euler314's picture
Update app.py
a7058dd verified
raw
history blame
65.1 kB
import os
import argparse
import logging
import pickle
import threading
import time
from datetime import datetime, timedelta
from collections import defaultdict
import csv
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
from scipy.interpolate import interp1d
import statsmodels.api as sm
import requests
import tempfile
import shutil
import xarray as xr
try:
import cdsapi
CDSAPI_AVAILABLE = True
except ImportError:
CDSAPI_AVAILABLE = False
import tropycal.tracks as tracks
# -----------------------------
# Configuration and Setup
# -----------------------------
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
args = parser.parse_args()
# Enhanced data path handling for HuggingFace Spaces
if 'SPACE_ID' in os.environ:
# Running on HuggingFace Spaces
DATA_PATH = '/tmp/typhoon_data'
os.makedirs(DATA_PATH, exist_ok=True)
logging.info(f"Running on HuggingFace Spaces, using data path: {DATA_PATH}")
else:
# Local development
DATA_PATH = os.environ.get('DATA_PATH', tempfile.gettempdir())
# Ensure directory exists and is writable
try:
os.makedirs(DATA_PATH, exist_ok=True)
# Test write permissions
test_file = os.path.join(DATA_PATH, 'test_write.txt')
with open(test_file, 'w') as f:
f.write('test')
os.remove(test_file)
logging.info(f"Data directory is writable: {DATA_PATH}")
except Exception as e:
logging.warning(f"Data directory not writable, using temp dir: {e}")
DATA_PATH = tempfile.mkdtemp()
logging.info(f"Using temporary directory: {DATA_PATH}")
# Update file paths
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
MERGED_DATA_CSV = os.path.join(DATA_PATH, 'merged_typhoon_era5_data.csv')
# IBTrACS settings
BASIN_FILES = {
'EP': 'ibtracs.EP.list.v04r01.csv',
'NA': 'ibtracs.NA.list.v04r01.csv',
'WP': 'ibtracs.WP.list.v04r01.csv'
}
IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/'
LOCAL_IBTRACS_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
CACHE_FILE = os.path.join(DATA_PATH, 'ibtracs_cache.pkl')
CACHE_EXPIRY_DAYS = 1
# -----------------------------
# Color Maps and Standards
# -----------------------------
color_map = {
'C5 Super Typhoon': 'rgb(255, 0, 0)',
'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
'C3 Strong Typhoon': 'rgb(255, 255, 0)',
'C2 Typhoon': 'rgb(0, 255, 0)',
'C1 Typhoon': 'rgb(0, 255, 255)',
'Tropical Storm': 'rgb(0, 0, 255)',
'Tropical Depression': 'rgb(128, 128, 128)'
}
atlantic_standard = {
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'},
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'},
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'},
'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'},
'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'},
'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'},
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}
taiwan_standard = {
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'},
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'},
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'},
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}
# -----------------------------
# Season and Regions
# -----------------------------
season_months = {
'all': list(range(1, 13)),
'summer': [6, 7, 8],
'winter': [12, 1, 2]
}
regions = {
"Taiwan Land": {"lat_min": 21.8, "lat_max": 25.3, "lon_min": 119.5, "lon_max": 122.1},
"Taiwan Sea": {"lat_min": 19, "lat_max": 28, "lon_min": 117, "lon_max": 125},
"Japan": {"lat_min": 20, "lat_max": 45, "lon_min": 120, "lon_max": 150},
"China": {"lat_min": 18, "lat_max": 53, "lon_min": 73, "lon_max": 135},
"Hong Kong": {"lat_min": 21.5, "lat_max": 23, "lon_min": 113, "lon_max": 115},
"Philippines": {"lat_min": 5, "lat_max": 21, "lon_min": 115, "lon_max": 130}
}
# -----------------------------
# Utility Functions for HF Spaces
# -----------------------------
def safe_file_write(file_path, data_frame, backup_dir=None):
"""Safely write DataFrame to CSV with backup and error handling"""
try:
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(file_path), exist_ok=True)
# Try to write to a temporary file first
temp_path = file_path + '.tmp'
data_frame.to_csv(temp_path, index=False)
# If successful, rename to final file
os.rename(temp_path, file_path)
logging.info(f"Successfully saved {len(data_frame)} records to {file_path}")
return True
except PermissionError as e:
logging.warning(f"Permission denied writing to {file_path}: {e}")
if backup_dir:
try:
backup_path = os.path.join(backup_dir, os.path.basename(file_path))
data_frame.to_csv(backup_path, index=False)
logging.info(f"Saved to backup location: {backup_path}")
return True
except Exception as backup_e:
logging.error(f"Failed to save to backup location: {backup_e}")
return False
except Exception as e:
logging.error(f"Error saving file {file_path}: {e}")
# Clean up temp file if it exists
if os.path.exists(temp_path):
try:
os.remove(temp_path)
except:
pass
return False
def get_fallback_data_dir():
"""Get a fallback data directory that's guaranteed to be writable"""
fallback_dirs = [
tempfile.gettempdir(),
'/tmp',
os.path.expanduser('~'),
os.getcwd()
]
for directory in fallback_dirs:
try:
test_dir = os.path.join(directory, 'typhoon_fallback')
os.makedirs(test_dir, exist_ok=True)
test_file = os.path.join(test_dir, 'test.txt')
with open(test_file, 'w') as f:
f.write('test')
os.remove(test_file)
return test_dir
except:
continue
# If all else fails, use current directory
return os.getcwd()
# -----------------------------
# ONI and Typhoon Data Functions
# -----------------------------
def download_oni_file(url, filename):
"""Download ONI file with retry logic"""
max_retries = 3
for attempt in range(max_retries):
try:
response = requests.get(url, timeout=30)
response.raise_for_status()
with open(filename, 'wb') as f:
f.write(response.content)
return True
except Exception as e:
logging.warning(f"Attempt {attempt + 1} failed to download ONI: {e}")
if attempt < max_retries - 1:
time.sleep(2 ** attempt) # Exponential backoff
else:
logging.error(f"Failed to download ONI after {max_retries} attempts")
return False
def convert_oni_ascii_to_csv(input_file, output_file):
"""Convert ONI ASCII format to CSV"""
data = defaultdict(lambda: [''] * 12)
season_to_month = {'DJF':12, 'JFM':1, 'FMA':2, 'MAM':3, 'AMJ':4, 'MJJ':5,
'JJA':6, 'JAS':7, 'ASO':8, 'SON':9, 'OND':10, 'NDJ':11}
try:
with open(input_file, 'r') as f:
lines = f.readlines()[1:] # Skip header
for line in lines:
parts = line.split()
if len(parts) >= 4:
season, year, anom = parts[0], parts[1], parts[-1]
if season in season_to_month:
month = season_to_month[season]
if season == 'DJF':
year = str(int(year)-1)
data[year][month-1] = anom
# Write to CSV with safe write
df = pd.DataFrame(data).T.reset_index()
df.columns = ['Year','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
df = df.sort_values('Year').reset_index(drop=True)
return safe_file_write(output_file, df, get_fallback_data_dir())
except Exception as e:
logging.error(f"Error converting ONI file: {e}")
return False
def update_oni_data():
"""Update ONI data with error handling"""
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
output_file = ONI_DATA_PATH
try:
if download_oni_file(url, temp_file):
if not os.path.exists(input_file) or not os.path.exists(output_file):
os.rename(temp_file, input_file)
convert_oni_ascii_to_csv(input_file, output_file)
else:
os.remove(temp_file)
else:
# Create fallback ONI data if download fails
logging.warning("Creating fallback ONI data")
create_fallback_oni_data(output_file)
except Exception as e:
logging.error(f"Error updating ONI data: {e}")
create_fallback_oni_data(output_file)
def create_fallback_oni_data(output_file):
"""Create minimal ONI data for testing"""
years = range(2000, 2025)
months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
# Create synthetic ONI data
data = []
for year in years:
row = [year]
for month in months:
# Generate some realistic ONI values
value = np.random.normal(0, 1) * 0.5
row.append(f"{value:.2f}")
data.append(row)
df = pd.DataFrame(data, columns=['Year'] + months)
safe_file_write(output_file, df, get_fallback_data_dir())
# -----------------------------
# FIXED: IBTrACS Data Loading
# -----------------------------
def download_ibtracs_file(basin, force_download=False):
"""Download specific basin file from IBTrACS"""
filename = BASIN_FILES[basin]
local_path = os.path.join(DATA_PATH, filename)
url = IBTRACS_BASE_URL + filename
# Check if file exists and is recent (less than 7 days old)
if os.path.exists(local_path) and not force_download:
file_age = time.time() - os.path.getmtime(local_path)
if file_age < 7 * 24 * 3600: # 7 days
logging.info(f"Using cached {basin} basin file")
return local_path
try:
logging.info(f"Downloading {basin} basin file from {url}")
response = requests.get(url, timeout=60)
response.raise_for_status()
# Ensure directory exists
os.makedirs(os.path.dirname(local_path), exist_ok=True)
with open(local_path, 'wb') as f:
f.write(response.content)
logging.info(f"Successfully downloaded {basin} basin file")
return local_path
except Exception as e:
logging.error(f"Failed to download {basin} basin file: {e}")
return None
def examine_ibtracs_structure(file_path):
"""Examine the actual structure of an IBTrACS CSV file"""
try:
with open(file_path, 'r') as f:
lines = f.readlines()
# Show first 5 lines
logging.info("First 5 lines of IBTrACS file:")
for i, line in enumerate(lines[:5]):
logging.info(f"Line {i}: {line.strip()}")
# The first line contains the actual column headers
# No need to skip rows for IBTrACS v04r01
df = pd.read_csv(file_path, nrows=5)
logging.info(f"Columns from first row: {list(df.columns)}")
return list(df.columns)
except Exception as e:
logging.error(f"Error examining IBTrACS structure: {e}")
return None
def load_ibtracs_csv_directly(basin='WP'):
"""Load IBTrACS data directly from CSV - FIXED VERSION"""
filename = BASIN_FILES[basin]
local_path = os.path.join(DATA_PATH, filename)
# Download if not exists
if not os.path.exists(local_path):
downloaded_path = download_ibtracs_file(basin)
if not downloaded_path:
return None
try:
# First, examine the structure
actual_columns = examine_ibtracs_structure(local_path)
if not actual_columns:
logging.error("Could not examine IBTrACS file structure")
return None
# Read IBTrACS CSV - DON'T skip any rows for v04r01
# The first row contains proper column headers
logging.info(f"Reading IBTrACS CSV file: {local_path}")
df = pd.read_csv(local_path, low_memory=False) # Don't skip any rows
logging.info(f"Original columns: {list(df.columns)}")
logging.info(f"Data shape before cleaning: {df.shape}")
# Check which essential columns exist
required_cols = ['SID', 'ISO_TIME', 'LAT', 'LON']
available_required = [col for col in required_cols if col in df.columns]
if len(available_required) < 2:
logging.error(f"Missing critical columns. Available: {list(df.columns)}")
return None
# Clean and standardize the data
if 'ISO_TIME' in df.columns:
df['ISO_TIME'] = pd.to_datetime(df['ISO_TIME'], errors='coerce')
# Clean numeric columns
numeric_columns = ['LAT', 'LON', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES']
for col in numeric_columns:
if col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce')
# Filter out invalid/missing critical data
valid_rows = df['LAT'].notna() & df['LON'].notna()
df = df[valid_rows]
# Ensure LAT/LON are in reasonable ranges
df = df[(df['LAT'] >= -90) & (df['LAT'] <= 90)]
df = df[(df['LON'] >= -180) & (df['LON'] <= 180)]
# Add basin info if missing
if 'BASIN' not in df.columns:
df['BASIN'] = basin
# Add default columns if missing
if 'NAME' not in df.columns:
df['NAME'] = 'UNNAMED'
if 'SEASON' not in df.columns and 'ISO_TIME' in df.columns:
df['SEASON'] = df['ISO_TIME'].dt.year
logging.info(f"Successfully loaded {len(df)} records from {basin} basin")
return df
except Exception as e:
logging.error(f"Error reading IBTrACS CSV file: {e}")
return None
def load_ibtracs_data_fixed():
"""Fixed version of IBTrACS data loading"""
ibtracs_data = {}
# Try to load each basin, but prioritize WP for this application
load_order = ['WP', 'EP', 'NA']
for basin in load_order:
try:
logging.info(f"Loading {basin} basin data...")
df = load_ibtracs_csv_directly(basin)
if df is not None and not df.empty:
ibtracs_data[basin] = df
logging.info(f"Successfully loaded {basin} basin with {len(df)} records")
else:
logging.warning(f"No data loaded for basin {basin}")
ibtracs_data[basin] = None
except Exception as e:
logging.error(f"Failed to load basin {basin}: {e}")
ibtracs_data[basin] = None
return ibtracs_data
def load_data_fixed(oni_path, typhoon_path):
"""Fixed version of load_data function"""
# Load ONI data
oni_data = pd.DataFrame({'Year': [], 'Jan': [], 'Feb': [], 'Mar': [], 'Apr': [],
'May': [], 'Jun': [], 'Jul': [], 'Aug': [], 'Sep': [],
'Oct': [], 'Nov': [], 'Dec': []})
if not os.path.exists(oni_path):
logging.warning(f"ONI data file not found: {oni_path}")
update_oni_data()
try:
oni_data = pd.read_csv(oni_path)
logging.info(f"Successfully loaded ONI data with {len(oni_data)} years")
except Exception as e:
logging.error(f"Error loading ONI data: {e}")
update_oni_data()
try:
oni_data = pd.read_csv(oni_path)
except Exception as e:
logging.error(f"Still can't load ONI data: {e}")
# Load typhoon data - NEW APPROACH
typhoon_data = None
# First, try to load from existing processed file
if os.path.exists(typhoon_path):
try:
typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
# Ensure basic columns exist and are valid
required_cols = ['LAT', 'LON']
if all(col in typhoon_data.columns for col in required_cols):
if 'ISO_TIME' in typhoon_data.columns:
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
logging.info(f"Loaded processed typhoon data with {len(typhoon_data)} records")
else:
logging.warning("Processed typhoon data missing required columns, will reload from IBTrACS")
typhoon_data = None
except Exception as e:
logging.error(f"Error loading processed typhoon data: {e}")
typhoon_data = None
# If no valid processed data, load from IBTrACS
if typhoon_data is None or typhoon_data.empty:
logging.info("Loading typhoon data from IBTrACS...")
ibtracs_data = load_ibtracs_data_fixed()
# Combine all available basin data, prioritizing WP
combined_dfs = []
for basin in ['WP', 'EP', 'NA']:
if basin in ibtracs_data and ibtracs_data[basin] is not None:
df = ibtracs_data[basin].copy()
df['BASIN'] = basin
combined_dfs.append(df)
if combined_dfs:
typhoon_data = pd.concat(combined_dfs, ignore_index=True)
# Ensure SID has proper format
if 'SID' not in typhoon_data.columns and 'BASIN' in typhoon_data.columns:
# Create SID from basin and other identifiers if missing
if 'SEASON' in typhoon_data.columns:
typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) +
typhoon_data.index.astype(str).str.zfill(2) +
typhoon_data['SEASON'].astype(str))
else:
typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) +
typhoon_data.index.astype(str).str.zfill(2) +
'2000')
# Save the processed data for future use
safe_file_write(typhoon_path, typhoon_data, get_fallback_data_dir())
logging.info(f"Combined IBTrACS data: {len(typhoon_data)} total records")
else:
logging.error("Failed to load any IBTrACS basin data")
# Create minimal fallback data
typhoon_data = create_fallback_typhoon_data()
# Final validation of typhoon data
if typhoon_data is not None:
# Ensure required columns exist with fallback values
required_columns = {
'SID': 'UNKNOWN',
'ISO_TIME': pd.Timestamp('2000-01-01'),
'LAT': 0.0,
'LON': 0.0,
'USA_WIND': np.nan,
'USA_PRES': np.nan,
'NAME': 'UNNAMED',
'SEASON': 2000
}
for col, default_val in required_columns.items():
if col not in typhoon_data.columns:
typhoon_data[col] = default_val
logging.warning(f"Added missing column {col} with default value")
# Ensure data types
if 'ISO_TIME' in typhoon_data.columns:
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['LAT'] = pd.to_numeric(typhoon_data['LAT'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
# Remove rows with invalid coordinates
typhoon_data = typhoon_data.dropna(subset=['LAT', 'LON'])
logging.info(f"Final typhoon data: {len(typhoon_data)} records after validation")
return oni_data, typhoon_data
def create_fallback_typhoon_data():
"""Create minimal fallback typhoon data - FIXED VERSION"""
# Use proper pandas date_range instead of numpy
dates = pd.date_range(start='2000-01-01', end='2023-12-31', freq='D')
storm_dates = dates[np.random.choice(len(dates), size=100, replace=False)]
data = []
for i, date in enumerate(storm_dates):
# Create realistic WP storm tracks
base_lat = np.random.uniform(10, 30)
base_lon = np.random.uniform(130, 160)
# Generate 20-50 data points per storm
track_length = np.random.randint(20, 51)
sid = f"WP{i+1:02d}{date.year}"
for j in range(track_length):
lat = base_lat + j * 0.2 + np.random.normal(0, 0.1)
lon = base_lon + j * 0.3 + np.random.normal(0, 0.1)
wind = max(25, 70 + np.random.normal(0, 20))
pres = max(950, 1000 - wind + np.random.normal(0, 5))
data.append({
'SID': sid,
'ISO_TIME': date + pd.Timedelta(hours=j*6), # Use pd.Timedelta instead
'NAME': f'FALLBACK_{i+1}',
'SEASON': date.year,
'LAT': lat,
'LON': lon,
'USA_WIND': wind,
'USA_PRES': pres,
'BASIN': 'WP'
})
df = pd.DataFrame(data)
logging.info(f"Created fallback typhoon data with {len(df)} records")
return df
def process_oni_data(oni_data):
"""Process ONI data into long format"""
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
month_map = {'Jan':'01','Feb':'02','Mar':'03','Apr':'04','May':'05','Jun':'06',
'Jul':'07','Aug':'08','Sep':'09','Oct':'10','Nov':'11','Dec':'12'}
oni_long['Month'] = oni_long['Month'].map(month_map)
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str)+'-'+oni_long['Month']+'-01')
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
return oni_long
def process_typhoon_data(typhoon_data):
"""Process typhoon data"""
if 'ISO_TIME' in typhoon_data.columns:
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
logging.info(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}")
typhoon_max = typhoon_data.groupby('SID').agg({
'USA_WIND':'max','USA_PRES':'min','ISO_TIME':'first','SEASON':'first','NAME':'first',
'LAT':'first','LON':'first'
}).reset_index()
if 'ISO_TIME' in typhoon_max.columns:
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
else:
# Fallback if no ISO_TIME
typhoon_max['Month'] = '01'
typhoon_max['Year'] = typhoon_max['SEASON']
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
return typhoon_max
def merge_data(oni_long, typhoon_max):
"""Merge ONI and typhoon data"""
return pd.merge(typhoon_max, oni_long, on=['Year','Month'])
def categorize_typhoon(wind_speed):
"""Categorize typhoon based on wind speed"""
if pd.isna(wind_speed):
return 'Tropical Depression'
if wind_speed >= 137:
return 'C5 Super Typhoon'
elif wind_speed >= 113:
return 'C4 Very Strong Typhoon'
elif wind_speed >= 96:
return 'C3 Strong Typhoon'
elif wind_speed >= 83:
return 'C2 Typhoon'
elif wind_speed >= 64:
return 'C1 Typhoon'
elif wind_speed >= 34:
return 'Tropical Storm'
else:
return 'Tropical Depression'
def classify_enso_phases(oni_value):
"""Classify ENSO phases based on ONI value"""
if isinstance(oni_value, pd.Series):
oni_value = oni_value.iloc[0]
if pd.isna(oni_value):
return 'Neutral'
if oni_value >= 0.5:
return 'El Nino'
elif oni_value <= -0.5:
return 'La Nina'
else:
return 'Neutral'
# -----------------------------
# Regression Functions
# -----------------------------
def perform_wind_regression(start_year, start_month, end_year, end_month):
"""Perform wind regression analysis"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_WIND','ONI'])
data['severe_typhoon'] = (data['USA_WIND']>=64).astype(int)
X = sm.add_constant(data['ONI'])
y = data['severe_typhoon']
try:
model = sm.Logit(y, X).fit(disp=0)
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
except Exception as e:
return f"Wind Regression Error: {e}"
def perform_pressure_regression(start_year, start_month, end_year, end_month):
"""Perform pressure regression analysis"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_PRES','ONI'])
data['intense_typhoon'] = (data['USA_PRES']<=950).astype(int)
X = sm.add_constant(data['ONI'])
y = data['intense_typhoon']
try:
model = sm.Logit(y, X).fit(disp=0)
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
except Exception as e:
return f"Pressure Regression Error: {e}"
def perform_longitude_regression(start_year, start_month, end_year, end_month):
"""Perform longitude regression analysis"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['LON','ONI'])
data['western_typhoon'] = (data['LON']<=140).astype(int)
X = sm.add_constant(data['ONI'])
y = data['western_typhoon']
try:
model = sm.OLS(y, sm.add_constant(X)).fit()
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
except Exception as e:
return f"Longitude Regression Error: {e}"
# -----------------------------
# Visualization Functions
# -----------------------------
def generate_typhoon_tracks(filtered_data, typhoon_search):
"""Generate typhoon tracks visualization"""
fig = go.Figure()
for sid in filtered_data['SID'].unique():
storm_data = filtered_data[filtered_data['SID'] == sid]
phase = storm_data['ENSO_Phase'].iloc[0]
color = {'El Nino':'red','La Nina':'blue','Neutral':'green'}.get(phase, 'black')
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=storm_data['NAME'].iloc[0], line=dict(width=2, color=color)
))
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
storm_data = filtered_data[mask]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=f'Matched: {typhoon_search}', line=dict(width=5, color='yellow')
))
fig.update_layout(
title='Typhoon Tracks',
geo=dict(projection_type='natural earth', showland=True),
height=700
)
return fig
def generate_wind_oni_scatter(filtered_data, typhoon_search):
"""Generate wind vs ONI scatter plot"""
fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category',
hover_data=['NAME','Year','Category'],
title='Wind Speed vs ONI',
labels={'ONI':'ONI Value','USA_WIND':'Max Wind Speed (knots)'},
color_discrete_map=color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_WIND'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
))
return fig
def generate_pressure_oni_scatter(filtered_data, typhoon_search):
"""Generate pressure vs ONI scatter plot"""
fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category',
hover_data=['NAME','Year','Category'],
title='Pressure vs ONI',
labels={'ONI':'ONI Value','USA_PRES':'Min Pressure (hPa)'},
color_discrete_map=color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_PRES'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
))
return fig
def generate_regression_analysis(filtered_data):
"""Generate regression analysis plot"""
fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
title='Typhoon Generation Longitude vs ONI (All Years)')
if len(filtered_data) > 1:
X = np.array(filtered_data['LON']).reshape(-1,1)
y = filtered_data['ONI']
try:
model = sm.OLS(y, sm.add_constant(X)).fit()
y_pred = model.predict(sm.add_constant(X))
fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
slope = model.params[1]
slopes_text = f"All Years Slope: {slope:.4f}"
except Exception as e:
slopes_text = f"Regression Error: {e}"
else:
slopes_text = "Insufficient data for regression"
return fig, slopes_text
def generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Generate main analysis plots"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
tracks_fig = generate_typhoon_tracks(filtered_data, typhoon_search)
wind_scatter = generate_wind_oni_scatter(filtered_data, typhoon_search)
pressure_scatter = generate_pressure_oni_scatter(filtered_data, typhoon_search)
regression_fig, slopes_text = generate_regression_analysis(filtered_data)
return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text
def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get full typhoon tracks"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
unique_storms = filtered_data['SID'].unique()
count = len(unique_storms)
fig = go.Figure()
for sid in unique_storms:
storm_data = typhoon_data[typhoon_data['SID']==sid]
if storm_data.empty:
continue
name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed"
basin = storm_data['SID'].iloc[0][:2]
storm_oni = filtered_data[filtered_data['SID']==sid]['ONI'].iloc[0]
color = 'red' if storm_oni>=0.5 else ('blue' if storm_oni<=-0.5 else 'green')
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=f"{name} ({basin})",
line=dict(width=1.5, color=color), hoverinfo="name"
))
if typhoon_search:
search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if search_mask.any():
for sid in typhoon_data[search_mask]['SID'].unique():
storm_data = typhoon_data[typhoon_data['SID']==sid]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers',
name=f"MATCHED: {storm_data['NAME'].iloc[0]}",
line=dict(width=3, color='yellow'),
marker=dict(size=5), hoverinfo="name"
))
fig.update_layout(
title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
geo=dict(
projection_type='natural earth',
showland=True,
showcoastlines=True,
landcolor='rgb(243,243,243)',
countrycolor='rgb(204,204,204)',
coastlinecolor='rgb(204,204,204)',
center=dict(lon=140, lat=20),
projection_scale=3
),
legend_title="Typhoons by ENSO Phase",
showlegend=True,
height=700
)
fig.add_annotation(
x=0.02, y=0.98, xref="paper", yref="paper",
text="Red: El Niño, Blue: La Nina, Green: Neutral",
showarrow=False, align="left",
bgcolor="rgba(255,255,255,0.8)"
)
return fig, f"Total typhoons displayed: {count}"
def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get wind analysis"""
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_wind_regression(start_year, start_month, end_year, end_month)
return results[1], regression
def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get pressure analysis"""
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
return results[2], regression
def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get longitude analysis"""
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search)
regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
return results[3], results[4], regression
def categorize_typhoon_by_standard(wind_speed, standard='atlantic'):
"""Categorize typhoon by standard"""
if pd.isna(wind_speed):
return 'Tropical Depression', '#808080'
if standard=='taiwan':
wind_speed_ms = wind_speed * 0.514444
if wind_speed_ms >= 51.0:
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['hex']
elif wind_speed_ms >= 33.7:
return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['hex']
elif wind_speed_ms >= 17.2:
return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['hex']
return 'Tropical Depression', taiwan_standard['Tropical Depression']['hex']
else:
if wind_speed >= 137:
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['hex']
elif wind_speed >= 113:
return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['hex']
elif wind_speed >= 96:
return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['hex']
elif wind_speed >= 83:
return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['hex']
elif wind_speed >= 64:
return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['hex']
elif wind_speed >= 34:
return 'Tropical Storm', atlantic_standard['Tropical Storm']['hex']
return 'Tropical Depression', atlantic_standard['Tropical Depression']['hex']
# -----------------------------
# TSNE Cluster Function
# -----------------------------
def update_route_clusters(start_year, start_month, end_year, end_month, enso_value, season):
"""Updated TSNE cluster function with mean curves"""
try:
# Merge raw typhoon data with ONI
raw_data = typhoon_data.copy()
if 'ISO_TIME' not in raw_data.columns:
logging.error("ISO_TIME column not found in typhoon data")
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "Error: ISO_TIME column missing"
raw_data['Year'] = raw_data['ISO_TIME'].dt.year
raw_data['Month'] = raw_data['ISO_TIME'].dt.strftime('%m')
merged_raw = pd.merge(raw_data, process_oni_data(oni_data), on=['Year','Month'], how='left')
# Filter by date
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
merged_raw = merged_raw[(merged_raw['ISO_TIME'] >= start_date) & (merged_raw['ISO_TIME'] <= end_date)]
logging.info(f"Total points after date filtering: {merged_raw.shape[0]}")
# Filter by ENSO phase if specified
merged_raw['ENSO_Phase'] = merged_raw['ONI'].apply(classify_enso_phases)
if enso_value != 'all':
merged_raw = merged_raw[merged_raw['ENSO_Phase'] == enso_value.capitalize()]
logging.info(f"Total points after ENSO filtering: {merged_raw.shape[0]}")
# Regional filtering for Western Pacific
wp_data = merged_raw[(merged_raw['LON'] >= 100) & (merged_raw['LON'] <= 180) &
(merged_raw['LAT'] >= 0) & (merged_raw['LAT'] <= 40)]
logging.info(f"Total points after WP regional filtering: {wp_data.shape[0]}")
if wp_data.empty:
logging.info("WP regional filter returned no data; using all filtered data.")
wp_data = merged_raw
# Group by storm ID
all_storms_data = []
for sid, group in wp_data.groupby('SID'):
group = group.sort_values('ISO_TIME')
times = pd.to_datetime(group['ISO_TIME']).values
lats = group['LAT'].astype(float).values
lons = group['LON'].astype(float).values
if len(lons) < 2:
continue
# Extract wind and pressure curves
wind = group['USA_WIND'].astype(float).values if 'USA_WIND' in group.columns else None
pres = group['USA_PRES'].astype(float).values if 'USA_PRES' in group.columns else None
all_storms_data.append((sid, lons, lats, times, wind, pres))
logging.info(f"Storms available for TSNE after grouping: {len(all_storms_data)}")
if not all_storms_data:
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid storms for clustering."
# Interpolate each storm's route to a common length
max_length = min(50, max(len(item[1]) for item in all_storms_data)) # Cap at 50 points
route_vectors = []
wind_curves = []
pres_curves = []
storm_ids = []
for sid, lons, lats, times, wind, pres in all_storms_data:
t = np.linspace(0, 1, len(lons))
t_new = np.linspace(0, 1, max_length)
try:
lon_interp = interp1d(t, lons, kind='linear', fill_value='extrapolate')(t_new)
lat_interp = interp1d(t, lats, kind='linear', fill_value='extrapolate')(t_new)
except Exception as ex:
logging.error(f"Interpolation error for storm {sid}: {ex}")
continue
route_vector = np.column_stack((lon_interp, lat_interp)).flatten()
if np.isnan(route_vector).any():
continue
route_vectors.append(route_vector)
storm_ids.append(sid)
# Interpolate wind and pressure
if wind is not None and len(wind) >= 2:
try:
wind_interp = interp1d(t, wind, kind='linear', fill_value='extrapolate')(t_new)
except Exception as ex:
logging.error(f"Wind interpolation error for storm {sid}: {ex}")
wind_interp = np.full(max_length, np.nan)
else:
wind_interp = np.full(max_length, np.nan)
if pres is not None and len(pres) >= 2:
try:
pres_interp = interp1d(t, pres, kind='linear', fill_value='extrapolate')(t_new)
except Exception as ex:
logging.error(f"Pressure interpolation error for storm {sid}: {ex}")
pres_interp = np.full(max_length, np.nan)
else:
pres_interp = np.full(max_length, np.nan)
wind_curves.append(wind_interp)
pres_curves.append(pres_interp)
logging.info(f"Storms with valid route vectors: {len(route_vectors)}")
if len(route_vectors) == 0:
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid storms after interpolation."
route_vectors = np.array(route_vectors)
wind_curves = np.array(wind_curves)
pres_curves = np.array(pres_curves)
# Run TSNE on route vectors
if len(route_vectors) < 5:
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "Need at least 5 storms for clustering."
tsne = TSNE(n_components=2, random_state=42, verbose=1, perplexity=min(30, len(route_vectors)-1))
tsne_results = tsne.fit_transform(route_vectors)
# Dynamic DBSCAN
selected_labels = None
selected_eps = None
for eps in np.linspace(1.0, 10.0, 91):
dbscan = DBSCAN(eps=eps, min_samples=max(2, len(route_vectors)//10))
labels = dbscan.fit_predict(tsne_results)
clusters = set(labels) - {-1}
if 2 <= len(clusters) <= min(10, len(route_vectors)//2):
selected_labels = labels
selected_eps = eps
break
if selected_labels is None:
selected_eps = 5.0
dbscan = DBSCAN(eps=selected_eps, min_samples=max(2, len(route_vectors)//10))
selected_labels = dbscan.fit_predict(tsne_results)
logging.info(f"Selected DBSCAN eps: {selected_eps:.2f} yielding {len(set(selected_labels)-{-1})} clusters.")
# TSNE scatter plot
fig_tsne = go.Figure()
colors = px.colors.qualitative.Set3
unique_labels = sorted(set(selected_labels) - {-1})
for i, label in enumerate(unique_labels):
indices = np.where(selected_labels == label)[0]
fig_tsne.add_trace(go.Scatter(
x=tsne_results[indices, 0],
y=tsne_results[indices, 1],
mode='markers',
marker=dict(color=colors[i % len(colors)]),
name=f"Cluster {label}"
))
noise_indices = np.where(selected_labels == -1)[0]
if len(noise_indices) > 0:
fig_tsne.add_trace(go.Scatter(
x=tsne_results[noise_indices, 0],
y=tsne_results[noise_indices, 1],
mode='markers',
marker=dict(color='grey'),
name='Noise'
))
fig_tsne.update_layout(
title="t-SNE of Storm Routes",
xaxis_title="t-SNE Dim 1",
yaxis_title="t-SNE Dim 2"
)
# Compute mean routes and curves for each cluster
fig_routes = go.Figure()
cluster_stats = []
for i, label in enumerate(unique_labels):
indices = np.where(selected_labels == label)[0]
cluster_ids = [storm_ids[j] for j in indices]
cluster_vectors = route_vectors[indices, :]
mean_vector = np.mean(cluster_vectors, axis=0)
mean_route = mean_vector.reshape((max_length, 2))
mean_lon = mean_route[:, 0]
mean_lat = mean_route[:, 1]
fig_routes.add_trace(go.Scattergeo(
lon=mean_lon,
lat=mean_lat,
mode='lines',
line=dict(width=4, color=colors[i % len(colors)]),
name=f"Cluster {label} Mean Route"
))
# Compute mean curves
cluster_winds = wind_curves[indices, :]
cluster_pres = pres_curves[indices, :]
mean_wind_curve = np.nanmean(cluster_winds, axis=0)
mean_pres_curve = np.nanmean(cluster_pres, axis=0)
cluster_stats.append((label, mean_wind_curve, mean_pres_curve))
fig_routes.update_layout(
title="Cluster Mean Routes",
geo=dict(projection_type='natural earth', showland=True),
height=600
)
# Create cluster stats plot
x_axis = np.linspace(0, 1, max_length)
fig_stats = make_subplots(rows=2, cols=1, shared_xaxes=True,
subplot_titles=("Mean Wind Speed (knots)", "Mean MSLP (hPa)"))
for i, (label, wind_curve, pres_curve) in enumerate(cluster_stats):
fig_stats.add_trace(go.Scatter(
x=x_axis,
y=wind_curve,
mode='lines',
line=dict(width=2, color=colors[i % len(colors)]),
name=f"Cluster {label} Mean Wind",
showlegend=True
), row=1, col=1)
fig_stats.add_trace(go.Scatter(
x=x_axis,
y=pres_curve,
mode='lines',
line=dict(width=2, color=colors[i % len(colors)]),
name=f"Cluster {label} Mean MSLP",
showlegend=False
), row=2, col=1)
fig_stats.update_layout(
title="Cluster Mean Curves",
xaxis_title="Normalized Route Index",
yaxis_title="Mean Wind Speed (knots)",
xaxis2_title="Normalized Route Index",
yaxis2_title="Mean MSLP (hPa)",
height=600
)
info = f"TSNE clustering complete. Selected eps: {selected_eps:.2f}. Clusters: {len(unique_labels)}. Total storms: {len(route_vectors)}."
return fig_tsne, fig_routes, fig_stats, info
except Exception as e:
logging.error(f"Error in TSNE clustering: {e}")
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), f"Error in TSNE clustering: {e}"
# -----------------------------
# Animation Functions
# -----------------------------
def generate_track_video_from_csv(year, storm_id, standard):
"""Generate track video from CSV data"""
storm_df = typhoon_data[typhoon_data['SID'] == storm_id].copy()
if storm_df.empty:
logging.error(f"No data found for storm: {storm_id}")
return None
storm_df = storm_df.sort_values('ISO_TIME')
lats = storm_df['LAT'].astype(float).values
lons = storm_df['LON'].astype(float).values
times = pd.to_datetime(storm_df['ISO_TIME']).values
if 'USA_WIND' in storm_df.columns:
winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').values
else:
winds = np.full(len(lats), np.nan)
storm_name = storm_df['NAME'].iloc[0] if pd.notnull(storm_df['NAME'].iloc[0]) else "Unnamed"
basin = storm_df['SID'].iloc[0][:2]
season = storm_df['SEASON'].iloc[0] if 'SEASON' in storm_df.columns else year
min_lat, max_lat = np.min(lats), np.max(lats)
min_lon, max_lon = np.min(lons), np.max(lons)
lat_padding = max((max_lat - min_lat)*0.3, 5)
lon_padding = max((max_lon - min_lon)*0.3, 5)
fig = plt.figure(figsize=(12,6), dpi=100)
ax = plt.axes([0.05, 0.05, 0.60, 0.85],
projection=ccrs.PlateCarree(central_longitude=180))
ax.stock_img()
ax.set_extent([min_lon - lon_padding, max_lon + lon_padding, min_lat - lat_padding, max_lat + lat_padding],
crs=ccrs.PlateCarree())
ax.coastlines(resolution='50m', color='black', linewidth=1)
gl = ax.gridlines(draw_labels=True, color='gray', alpha=0.4, linestyle='--')
gl.top_labels = gl.right_labels = False
ax.set_title(f"{year} {storm_name} ({basin}) - {season}", fontsize=14)
line, = ax.plot([], [], transform=ccrs.PlateCarree(), color='blue', linewidth=2)
point, = ax.plot([], [], 'o', markersize=8, transform=ccrs.PlateCarree())
date_text = ax.text(0.02, 0.02, '', transform=ax.transAxes, fontsize=10,
bbox=dict(facecolor='white', alpha=0.8))
storm_info_text = fig.text(0.70, 0.60, '', fontsize=10,
bbox=dict(facecolor='white', alpha=0.8, boxstyle='round,pad=0.5'))
from matplotlib.lines import Line2D
standard_dict = atlantic_standard if standard=='atlantic' else taiwan_standard
legend_elements = [Line2D([0],[0], marker='o', color='w', label=cat,
markerfacecolor=details['hex'], markersize=8)
for cat, details in standard_dict.items()]
ax.legend(handles=legend_elements, title="Storm Categories",
loc='upper right', fontsize=9)
def init():
line.set_data([], [])
point.set_data([], [])
date_text.set_text('')
storm_info_text.set_text('')
return line, point, date_text, storm_info_text
def update(frame):
line.set_data(lons[:frame+1], lats[:frame+1])
point.set_data([lons[frame]], [lats[frame]])
wind_speed = winds[frame] if frame < len(winds) and not pd.isna(winds[frame]) else 0
category, color = categorize_typhoon_by_standard(wind_speed, standard)
point.set_color(color)
dt_str = pd.to_datetime(times[frame]).strftime('%Y-%m-%d %H:%M')
date_text.set_text(dt_str)
info_str = (f"Name: {storm_name}\nBasin: {basin}\nDate: {dt_str}\nWind: {wind_speed:.1f} kt\nCategory: {category}")
storm_info_text.set_text(info_str)
return line, point, date_text, storm_info_text
ani = animation.FuncAnimation(fig, update, init_func=init, frames=len(times),
interval=200, blit=True, repeat=True)
# Create animation file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4', dir=DATA_PATH)
try:
writer = animation.FFMpegWriter(fps=5, bitrate=1800)
ani.save(temp_file.name, writer=writer)
plt.close(fig)
return temp_file.name
except Exception as e:
logging.error(f"Error creating animation: {e}")
plt.close(fig)
return None
def simplified_track_video(year, basin, typhoon, standard):
"""Simplified track video function"""
if not typhoon:
return None
storm_id = typhoon.split('(')[-1].strip(')')
return generate_track_video_from_csv(year, storm_id, standard)
# -----------------------------
# FIXED: Update Typhoon Options Function
# -----------------------------
def update_typhoon_options_fixed(year, basin):
"""Fixed version of update_typhoon_options"""
try:
# Use the typhoon_data already loaded
if typhoon_data is None or typhoon_data.empty:
logging.error("No typhoon data available")
return gr.update(choices=[], value=None)
# Filter by year
if 'ISO_TIME' in typhoon_data.columns:
year_data = typhoon_data[typhoon_data['ISO_TIME'].dt.year == int(year)].copy()
elif 'SEASON' in typhoon_data.columns:
year_data = typhoon_data[typhoon_data['SEASON'] == int(year)].copy()
else:
# Fallback: use all data
year_data = typhoon_data.copy()
if basin != "All Basins":
# Extract basin code
basin_code = basin.split(' - ')[0] if ' - ' in basin else basin[:2]
# Filter by basin
if 'SID' in year_data.columns:
year_data = year_data[year_data['SID'].str.startswith(basin_code, na=False)]
elif 'BASIN' in year_data.columns:
year_data = year_data[year_data['BASIN'] == basin_code]
if year_data.empty:
logging.warning(f"No storms found for year {year} and basin {basin}")
return gr.update(choices=[], value=None)
# Get unique storms and create options
storms = year_data.groupby('SID').first().reset_index()
options = []
for _, storm in storms.iterrows():
name = storm.get('NAME', 'UNNAMED')
if pd.isna(name) or name == '' or name == 'UNNAMED':
name = 'UNNAMED'
sid = storm['SID']
options.append(f"{name} ({sid})")
if not options:
return gr.update(choices=[], value=None)
return gr.update(choices=sorted(options), value=options[0])
except Exception as e:
logging.error(f"Error in update_typhoon_options_fixed: {e}")
return gr.update(choices=[], value=None)
# -----------------------------
# Load & Process Data (using fixed functions)
# -----------------------------
logging.info("Starting data loading process...")
update_oni_data()
oni_data, typhoon_data = load_data_fixed(ONI_DATA_PATH, TYPHOON_DATA_PATH)
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
logging.info("Data loading complete.")
# -----------------------------
# Gradio Interface
# -----------------------------
# Fix the Gradio interface creation with explicit configuration
with gr.Blocks(title="Typhoon Analysis Dashboard", theme=gr.themes.Default()) as demo:
gr.Markdown("# Typhoon Analysis Dashboard")
with gr.Tab("Overview"):
gr.Markdown("""
## Welcome to the Typhoon Analysis Dashboard
This dashboard allows you to analyze typhoon data in relation to ENSO phases.
### Features:
- **Track Visualization**: View typhoon tracks by time period and ENSO phase.
- **Wind Analysis**: Examine wind speed vs ONI relationships.
- **Pressure Analysis**: Analyze pressure vs ONI relationships.
- **Longitude Analysis**: Study typhoon generation longitude vs ONI.
- **Path Animation**: View animated storm tracks on a world map.
- **TSNE Cluster**: Perform t-SNE clustering on storm routes.
### Data Status:
- **ONI Data**: %d years loaded
- **Typhoon Data**: %d records loaded
- **Merged Data**: %d typhoons with ONI values
""" % (len(oni_data), len(typhoon_data), len(merged_data)))
with gr.Tab("Track Visualization"):
with gr.Row():
start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
typhoon_search = gr.Textbox(label="Typhoon Search")
analyze_btn = gr.Button("Generate Tracks")
tracks_plot = gr.Plot(label="Typhoon Tracks", elem_id="tracks_plot")
typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
analyze_btn.click(fn=get_full_tracks,
inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
outputs=[tracks_plot, typhoon_count])
with gr.Tab("Wind Analysis"):
with gr.Row():
wind_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
wind_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
wind_typhoon_search = gr.Textbox(label="Typhoon Search")
wind_analyze_btn = gr.Button("Generate Wind Analysis")
wind_scatter = gr.Plot(label="Wind Speed vs ONI")
wind_regression_results = gr.Textbox(label="Wind Regression Results")
wind_analyze_btn.click(fn=get_wind_analysis,
inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search],
outputs=[wind_scatter, wind_regression_results])
with gr.Tab("Pressure Analysis"):
with gr.Row():
pressure_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
pressure_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
pressure_typhoon_search = gr.Textbox(label="Typhoon Search")
pressure_analyze_btn = gr.Button("Generate Pressure Analysis")
pressure_scatter = gr.Plot(label="Pressure vs ONI")
pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
pressure_analyze_btn.click(fn=get_pressure_analysis,
inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search],
outputs=[pressure_scatter, pressure_regression_results])
with gr.Tab("Longitude Analysis"):
with gr.Row():
lon_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
lon_end_year = gr.Number(label="End Year", value=2000, minimum=1900, maximum=2024, step=1)
lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)")
lon_analyze_btn = gr.Button("Generate Longitude Analysis")
regression_plot = gr.Plot(label="Longitude vs ONI")
slopes_text = gr.Textbox(label="Regression Slopes")
lon_regression_results = gr.Textbox(label="Longitude Regression Results")
lon_analyze_btn.click(fn=get_longitude_analysis,
inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search],
outputs=[regression_plot, slopes_text, lon_regression_results])
with gr.Tab("Tropical Cyclone Path Animation"):
with gr.Row():
year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2000")
basin_constant = gr.Textbox(value="All Basins", visible=False)
with gr.Row():
typhoon_dropdown = gr.Dropdown(label="Tropical Cyclone")
standard_dropdown = gr.Dropdown(label="Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic')
animate_btn = gr.Button("Generate Animation")
path_video = gr.Video(label="Tropical Cyclone Path Animation", format="mp4", interactive=False, elem_id="path_video")
animation_info = gr.Markdown("""
### Animation Instructions
1. Select a year.
2. Choose a tropical cyclone from the populated list.
3. Select a classification standard (Atlantic or Taiwan).
4. Click "Generate Animation".
5. The animation displays the storm track on a world map with dynamic sidebar information.
""")
# Update typhoon dropdown using fixed function
year_dropdown.change(fn=update_typhoon_options_fixed,
inputs=[year_dropdown, basin_constant],
outputs=typhoon_dropdown)
animate_btn.click(fn=simplified_track_video,
inputs=[year_dropdown, basin_constant, typhoon_dropdown, standard_dropdown],
outputs=path_video)
with gr.Tab("TSNE Cluster"):
with gr.Row():
tsne_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
tsne_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
tsne_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
tsne_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=12)
tsne_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
tsne_season = gr.Dropdown(label="Season", choices=['all', 'summer', 'winter'], value='all')
tsne_analyze_btn = gr.Button("Analyze")
tsne_plot = gr.Plot(label="t-SNE Clusters")
routes_plot = gr.Plot(label="Typhoon Routes with Mean Routes")
stats_plot = gr.Plot(label="Cluster Statistics")
cluster_info = gr.Textbox(label="Cluster Information", lines=10)
tsne_analyze_btn.click(fn=update_route_clusters,
inputs=[tsne_start_year, tsne_start_month, tsne_end_year, tsne_end_month, tsne_enso_phase, tsne_season],
outputs=[tsne_plot, routes_plot, stats_plot, cluster_info])
if __name__ == "__main__":
# Remove the share parameter for HuggingFace Spaces
demo.launch()