File size: 7,496 Bytes
3ea658b 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 6988d0c 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 3ea658b 4a851e9 6988d0c 4a851e9 6988d0c 4a851e9 3ea658b 6988d0c 4a851e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import io
import textwrap
import itertools
import numpy as np
import pandas as pd
import streamlit as st
from sklearn.manifold import TSNE, trustworthiness
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans, DBSCAN
import umap.umap_ as umap
import plotly.express as px
from sklearn.datasets import make_swiss_roll
# --- Example shapes (some generated on demand) --------------------------------
def generate_hypercube(n=4):
return np.array(list(itertools.product([0, 1], repeat=n)), dtype=float)
def generate_simplex(n=3):
eye = np.eye(n, dtype=float)
origin = np.zeros((1, n), dtype=float)
return np.vstack([eye, origin])
def generate_swiss_roll(n_samples=500, noise=0.05):
X, _ = make_swiss_roll(n_samples=n_samples, noise=noise)
return X
EXAMPLE_SHAPES = {
"Cube (3-D, 8 pts)": np.array([
[0,0,0],[0,0,1],[0,1,0],[0,1,1],
[1,0,0],[1,0,1],[1,1,0],[1,1,1]
], dtype=float),
"Square pyramid (3-D, 5 pts)": np.array([
[-1,-1,0],[1,-1,0],[1,1,0],[-1,1,0],[0,0,1]
], dtype=float),
"4-D hypercube (16 pts)": generate_hypercube(4),
"3-simplex (4 pts in 3-D)": generate_simplex(3),
"Swiss roll (500 pts, 3-D)": generate_swiss_roll,
}
# --- Parsing & embedding -----------------------------------------------------
def parse_text_points(text: str) -> np.ndarray:
txt = textwrap.dedent(text.strip())
rows = [r for r in txt.splitlines() if r.strip()]
data = [list(map(float, r.replace(",", " ").split())) for r in rows]
return np.array(data, dtype=float)
def run_tsne(data, perp, seed):
ts = TSNE(n_components=2, perplexity=perp, random_state=seed, init="pca")
emb = ts.fit_transform(data)
return emb, ts.kl_divergence_
def run_pca(data):
pca = PCA(n_components=2)
return pca.fit_transform(data), None
def run_umap(data, n_neighbors, min_dist, seed):
um = umap.UMAP(n_components=2, n_neighbors=n_neighbors,
min_dist=min_dist, random_state=seed)
return um.fit_transform(data), None
# --- Streamlit App -----------------------------------------------------------
st.set_page_config(layout="wide")
st.title("π Dimensionality Reduction Explorer")
st.write("""
Upload or paste your n-D points, pick an algorithm (t-SNE/PCA/UMAP),
optionally cluster, and see the 2-D embedding.
""")
# Sidebar βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
with st.sidebar:
st.header("1οΈβ£ Data Input")
mode = st.radio("Source", ["Example shape","Upload CSV/TXT","Paste text"])
if mode == "Example shape":
key = st.selectbox("Choose example", list(EXAMPLE_SHAPES.keys()))
src = EXAMPLE_SHAPES[key]
data_raw = src() if callable(src) else src
elif mode == "Upload CSV/TXT":
up = st.file_uploader("Upload file", type=["csv","txt"])
if up:
txt = io.StringIO(up.getvalue().decode("utf-8")).read()
data_raw = parse_text_points(txt)
else:
st.stop()
else:
placeholder = "e.g.\n0,0,0\n0,0,1\n0,1,0\n..."
txt = st.text_area("Paste coordinates", height=200, placeholder=placeholder)
if not txt.strip():
st.stop()
data_raw = parse_text_points(txt)
st.header("2οΈβ£ Algorithm & Params")
algo = st.selectbox("Method", ["t-SNE","PCA","UMAP"])
seed = st.number_input("Random seed", value=42, step=1)
if algo == "t-SNE":
perp = st.slider("Perplexity", 5.0, 50.0, 30.0, 1.0)
elif algo == "UMAP":
neighbors = st.slider("n_neighbors", 5, 200, 15, 5)
min_dist = st.slider("min_dist", 0.0, 0.99, 0.1, 0.01)
st.header("3οΈβ£ Clustering (optional)")
do_cluster = st.checkbox("Cluster embedding")
if do_cluster:
cluster_algo = st.selectbox("Algorithm", ["KMeans","DBSCAN"])
if cluster_algo == "KMeans":
n_clusters = st.slider("n_clusters", 2, 10, 3, 1)
else:
eps = st.slider("DBSCAN eps", 0.1, 5.0, 0.5, 0.1)
st.markdown("---")
run = st.button("Run & Visualize π")
# Main ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
if run:
pts = data_raw
if pts.ndim != 2 or pts.shape[0] < 2:
st.error("Need at least two points in an (n_pts Γ n_dims) array.")
st.stop()
# run chosen reducer
if algo == "t-SNE":
emb, kl = run_tsne(pts, perp, seed)
elif algo == "PCA":
emb, kl = run_pca(pts)
else:
emb, kl = run_umap(pts, neighbors, min_dist, seed)
# dynamic trustworthiness
n_samples = pts.shape[0]
k_max = (n_samples - 1) // 2
if k_max >= 1:
tw = trustworthiness(pts, emb, n_neighbors=k_max)
else:
tw = None
# clustering & plotting
df = pd.DataFrame(emb, columns=["x","y"])
if do_cluster:
if cluster_algo == "KMeans":
labels = KMeans(n_clusters=n_clusters, random_state=seed).fit_predict(emb)
else:
labels = DBSCAN(eps=eps).fit_predict(emb)
df["cluster"] = labels.astype(str)
fig = px.scatter(df, x="x", y="y", color="cluster",
title=f"{algo} embedding with {cluster_algo}", width=700, height=500)
else:
fig = px.scatter(df, x="x", y="y",
title=f"{algo} embedding", width=700, height=500)
fig.update_traces(marker=dict(size=8))
fig.update_layout(margin=dict(l=20, r=20, t=40, b=20))
# display
st.subheader("2-D Embedding")
st.plotly_chart(fig, use_container_width=True)
if tw is not None:
st.markdown(f"**Trustworthiness (k={k_max}):** {tw:.3f}")
else:
st.markdown("**Trustworthiness:** Not enough samples to compute (need β₯3 points).")
if kl is not None:
st.markdown(f"**t-SNE KL divergence:** {kl:.3f}")
# download CSV
csv = df.to_csv(index=False).encode("utf-8")
st.download_button(
"Download embedding as CSV",
data=csv,
file_name="embedding.csv",
mime="text/csv"
)
with st.expander("Show original data"):
st.write(pts)
if algo == "t-SNE":
with st.expander("π§ How t-SNE works"):
st.markdown(r"""
1. **High-D similarities**
Convert pairwise distances \(d_{ij}\) into conditional probabilities
\[
p_{j|i} = \frac{\exp\!\bigl(-\|x_i - x_j\|^2 / 2\sigma_i^2\bigr)}
{\sum_{k\neq i}\exp\!\bigl(-\|x_i - x_k\|^2 / 2\sigma_i^2\bigr)}
\]
then symmetrize to \(p_{ij}=(p_{j|i}+p_{i|j})/2n\).
2. **Low-D affinities**
In 2-D we use a Student-t kernel:
\[
q_{ij} = \frac{\bigl(1 + \|y_i - y_j\|^2\bigr)^{-1}}
{\sum_{k\neq l}\bigl(1 + \|y_k - y_l\|^2\bigr)^{-1}}
\]
3. **Minimize KL divergence**
Find \(\{y_i\}\) to minimize
\[
KL(P\|Q)
= \sum_{i\neq j} p_{ij}\,\log\frac{p_{ij}}{q_{ij}}
\]
via gradient descentβpreserving local structure while pushing dissimilar points apart.
**Key parameter β perplexity**
Controls each \(\sigma_i\) by solving
\(\mathrm{Perp}(p_{i\cdot})=2^{-\sum_j p_{j|i}\log_2 p_{j|i}}\),
intuitively setting an βeffective # neighborsβ (5β50 typical).
""") |