File size: 9,080 Bytes
3ea658b 4a851e9 d7768bb 599c56e 3ea658b d7768bb 599c56e d7768bb 4a851e9 d7768bb 3ea658b d7768bb 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 d7768bb 4a851e9 d7768bb 4a851e9 d7768bb 4a851e9 3ea658b 599c56e 4a851e9 6988d0c 4a851e9 d7768bb 599c56e 4a851e9 599c56e 4a851e9 d7768bb 4a851e9 d7768bb 3ea658b 4a851e9 599c56e 4a851e9 599c56e 4a851e9 599c56e d7768bb 599c56e 3ea658b 599c56e 3ea658b 4a851e9 3ea658b d7768bb 3ea658b 4a851e9 d7768bb 3ea658b d7768bb f953fb1 4a851e9 599c56e 4a851e9 3ea658b 4a851e9 3ea658b 599c56e d7768bb 4a851e9 d7768bb 599c56e 3ea658b d7768bb 4a851e9 d7768bb 6988d0c 599c56e 4a851e9 d7768bb 599c56e d7768bb 4a851e9 d7768bb 4a851e9 d7768bb 3ea658b d7768bb 599c56e d7768bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import io
import itertools
import textwrap
import zipfile
from typing import List, Tuple
import numpy as np
import pandas as pd
import plotly.express as px
import streamlit as st
from scipy.spatial.distance import cdist
from sklearn.cluster import DBSCAN, KMeans
from sklearn.decomposition import PCA
from sklearn.datasets import make_swiss_roll
from sklearn.manifold import TSNE, trustworthiness
import umap.umap_ as umap
# ββ Example shapes βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def generate_hypercube(n=4):
return np.array(list(itertools.product([0, 1], repeat=n)), dtype=float)
def generate_simplex(n=3):
eye = np.eye(n, dtype=float)
origin = np.zeros((1, n), dtype=float)
return np.vstack([eye, origin])
def generate_swiss_roll(n_samples=500, noise=0.05):
X, _ = make_swiss_roll(n_samples=n_samples, noise=noise)
return X
EXAMPLE_SHAPES = {
"Cube (3-D, 8 pts)": np.array([
[0,0,0],[0,0,1],[0,1,0],[0,1,1],
[1,0,0],[1,0,1],[1,1,0],[1,1,1]
], dtype=float),
"Square pyramid (3-D, 5 pts)": np.array([
[-1,-1,0],[1,-1,0],[1,1,0],[-1,1,0],[0,0,1]
], dtype=float),
"4-D hypercube (16 pts)": generate_hypercube(4),
"3-simplex (4 pts in 3-D)": generate_simplex(3),
"Swiss roll (500 pts, 3-D)": generate_swiss_roll,
}
# ββ Helpers ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def parse_text_points(text: str) -> np.ndarray:
txt = textwrap.dedent(text.strip())
rows = [r for r in txt.splitlines() if r.strip()]
data = [list(map(float, r.replace(",", " ").split())) for r in rows]
return np.array(data, dtype=float)
def run_tsne(data, perp, seed):
ts = TSNE(n_components=2, perplexity=perp, random_state=seed, init="pca")
emb = ts.fit_transform(data)
return emb, ts.kl_divergence_
def run_pca(data):
pca = PCA(n_components=2)
return pca.fit_transform(data), None
def run_umap(data, n_neighbors, min_dist, seed):
um = umap.UMAP(n_components=2, n_neighbors=n_neighbors,
min_dist=min_dist, random_state=seed)
return um.fit_transform(data), None
def distinct_count(dist_row: np.ndarray, tol: float = 1e-3) -> int:
"""Count unique non-zero distances in a row after rounding to 3 decimals."""
nz = dist_row[dist_row > tol]
rounded = (nz * 1000).round().astype(int) # rounding to 3 d.p.
return len(np.unique(rounded))
# ββ Streamlit UI βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
st.set_page_config(layout="wide")
st.title("π Dimensionality Reduction Explorer")
st.write("""
Upload **one or many** CSV/TXT files *or* use an example shape, pick an algorithm,
(optionally cluster), and explore the 2-D embedding.
Every output CSV now contains the embedding, the original point coordinates,
all pair-wise distances, **and** the number of distinct distances per point.
""")
# ββ Sidebar ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
with st.sidebar:
st.header("1οΈβ£ Data Input")
mode = st.radio("Source", ["Example shape", "Upload CSV/TXT", "Paste text"])
datasets: List[Tuple[str, np.ndarray]] = []
if mode == "Example shape":
key = st.selectbox("Choose example", list(EXAMPLE_SHAPES.keys()))
src = EXAMPLE_SHAPES[key]
data_raw = src() if callable(src) else src
datasets.append((key.replace(" ", "_"), data_raw))
elif mode == "Upload CSV/TXT":
uploads = st.file_uploader(
"Upload file(s)", type=["csv", "txt"], accept_multiple_files=True
)
if not uploads:
st.stop()
for up in uploads:
txt = io.StringIO(up.getvalue().decode("utf-8")).read()
pts = parse_text_points(txt)
datasets.append((up.name.rsplit(".", 1)[0], pts))
else: # Paste text
placeholder = "e.g.\n0,0,0\n0,0,1\n0,1,0\n..."
txt = st.text_area("Paste coordinates", height=200, placeholder=placeholder)
if not txt.strip():
st.stop()
datasets.append(("pasted_points", parse_text_points(txt)))
st.header("2οΈβ£ Algorithm & Params")
algo = st.selectbox("Method", ["t-SNE", "PCA", "UMAP"])
seed = st.number_input("Random seed", value=42, step=1)
if algo == "t-SNE":
perp = st.slider("Perplexity", 1.0, 50.0, 30.0, 1.0)
elif algo == "UMAP":
neighbors = st.slider("n_neighbors", 5, 200, 15, 5)
min_dist = st.slider("min_dist", 0.0, 0.99, 0.1, 0.01)
st.header("3οΈβ£ Clustering (optional)")
do_cluster = st.checkbox("Cluster embedding")
if do_cluster:
cluster_algo = st.selectbox("Algorithm", ["KMeans", "DBSCAN"])
if cluster_algo == "KMeans":
n_clusters = st.slider("n_clusters", 2, 10, 3, 1)
else:
eps = st.slider("DBSCAN eps", 0.1, 5.0, 0.5, 0.1)
st.markdown("---")
run = st.button("Run & Visualize π")
# ββ Main processing βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def process_dataset(name: str, pts: np.ndarray) -> Tuple[pd.DataFrame, dict]:
if pts.ndim != 2 or pts.shape[0] < 2:
st.error(f"Dataset **{name}** needs at least two points (rows).")
return None, None
# 1. Reduce dimensionality
if algo == "t-SNE":
emb, kl = run_tsne(pts, perp, seed)
elif algo == "PCA":
emb, kl = run_pca(pts)
else:
emb, kl = run_umap(pts, neighbors, min_dist, seed)
# 2. Trustworthiness
n_samples = pts.shape[0]
k_max = (n_samples - 1) // 2
tw = trustworthiness(pts, emb, n_neighbors=k_max) if k_max >= 1 else None
# 3. Build DataFrame in requested column order
df_emb = pd.DataFrame(emb, columns=["x", "y"])
df_pts = pd.DataFrame(pts, columns=[f"p{i}" for i in range(pts.shape[1])])
df = pd.concat([df_emb, df_pts], axis=1)
# 4. Clustering (optional)
if do_cluster:
if cluster_algo == "KMeans":
labels = KMeans(n_clusters=n_clusters, random_state=seed).fit_predict(emb)
else:
labels = DBSCAN(eps=eps).fit_predict(emb)
df["cluster"] = labels.astype(str)
# 5. Pair-wise distances (in embedding space)
dists = cdist(emb, emb, metric="euclidean")
dist_df = pd.DataFrame(dists, columns=[f"dist_{i}" for i in range(n_samples)])
df = pd.concat([df, dist_df], axis=1)
# 6. Distinct-distance count per point
df["distinct_count"] = [distinct_count(row) for row in dists]
return df, {"kl": kl, "tw": tw, "k_max": k_max}
if run:
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zf:
for name, pts in datasets:
st.subheader(f"π Dataset: {name}")
out_df, stats = process_dataset(name, pts)
if out_df is None:
continue
# Plot
color_col = "cluster" if "cluster" in out_df.columns else None
fig = px.scatter(out_df, x="x", y="y", color=color_col,
title=f"{algo} embedding ({name})",
width=700, height=500)
fig.update_traces(marker=dict(size=8))
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20))
st.plotly_chart(fig, use_container_width=True)
# Stats
if stats["tw"] is not None:
st.markdown(f"**Trustworthiness (k={stats['k_max']}):** {stats['tw']:.3f}")
else:
st.markdown("**Trustworthiness:** Not enough samples to compute.")
if stats["kl"] is not None:
st.markdown(f"**t-SNE KL divergence:** {stats['kl']:.3f}")
# Data preview
with st.expander("Preview first 10 rows"):
st.dataframe(out_df.head(10))
# Individual CSV download
csv_bytes = out_df.to_csv(index=False).encode("utf-8")
st.download_button(
f"Download CSV ({name})",
data=csv_bytes,
file_name=f"{name}_embedding_with_distances.csv",
mime="text/csv"
)
# Add to ZIP
zf.writestr(f"{name}_embedding_with_distances.csv", csv_bytes)
# ZIP download (always available once run)
st.download_button(
"π¦ Download ALL results as ZIP",
data=zip_buffer.getvalue(),
file_name="all_embeddings_with_distances.zip",
mime="application/zip"
)
|