()
        for up in uploads:
            txt = io.StringIO(up.getvalue().decode("utf-8")).read()
            pts = parse_text_points(txt)
            datasets.append((up.name.rsplit(".", 1)[0], pts))
    else:  # Paste text
        placeholder = "e.g.\n0,0,0\n0,0,1\n0,1,0\n..."
        txt = st.text_area("Paste coordinates", height=200, placeholder=placeholder)
        if not txt.strip():
            st.stop()
        data_raw = parse_text_points(txt)
        datasets.append(("pasted_points", data_raw))

    st.header("2️⃣ Algorithm & Params")
    algo = st.selectbox("Method", ["t‑SNE", "PCA", "UMAP"])
    seed = st.number_input("Random seed", value=42, step=1)

    if algo == "t‑SNE":
        perp = st.slider("Perplexity", 1.0, 50.0, 30.0, 1.0)
    elif algo == "UMAP":
        neighbors = st.slider("n_neighbors", 5, 200, 15, 5)
        min_dist = st.slider("min_dist", 0.0, 0.99, 0.1, 0.01)

    st.header("3️⃣ Clustering (optional)")
    do_cluster = st.checkbox("Cluster embedding")
    if do_cluster:
        cluster_algo = st.selectbox("Algorithm", ["KMeans", "DBSCAN"])
        if cluster_algo == "KMeans":
            n_clusters = st.slider("n_clusters", 2, 10, 3, 1)
        else:
            eps = st.slider("DBSCAN eps", 0.1, 5.0, 0.5, 0.1)

    st.markdown("---")
    run = st.button("Run & Visualize πŸš€")

# ── Main processing ─────────────────────────────────────────────────────────
def process_dataset(name: str, pts: np.ndarray):
    if pts.ndim != 2 or pts.shape[0] < 2:
        st.error(f"Dataset **{name}** needs at least two points in an (n_pts Γ— n_dims) array.")
        return None, None

    # Dimensionality reduction
    if algo == "t‑SNE":
        emb, kl = run_tsne(pts, perp, seed)
    elif algo == "PCA":
        emb, kl = run_pca(pts)
    else:
        emb, kl = run_umap(pts, neighbors, min_dist, seed)

    # Trustworthiness
    n_samples = pts.shape[0]
    k_max = (n_samples - 1) // 2
    tw = trustworthiness(pts, emb, n_neighbors=k_max) if k_max >= 1 else None

    # DataFrame for embedding
    df = pd.DataFrame(emb, columns=["x", "y"])

    # Clustering
    if do_cluster:
        if cluster_algo == "KMeans":
            labels = KMeans(n_clusters=n_clusters, random_state=seed).fit_predict(emb)
        else:
            labels = DBSCAN(eps=eps).fit_predict(emb)
        df["cluster"] = labels.astype(str)

    # Pair‑wise distances in embedding
    dist_matrix = cdist(emb, emb, metric="euclidean")
    dist_df = pd.DataFrame(dist_matrix,
                           columns=[f"dist_{i}" for i in range(n_samples)])
    out_df = pd.concat([df, dist_df], axis=1)

    return out_df, {"kl": kl, "tw": tw, "k_max": k_max}

if run:
    results: List[Tuple[str, pd.DataFrame]] = []

    for name, pts in datasets:
        st.subheader(f"πŸ“‚ Dataset: {name}")
        out_df, stats = process_dataset(name, pts)
        if out_df is None:
            continue

        # Scatter plot
        color_arg = "cluster" if ("cluster" in out_df.columns) else None
        fig = px.scatter(out_df, x="x", y="y", color=color_arg,
                         title=f"{algo} embedding ({name})",
                         width=700, height=500)
        fig.update_traces(marker=dict(size=8))
        fig.update_layout(margin=dict(l=20, r=20, t=40, b=20))
        st.plotly_chart(fig, use_container_width=True)

        # Stats
        if stats["tw"] is not None:
            st.markdown(f"**Trustworthiness (k={stats['k_max']}):** {stats['tw']:.3f}")
        else:
            st.markdown("**Trustworthiness:** Not enough samples to compute (need β‰₯β€―3 points).")
        if stats["kl"] is not None:
            st.markdown(f"**t‑SNE KL divergence:** {stats['kl']:.3f}")

        # Distance matrix preview
        with st.expander("πŸ” Show pair‑wise distance matrix"):
            st.dataframe(out_df.filter(like="dist_"))

        # Download CSV for this dataset
        csv_bytes = out_df.to_csv(index=False).encode("utf‑8")
        st.download_button(
            f"Download embeddingβ€―+β€―distances ({name})",
            data=csv_bytes,
            file_name=f"{name}_embedding_with_distances.csv",
            mime="text/csv"
        )

        # Keep for ZIP if batch
        results.append((name, csv_bytes))

    # One‑click ZIP if multiple datasets
    if len(results) >= 2:
        zip_buf = io.BytesIO()
        with zipfile.ZipFile(zip_buf, "w", zipfile.ZIP_DEFLATED) as zf:
            for nm, csv_b in results:
                zf.writestr(f"{nm}_embedding_with_distances.csv", csv_b)
        st.download_button(
            "πŸ“¦ Download **all** results as ZIP",
            data=zip_buf.getvalue(),
            file_name="all_embeddings_with_distances.zip",
            mime="application/zip"
        )