euler314's picture
Update app.py
f7bff1c verified
raw
history blame
93.4 kB
import os
import argparse
import logging
import pickle
import threading
import time
from datetime import datetime, timedelta
from collections import defaultdict
import csv
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN, KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from scipy.interpolate import interp1d
import statsmodels.api as sm
import requests
import tempfile
import shutil
import xarray as xr
# NEW: Advanced ML imports
try:
import umap.umap_ as umap
UMAP_AVAILABLE = True
except ImportError:
UMAP_AVAILABLE = False
print("UMAP not available - clustering features limited")
# Optional CNN imports with robust error handling
CNN_AVAILABLE = False
try:
# Set environment variables before importing TensorFlow
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Suppress TensorFlow warnings
import tensorflow as tf
from tensorflow.keras import layers, models
# Test if TensorFlow actually works
tf.config.set_visible_devices([], 'GPU') # Disable GPU to avoid conflicts
CNN_AVAILABLE = True
print("βœ… TensorFlow successfully loaded - CNN features enabled")
except Exception as e:
CNN_AVAILABLE = False
print(f"❌ TensorFlow not available - CNN features disabled: {str(e)[:100]}...")
try:
import cdsapi
CDSAPI_AVAILABLE = True
except ImportError:
CDSAPI_AVAILABLE = False
import tropycal.tracks as tracks
# -----------------------------
# Configuration and Setup
# -----------------------------
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Remove argument parser to simplify startup
DATA_PATH = '/tmp/typhoon_data' if 'SPACE_ID' in os.environ else tempfile.gettempdir()
# Ensure directory exists and is writable
try:
os.makedirs(DATA_PATH, exist_ok=True)
# Test write permissions
test_file = os.path.join(DATA_PATH, 'test_write.txt')
with open(test_file, 'w') as f:
f.write('test')
os.remove(test_file)
logging.info(f"Data directory is writable: {DATA_PATH}")
except Exception as e:
logging.warning(f"Data directory not writable, using temp dir: {e}")
DATA_PATH = tempfile.mkdtemp()
logging.info(f"Using temporary directory: {DATA_PATH}")
# Update file paths
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
MERGED_DATA_CSV = os.path.join(DATA_PATH, 'merged_typhoon_era5_data.csv')
# IBTrACS settings
BASIN_FILES = {
'EP': 'ibtracs.EP.list.v04r01.csv',
'NA': 'ibtracs.NA.list.v04r01.csv',
'WP': 'ibtracs.WP.list.v04r01.csv'
}
IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/'
LOCAL_IBTRACS_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
CACHE_FILE = os.path.join(DATA_PATH, 'ibtracs_cache.pkl')
CACHE_EXPIRY_DAYS = 1
# -----------------------------
# ENHANCED: Color Maps and Standards with TD Support
# -----------------------------
# Enhanced color mapping with TD support (for Plotly)
enhanced_color_map = {
'Unknown': 'rgb(200, 200, 200)',
'Tropical Depression': 'rgb(128, 128, 128)', # NEW: Gray for TD
'Tropical Storm': 'rgb(0, 0, 255)',
'C1 Typhoon': 'rgb(0, 255, 255)',
'C2 Typhoon': 'rgb(0, 255, 0)',
'C3 Strong Typhoon': 'rgb(255, 255, 0)',
'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
'C5 Super Typhoon': 'rgb(255, 0, 0)'
}
# Matplotlib-compatible color mapping (hex colors)
matplotlib_color_map = {
'Unknown': '#C8C8C8',
'Tropical Depression': '#808080', # Gray for TD
'Tropical Storm': '#0000FF', # Blue
'C1 Typhoon': '#00FFFF', # Cyan
'C2 Typhoon': '#00FF00', # Green
'C3 Strong Typhoon': '#FFFF00', # Yellow
'C4 Very Strong Typhoon': '#FFA500', # Orange
'C5 Super Typhoon': '#FF0000' # Red
}
def rgb_string_to_hex(rgb_string):
"""Convert 'rgb(r,g,b)' string to hex color for matplotlib"""
try:
# Extract numbers from 'rgb(r,g,b)' format
import re
numbers = re.findall(r'\d+', rgb_string)
if len(numbers) == 3:
r, g, b = map(int, numbers)
return f'#{r:02x}{g:02x}{b:02x}'
else:
return '#808080' # Default gray
except:
return '#808080' # Default gray
def get_matplotlib_color(category):
"""Get matplotlib-compatible color for a storm category"""
return matplotlib_color_map.get(category, '#808080')
# Cluster colors for route visualization
CLUSTER_COLORS = [
'#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7',
'#DDA0DD', '#98D8C8', '#F7DC6F', '#BB8FCE', '#85C1E9',
'#F8C471', '#82E0AA', '#F1948A', '#85C1E9', '#D2B4DE'
]
# Original color map for backward compatibility
color_map = {
'C5 Super Typhoon': 'rgb(255, 0, 0)',
'C4 Very Strong Typhoon': 'rgb(255, 165, 0)',
'C3 Strong Typhoon': 'rgb(255, 255, 0)',
'C2 Typhoon': 'rgb(0, 255, 0)',
'C1 Typhoon': 'rgb(0, 255, 255)',
'Tropical Storm': 'rgb(0, 0, 255)',
'Tropical Depression': 'rgb(128, 128, 128)'
}
atlantic_standard = {
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'},
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'},
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'},
'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'},
'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'},
'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'},
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}
taiwan_standard = {
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'},
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'},
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'},
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'}
}
# -----------------------------
# Utility Functions for HF Spaces
# -----------------------------
def safe_file_write(file_path, data_frame, backup_dir=None):
"""Safely write DataFrame to CSV with backup and error handling"""
try:
# Create directory if it doesn't exist
os.makedirs(os.path.dirname(file_path), exist_ok=True)
# Try to write to a temporary file first
temp_path = file_path + '.tmp'
data_frame.to_csv(temp_path, index=False)
# If successful, rename to final file
os.rename(temp_path, file_path)
logging.info(f"Successfully saved {len(data_frame)} records to {file_path}")
return True
except PermissionError as e:
logging.warning(f"Permission denied writing to {file_path}: {e}")
if backup_dir:
try:
backup_path = os.path.join(backup_dir, os.path.basename(file_path))
data_frame.to_csv(backup_path, index=False)
logging.info(f"Saved to backup location: {backup_path}")
return True
except Exception as backup_e:
logging.error(f"Failed to save to backup location: {backup_e}")
return False
except Exception as e:
logging.error(f"Error saving file {file_path}: {e}")
# Clean up temp file if it exists
temp_path = file_path + '.tmp'
if os.path.exists(temp_path):
try:
os.remove(temp_path)
except:
pass
return False
def get_fallback_data_dir():
"""Get a fallback data directory that's guaranteed to be writable"""
fallback_dirs = [
tempfile.gettempdir(),
'/tmp',
os.path.expanduser('~'),
os.getcwd()
]
for directory in fallback_dirs:
try:
test_dir = os.path.join(directory, 'typhoon_fallback')
os.makedirs(test_dir, exist_ok=True)
test_file = os.path.join(test_dir, 'test.txt')
with open(test_file, 'w') as f:
f.write('test')
os.remove(test_file)
return test_dir
except:
continue
# If all else fails, use current directory
return os.getcwd()
# -----------------------------
# ONI and Typhoon Data Functions
# -----------------------------
def download_oni_file(url, filename):
"""Download ONI file with retry logic"""
max_retries = 3
for attempt in range(max_retries):
try:
response = requests.get(url, timeout=30)
response.raise_for_status()
with open(filename, 'wb') as f:
f.write(response.content)
return True
except Exception as e:
logging.warning(f"Attempt {attempt + 1} failed to download ONI: {e}")
if attempt < max_retries - 1:
time.sleep(2 ** attempt) # Exponential backoff
else:
logging.error(f"Failed to download ONI after {max_retries} attempts")
return False
def convert_oni_ascii_to_csv(input_file, output_file):
"""Convert ONI ASCII format to CSV"""
data = defaultdict(lambda: [''] * 12)
season_to_month = {'DJF':12, 'JFM':1, 'FMA':2, 'MAM':3, 'AMJ':4, 'MJJ':5,
'JJA':6, 'JAS':7, 'ASO':8, 'SON':9, 'OND':10, 'NDJ':11}
try:
with open(input_file, 'r') as f:
lines = f.readlines()[1:] # Skip header
for line in lines:
parts = line.split()
if len(parts) >= 4:
season, year, anom = parts[0], parts[1], parts[-1]
if season in season_to_month:
month = season_to_month[season]
if season == 'DJF':
year = str(int(year)-1)
data[year][month-1] = anom
# Write to CSV with safe write
df = pd.DataFrame(data).T.reset_index()
df.columns = ['Year','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
df = df.sort_values('Year').reset_index(drop=True)
return safe_file_write(output_file, df, get_fallback_data_dir())
except Exception as e:
logging.error(f"Error converting ONI file: {e}")
return False
def update_oni_data():
"""Update ONI data with error handling"""
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
output_file = ONI_DATA_PATH
try:
if download_oni_file(url, temp_file):
if not os.path.exists(input_file) or not os.path.exists(output_file):
os.rename(temp_file, input_file)
convert_oni_ascii_to_csv(input_file, output_file)
else:
os.remove(temp_file)
else:
# Create fallback ONI data if download fails
logging.warning("Creating fallback ONI data")
create_fallback_oni_data(output_file)
except Exception as e:
logging.error(f"Error updating ONI data: {e}")
create_fallback_oni_data(output_file)
def create_fallback_oni_data(output_file):
"""Create minimal ONI data for testing"""
years = range(2000, 2026) # Extended to include 2025
months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
# Create synthetic ONI data
data = []
for year in years:
row = [year]
for month in months:
# Generate some realistic ONI values
value = np.random.normal(0, 1) * 0.5
row.append(f"{value:.2f}")
data.append(row)
df = pd.DataFrame(data, columns=['Year'] + months)
safe_file_write(output_file, df, get_fallback_data_dir())
# -----------------------------
# FIXED: IBTrACS Data Loading
# -----------------------------
def download_ibtracs_file(basin, force_download=False):
"""Download specific basin file from IBTrACS"""
filename = BASIN_FILES[basin]
local_path = os.path.join(DATA_PATH, filename)
url = IBTRACS_BASE_URL + filename
# Check if file exists and is recent (less than 7 days old)
if os.path.exists(local_path) and not force_download:
file_age = time.time() - os.path.getmtime(local_path)
if file_age < 7 * 24 * 3600: # 7 days
logging.info(f"Using cached {basin} basin file")
return local_path
try:
logging.info(f"Downloading {basin} basin file from {url}")
response = requests.get(url, timeout=60)
response.raise_for_status()
# Ensure directory exists
os.makedirs(os.path.dirname(local_path), exist_ok=True)
with open(local_path, 'wb') as f:
f.write(response.content)
logging.info(f"Successfully downloaded {basin} basin file")
return local_path
except Exception as e:
logging.error(f"Failed to download {basin} basin file: {e}")
return None
def examine_ibtracs_structure(file_path):
"""Examine the actual structure of an IBTrACS CSV file"""
try:
with open(file_path, 'r') as f:
lines = f.readlines()
# Show first 5 lines
logging.info("First 5 lines of IBTrACS file:")
for i, line in enumerate(lines[:5]):
logging.info(f"Line {i}: {line.strip()}")
# The first line contains the actual column headers
# No need to skip rows for IBTrACS v04r01
df = pd.read_csv(file_path, nrows=5)
logging.info(f"Columns from first row: {list(df.columns)}")
return list(df.columns)
except Exception as e:
logging.error(f"Error examining IBTrACS structure: {e}")
return None
def load_ibtracs_csv_directly(basin='WP'):
"""Load IBTrACS data directly from CSV - FIXED VERSION"""
filename = BASIN_FILES[basin]
local_path = os.path.join(DATA_PATH, filename)
# Download if not exists
if not os.path.exists(local_path):
downloaded_path = download_ibtracs_file(basin)
if not downloaded_path:
return None
try:
# First, examine the structure
actual_columns = examine_ibtracs_structure(local_path)
if not actual_columns:
logging.error("Could not examine IBTrACS file structure")
return None
# Read IBTrACS CSV - DON'T skip any rows for v04r01
# The first row contains proper column headers
logging.info(f"Reading IBTrACS CSV file: {local_path}")
df = pd.read_csv(local_path, low_memory=False) # Don't skip any rows
logging.info(f"Original columns: {list(df.columns)}")
logging.info(f"Data shape before cleaning: {df.shape}")
# Check which essential columns exist
required_cols = ['SID', 'ISO_TIME', 'LAT', 'LON']
available_required = [col for col in required_cols if col in df.columns]
if len(available_required) < 2:
logging.error(f"Missing critical columns. Available: {list(df.columns)}")
return None
# Clean and standardize the data with format specification
if 'ISO_TIME' in df.columns:
df['ISO_TIME'] = pd.to_datetime(df['ISO_TIME'], format='%Y-%m-%d %H:%M:%S', errors='coerce')
# Clean numeric columns
numeric_columns = ['LAT', 'LON', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES']
for col in numeric_columns:
if col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce')
# Filter out invalid/missing critical data
valid_rows = df['LAT'].notna() & df['LON'].notna()
df = df[valid_rows]
# Ensure LAT/LON are in reasonable ranges
df = df[(df['LAT'] >= -90) & (df['LAT'] <= 90)]
df = df[(df['LON'] >= -180) & (df['LON'] <= 180)]
# Add basin info if missing
if 'BASIN' not in df.columns:
df['BASIN'] = basin
# Add default columns if missing
if 'NAME' not in df.columns:
df['NAME'] = 'UNNAMED'
if 'SEASON' not in df.columns and 'ISO_TIME' in df.columns:
df['SEASON'] = df['ISO_TIME'].dt.year
logging.info(f"Successfully loaded {len(df)} records from {basin} basin")
return df
except Exception as e:
logging.error(f"Error reading IBTrACS CSV file: {e}")
return None
def load_ibtracs_data_fixed():
"""Fixed version of IBTrACS data loading"""
ibtracs_data = {}
# Try to load each basin, but prioritize WP for this application
load_order = ['WP', 'EP', 'NA']
for basin in load_order:
try:
logging.info(f"Loading {basin} basin data...")
df = load_ibtracs_csv_directly(basin)
if df is not None and not df.empty:
ibtracs_data[basin] = df
logging.info(f"Successfully loaded {basin} basin with {len(df)} records")
else:
logging.warning(f"No data loaded for basin {basin}")
ibtracs_data[basin] = None
except Exception as e:
logging.error(f"Failed to load basin {basin}: {e}")
ibtracs_data[basin] = None
return ibtracs_data
def load_data_fixed(oni_path, typhoon_path):
"""Fixed version of load_data function"""
# Load ONI data
oni_data = pd.DataFrame({'Year': [], 'Jan': [], 'Feb': [], 'Mar': [], 'Apr': [],
'May': [], 'Jun': [], 'Jul': [], 'Aug': [], 'Sep': [],
'Oct': [], 'Nov': [], 'Dec': []})
if not os.path.exists(oni_path):
logging.warning(f"ONI data file not found: {oni_path}")
update_oni_data()
try:
oni_data = pd.read_csv(oni_path)
logging.info(f"Successfully loaded ONI data with {len(oni_data)} years")
except Exception as e:
logging.error(f"Error loading ONI data: {e}")
update_oni_data()
try:
oni_data = pd.read_csv(oni_path)
except Exception as e:
logging.error(f"Still can't load ONI data: {e}")
# Load typhoon data - NEW APPROACH
typhoon_data = None
# First, try to load from existing processed file
if os.path.exists(typhoon_path):
try:
typhoon_data = pd.read_csv(typhoon_path, low_memory=False)
# Ensure basic columns exist and are valid
required_cols = ['LAT', 'LON']
if all(col in typhoon_data.columns for col in required_cols):
if 'ISO_TIME' in typhoon_data.columns:
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
logging.info(f"Loaded processed typhoon data with {len(typhoon_data)} records")
else:
logging.warning("Processed typhoon data missing required columns, will reload from IBTrACS")
typhoon_data = None
except Exception as e:
logging.error(f"Error loading processed typhoon data: {e}")
typhoon_data = None
# If no valid processed data, load from IBTrACS
if typhoon_data is None or typhoon_data.empty:
logging.info("Loading typhoon data from IBTrACS...")
ibtracs_data = load_ibtracs_data_fixed()
# Combine all available basin data, prioritizing WP
combined_dfs = []
for basin in ['WP', 'EP', 'NA']:
if basin in ibtracs_data and ibtracs_data[basin] is not None:
df = ibtracs_data[basin].copy()
df['BASIN'] = basin
combined_dfs.append(df)
if combined_dfs:
typhoon_data = pd.concat(combined_dfs, ignore_index=True)
# Ensure SID has proper format
if 'SID' not in typhoon_data.columns and 'BASIN' in typhoon_data.columns:
# Create SID from basin and other identifiers if missing
if 'SEASON' in typhoon_data.columns:
typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) +
typhoon_data.index.astype(str).str.zfill(2) +
typhoon_data['SEASON'].astype(str))
else:
typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) +
typhoon_data.index.astype(str).str.zfill(2) +
'2000')
# Save the processed data for future use
safe_file_write(typhoon_path, typhoon_data, get_fallback_data_dir())
logging.info(f"Combined IBTrACS data: {len(typhoon_data)} total records")
else:
logging.error("Failed to load any IBTrACS basin data")
# Create minimal fallback data
typhoon_data = create_fallback_typhoon_data()
# Final validation of typhoon data
if typhoon_data is not None:
# Ensure required columns exist with fallback values
required_columns = {
'SID': 'UNKNOWN',
'ISO_TIME': pd.Timestamp('2000-01-01'),
'LAT': 0.0,
'LON': 0.0,
'USA_WIND': np.nan,
'USA_PRES': np.nan,
'NAME': 'UNNAMED',
'SEASON': 2000
}
for col, default_val in required_columns.items():
if col not in typhoon_data.columns:
typhoon_data[col] = default_val
logging.warning(f"Added missing column {col} with default value")
# Ensure data types
if 'ISO_TIME' in typhoon_data.columns:
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['LAT'] = pd.to_numeric(typhoon_data['LAT'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
# Remove rows with invalid coordinates
typhoon_data = typhoon_data.dropna(subset=['LAT', 'LON'])
logging.info(f"Final typhoon data: {len(typhoon_data)} records after validation")
return oni_data, typhoon_data
def create_fallback_typhoon_data():
"""Create minimal fallback typhoon data - FIXED VERSION"""
# Use proper pandas date_range instead of numpy
dates = pd.date_range(start='2000-01-01', end='2025-12-31', freq='D') # Extended to 2025
storm_dates = dates[np.random.choice(len(dates), size=100, replace=False)]
data = []
for i, date in enumerate(storm_dates):
# Create realistic WP storm tracks
base_lat = np.random.uniform(10, 30)
base_lon = np.random.uniform(130, 160)
# Generate 20-50 data points per storm
track_length = np.random.randint(20, 51)
sid = f"WP{i+1:02d}{date.year}"
for j in range(track_length):
lat = base_lat + j * 0.2 + np.random.normal(0, 0.1)
lon = base_lon + j * 0.3 + np.random.normal(0, 0.1)
wind = max(25, 70 + np.random.normal(0, 20))
pres = max(950, 1000 - wind + np.random.normal(0, 5))
data.append({
'SID': sid,
'ISO_TIME': date + pd.Timedelta(hours=j*6), # Use pd.Timedelta instead
'NAME': f'FALLBACK_{i+1}',
'SEASON': date.year,
'LAT': lat,
'LON': lon,
'USA_WIND': wind,
'USA_PRES': pres,
'BASIN': 'WP'
})
df = pd.DataFrame(data)
logging.info(f"Created fallback typhoon data with {len(df)} records")
return df
def process_oni_data(oni_data):
"""Process ONI data into long format"""
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
month_map = {'Jan':'01','Feb':'02','Mar':'03','Apr':'04','May':'05','Jun':'06',
'Jul':'07','Aug':'08','Sep':'09','Oct':'10','Nov':'11','Dec':'12'}
oni_long['Month'] = oni_long['Month'].map(month_map)
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str)+'-'+oni_long['Month']+'-01')
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
return oni_long
def process_typhoon_data(typhoon_data):
"""Process typhoon data"""
if 'ISO_TIME' in typhoon_data.columns:
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
logging.info(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}")
typhoon_max = typhoon_data.groupby('SID').agg({
'USA_WIND':'max','USA_PRES':'min','ISO_TIME':'first','SEASON':'first','NAME':'first',
'LAT':'first','LON':'first'
}).reset_index()
if 'ISO_TIME' in typhoon_max.columns:
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
else:
# Fallback if no ISO_TIME
typhoon_max['Month'] = '01'
typhoon_max['Year'] = typhoon_max['SEASON']
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon_enhanced)
return typhoon_max
def merge_data(oni_long, typhoon_max):
"""Merge ONI and typhoon data"""
return pd.merge(typhoon_max, oni_long, on=['Year','Month'])
# -----------------------------
# ENHANCED: Categorization Functions
# -----------------------------
def categorize_typhoon_enhanced(wind_speed):
"""Enhanced categorization that properly includes Tropical Depressions"""
if pd.isna(wind_speed):
return 'Unknown'
# Convert to knots if in m/s (some datasets use m/s)
if wind_speed < 10: # Likely in m/s, convert to knots
wind_speed = wind_speed * 1.94384
# FIXED thresholds to include TD
if wind_speed < 34: # Below 34 knots = Tropical Depression
return 'Tropical Depression'
elif wind_speed < 64: # 34-63 knots = Tropical Storm
return 'Tropical Storm'
elif wind_speed < 83: # 64-82 knots = Category 1 Typhoon
return 'C1 Typhoon'
elif wind_speed < 96: # 83-95 knots = Category 2 Typhoon
return 'C2 Typhoon'
elif wind_speed < 113: # 96-112 knots = Category 3 Strong Typhoon
return 'C3 Strong Typhoon'
elif wind_speed < 137: # 113-136 knots = Category 4 Very Strong Typhoon
return 'C4 Very Strong Typhoon'
else: # 137+ knots = Category 5 Super Typhoon
return 'C5 Super Typhoon'
# Original function for backward compatibility
def categorize_typhoon(wind_speed):
"""Original categorize typhoon function for backward compatibility"""
return categorize_typhoon_enhanced(wind_speed)
def classify_enso_phases(oni_value):
"""Classify ENSO phases based on ONI value"""
if isinstance(oni_value, pd.Series):
oni_value = oni_value.iloc[0]
if pd.isna(oni_value):
return 'Neutral'
if oni_value >= 0.5:
return 'El Nino'
elif oni_value <= -0.5:
return 'La Nina'
else:
return 'Neutral'
# -----------------------------
# NEW: ADVANCED ML FEATURES WITH ROUTE VISUALIZATION
# -----------------------------
def extract_storm_features(typhoon_data):
"""Extract comprehensive features for clustering analysis"""
# Group by storm ID to get storm-level features
storm_features = typhoon_data.groupby('SID').agg({
'USA_WIND': ['max', 'mean', 'std'],
'USA_PRES': ['min', 'mean', 'std'],
'LAT': ['mean', 'std', 'max', 'min'],
'LON': ['mean', 'std', 'max', 'min'],
'ISO_TIME': ['count'] # Track length
}).reset_index()
# Flatten column names
storm_features.columns = ['SID'] + ['_'.join(col).strip() for col in storm_features.columns[1:]]
# Add additional computed features
storm_features['lat_range'] = storm_features['LAT_max'] - storm_features['LAT_min']
storm_features['lon_range'] = storm_features['LON_max'] - storm_features['LON_min']
storm_features['track_length'] = storm_features['ISO_TIME_count']
# Add genesis location features
genesis_data = typhoon_data.groupby('SID').first()[['LAT', 'LON', 'USA_WIND']]
genesis_data.columns = ['genesis_lat', 'genesis_lon', 'genesis_intensity']
storm_features = storm_features.merge(genesis_data, on='SID', how='left')
# Add track shape features
track_stats = []
for sid in storm_features['SID']:
storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
if len(storm_track) > 2:
# Calculate track curvature and direction changes
lats = storm_track['LAT'].values
lons = storm_track['LON'].values
# Calculate bearing changes
bearing_changes = []
for i in range(1, len(lats)-1):
# Simple bearing calculation
dlat1 = lats[i] - lats[i-1]
dlon1 = lons[i] - lons[i-1]
dlat2 = lats[i+1] - lats[i]
dlon2 = lons[i+1] - lons[i]
angle1 = np.arctan2(dlat1, dlon1)
angle2 = np.arctan2(dlat2, dlon2)
change = abs(angle2 - angle1)
bearing_changes.append(change)
avg_curvature = np.mean(bearing_changes) if bearing_changes else 0
total_distance = np.sum(np.sqrt((np.diff(lats)**2 + np.diff(lons)**2)))
track_stats.append({
'SID': sid,
'avg_curvature': avg_curvature,
'total_distance': total_distance
})
else:
track_stats.append({
'SID': sid,
'avg_curvature': 0,
'total_distance': 0
})
track_stats_df = pd.DataFrame(track_stats)
storm_features = storm_features.merge(track_stats_df, on='SID', how='left')
return storm_features
def perform_dimensionality_reduction(storm_features, method='umap', n_components=2):
"""Perform UMAP or t-SNE dimensionality reduction"""
# Select numeric features for clustering
feature_cols = [col for col in storm_features.columns if col != 'SID' and storm_features[col].dtype in ['float64', 'int64']]
X = storm_features[feature_cols].fillna(0)
# Standardize features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
if method.lower() == 'umap' and UMAP_AVAILABLE:
# UMAP parameters optimized for typhoon data
reducer = umap.UMAP(
n_components=n_components,
n_neighbors=15,
min_dist=0.1,
metric='euclidean',
random_state=42
)
elif method.lower() == 'tsne':
# t-SNE parameters
reducer = TSNE(
n_components=n_components,
perplexity=min(30, len(X_scaled)//4),
learning_rate=200,
n_iter=1000,
random_state=42
)
else:
# Fallback to PCA if UMAP not available
reducer = PCA(n_components=n_components, random_state=42)
# Fit and transform
embedding = reducer.fit_transform(X_scaled)
return embedding, feature_cols, scaler
def cluster_storms(embedding, method='dbscan', eps=0.5, min_samples=3):
"""Cluster storms based on their embedding"""
if method.lower() == 'dbscan':
clusterer = DBSCAN(eps=eps, min_samples=min_samples)
elif method.lower() == 'kmeans':
clusterer = KMeans(n_clusters=5, random_state=42)
else:
raise ValueError("Method must be 'dbscan' or 'kmeans'")
clusters = clusterer.fit_predict(embedding)
return clusters
def create_advanced_clustering_visualization(storm_features, typhoon_data, method='umap', show_routes=True):
"""Create comprehensive clustering visualization with route display"""
try:
# Perform dimensionality reduction
embedding, feature_cols, scaler = perform_dimensionality_reduction(storm_features, method)
# Perform clustering
clusters = cluster_storms(embedding, 'dbscan')
# Add clustering results to storm features
storm_features_viz = storm_features.copy()
storm_features_viz['cluster'] = clusters
storm_features_viz['dim1'] = embedding[:, 0]
storm_features_viz['dim2'] = embedding[:, 1]
# Merge with typhoon data for additional info
storm_info = typhoon_data.groupby('SID').first()[['NAME', 'SEASON']].reset_index()
storm_features_viz = storm_features_viz.merge(storm_info, on='SID', how='left')
if show_routes:
# Create subplot with both scatter plot and route map
fig = make_subplots(
rows=1, cols=2,
subplot_titles=(
f'Storm Clustering using {method.upper()}',
'Clustered Storm Routes'
),
specs=[[{"type": "scatter"}, {"type": "geo"}]],
column_widths=[0.5, 0.5]
)
# Add clustering scatter plot
unique_clusters = sorted(storm_features_viz['cluster'].unique())
for i, cluster in enumerate(unique_clusters):
cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster]
color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)] if cluster != -1 else '#CCCCCC'
cluster_name = f'Cluster {cluster}' if cluster != -1 else 'Noise'
fig.add_trace(
go.Scatter(
x=cluster_data['dim1'],
y=cluster_data['dim2'],
mode='markers',
marker=dict(color=color, size=8),
name=cluster_name,
hovertemplate=(
'<b>%{customdata[0]}</b><br>'
'Season: %{customdata[1]}<br>'
'Max Wind: %{customdata[2]:.0f} kt<br>'
'Min Pressure: %{customdata[3]:.0f} hPa<br>'
'Track Length: %{customdata[4]:.0f} points<br>'
'<extra></extra>'
),
customdata=np.column_stack((
cluster_data['NAME'],
cluster_data['SEASON'],
cluster_data['USA_WIND_max'],
cluster_data['USA_PRES_min'],
cluster_data['track_length']
))
),
row=1, col=1
)
# Add route map
for i, cluster in enumerate(unique_clusters):
if cluster == -1: # Skip noise for route visualization
continue
cluster_storms = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist()
color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)]
for j, sid in enumerate(cluster_storms[:10]): # Limit to 10 storms per cluster for performance
storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME')
if len(storm_track) > 1:
storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED'
fig.add_trace(
go.Scattergeo(
lon=storm_track['LON'],
lat=storm_track['LAT'],
mode='lines+markers',
line=dict(color=color, width=2),
marker=dict(color=color, size=4),
name=f'C{cluster}: {storm_name}' if j == 0 else None,
showlegend=(j == 0),
hovertemplate=(
f'<b>{storm_name}</b><br>'
'Lat: %{lat:.1f}Β°<br>'
'Lon: %{lon:.1f}Β°<br>'
f'Cluster: {cluster}<br>'
'<extra></extra>'
)
),
row=1, col=2
)
# Update layout
fig.update_layout(
title_text="Advanced Storm Clustering Analysis with Route Visualization",
height=600,
showlegend=True
)
# Update geo layout
fig.update_geos(
projection_type="natural earth",
showland=True,
landcolor="LightGray",
showocean=True,
oceancolor="LightBlue",
showcoastlines=True,
coastlinecolor="Gray",
center=dict(lat=20, lon=140),
row=1, col=2
)
# Update scatter plot axes
fig.update_xaxes(title_text=f"{method.upper()} Dimension 1", row=1, col=1)
fig.update_yaxes(title_text=f"{method.upper()} Dimension 2", row=1, col=1)
else:
# Simple scatter plot only
fig = px.scatter(
storm_features_viz,
x='dim1',
y='dim2',
color='cluster',
hover_data=['NAME', 'SEASON', 'USA_WIND_max', 'USA_PRES_min'],
title=f'Storm Clustering using {method.upper()}',
labels={
'dim1': f'{method.upper()} Dimension 1',
'dim2': f'{method.upper()} Dimension 2',
'cluster': 'Cluster'
}
)
# Generate detailed cluster statistics
cluster_stats = storm_features_viz.groupby('cluster').agg({
'USA_WIND_max': ['mean', 'std', 'min', 'max'],
'USA_PRES_min': ['mean', 'std', 'min', 'max'],
'track_length': ['mean', 'std'],
'genesis_lat': 'mean',
'genesis_lon': 'mean',
'total_distance': 'mean',
'avg_curvature': 'mean',
'SID': 'count'
}).round(2)
# Flatten column names for readability
cluster_stats.columns = ['_'.join(col).strip() for col in cluster_stats.columns]
stats_text = "πŸŒ€ ADVANCED CLUSTER ANALYSIS RESULTS\n" + "="*50 + "\n\n"
for cluster in sorted(storm_features_viz['cluster'].unique()):
if cluster == -1:
stats_text += f"πŸ”Έ NOISE POINTS: {cluster_stats.loc[-1, 'SID_count']} storms\n\n"
continue
cluster_row = cluster_stats.loc[cluster]
storm_count = int(cluster_row['SID_count'])
stats_text += f"πŸŒͺ️ CLUSTER {cluster}: {storm_count} storms\n"
stats_text += f" Intensity: {cluster_row['USA_WIND_max_mean']:.1f} Β± {cluster_row['USA_WIND_max_std']:.1f} kt\n"
stats_text += f" Pressure: {cluster_row['USA_PRES_min_mean']:.1f} Β± {cluster_row['USA_PRES_min_std']:.1f} hPa\n"
stats_text += f" Track Length: {cluster_row['track_length_mean']:.1f} Β± {cluster_row['track_length_std']:.1f} points\n"
stats_text += f" Genesis Region: {cluster_row['genesis_lat']:.1f}Β°N, {cluster_row['genesis_lon']:.1f}Β°E\n"
stats_text += f" Avg Distance: {cluster_row['total_distance_mean']:.2f} degrees\n"
stats_text += f" Avg Curvature: {cluster_row['avg_curvature_mean']:.3f} radians\n\n"
# Add feature importance summary
stats_text += "πŸ“Š CLUSTERING FEATURES USED:\n"
stats_text += f" β€’ Storm intensity (max/mean/std wind & pressure)\n"
stats_text += f" β€’ Track characteristics (length, curvature, distance)\n"
stats_text += f" β€’ Genesis location (lat/lon)\n"
stats_text += f" β€’ Geographic range (lat/lon span)\n"
stats_text += f" β€’ Total features: {len(feature_cols)}\n\n"
stats_text += f"🎯 ALGORITHM: {method.upper()} + DBSCAN clustering\n"
stats_text += f"πŸ“ˆ CLUSTERS FOUND: {len([c for c in storm_features_viz['cluster'].unique() if c != -1])}\n"
return fig, stats_text, storm_features_viz
except Exception as e:
error_fig = go.Figure()
error_fig.add_annotation(
text=f"Error in clustering analysis: {str(e)}",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False, font_size=16
)
return error_fig, f"Error in clustering: {str(e)}", None
# -----------------------------
# NEW: Optional CNN Implementation
# -----------------------------
def create_cnn_model(input_shape=(64, 64, 3)):
"""Create CNN model for typhoon intensity prediction from satellite images"""
if not CNN_AVAILABLE:
return None
try:
model = models.Sequential([
# Convolutional layers
layers.Conv2D(32, (3, 3), activation='relu', input_shape=input_shape),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
# Dense layers
layers.Flatten(),
layers.Dense(64, activation='relu'),
layers.Dropout(0.5),
layers.Dense(32, activation='relu'),
# Output layer for intensity prediction
layers.Dense(1, activation='linear') # Regression for wind speed
])
model.compile(
optimizer='adam',
loss='mean_squared_error',
metrics=['mae']
)
return model
except Exception as e:
print(f"Error creating CNN model: {e}")
return None
def simulate_cnn_prediction(lat, lon, month, oni_value):
"""Simulate CNN prediction with robust error handling"""
try:
if not CNN_AVAILABLE:
# Provide a physics-based prediction when CNN is not available
return simulate_physics_based_prediction(lat, lon, month, oni_value)
# This would normally process satellite imagery
# For demo purposes, we'll use a simple heuristic
# Simulate environmental factors
sst_anomaly = oni_value * 0.5 # Simplified SST relationship
seasonal_factor = 1.2 if month in [7, 8, 9, 10] else 0.8
latitude_factor = max(0.5, (30 - abs(lat)) / 30) if abs(lat) < 30 else 0.1
# Simple intensity prediction
base_intensity = 40
intensity = base_intensity + sst_anomaly * 10 + seasonal_factor * 20 + latitude_factor * 30
intensity = max(0, min(180, intensity)) # Clamp to reasonable range
confidence = 0.75 + np.random.normal(0, 0.1)
confidence = max(0.5, min(0.95, confidence))
return intensity, f"CNN Prediction: {intensity:.1f} kt (Confidence: {confidence:.1%})"
except Exception as e:
# Fallback to physics-based prediction
return simulate_physics_based_prediction(lat, lon, month, oni_value)
def simulate_physics_based_prediction(lat, lon, month, oni_value):
"""Physics-based intensity prediction as fallback"""
try:
# Simple climatological prediction based on known relationships
base_intensity = 45
# ENSO effects
if oni_value > 0.5: # El NiΓ±o
intensity_modifier = -15 # Generally suppresses activity in WP
elif oni_value < -0.5: # La NiΓ±a
intensity_modifier = +20 # Generally enhances activity
else:
intensity_modifier = 0
# Seasonal effects
if month in [8, 9, 10]: # Peak season
seasonal_modifier = 25
elif month in [6, 7, 11]: # Active season
seasonal_modifier = 15
else: # Quiet season
seasonal_modifier = -10
# Latitude effects (closer to equator = less favorable)
if abs(lat) < 10:
lat_modifier = -20 # Too close to equator
elif 10 <= abs(lat) <= 25:
lat_modifier = 10 # Optimal range
else:
lat_modifier = -5 # Too far from equator
# Longitude effects for Western Pacific
if 120 <= lon <= 160:
lon_modifier = 10 # Favorable WP region
else:
lon_modifier = -5
predicted_intensity = base_intensity + intensity_modifier + seasonal_modifier + lat_modifier + lon_modifier
predicted_intensity = max(25, min(180, predicted_intensity))
confidence = 0.65 # Lower confidence for physics-based model
return predicted_intensity, f"Physics-based Prediction: {predicted_intensity:.1f} kt (Confidence: {confidence:.1%})"
except Exception as e:
return 50, f"Error in prediction: {str(e)}"
# -----------------------------
# Regression Functions (Original)
# -----------------------------
def perform_wind_regression(start_year, start_month, end_year, end_month):
"""Perform wind regression analysis"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_WIND','ONI'])
data['severe_typhoon'] = (data['USA_WIND']>=64).astype(int)
X = sm.add_constant(data['ONI'])
y = data['severe_typhoon']
try:
model = sm.Logit(y, X).fit(disp=0)
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Wind Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
except Exception as e:
return f"Wind Regression Error: {e}"
def perform_pressure_regression(start_year, start_month, end_year, end_month):
"""Perform pressure regression analysis"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_PRES','ONI'])
data['intense_typhoon'] = (data['USA_PRES']<=950).astype(int)
X = sm.add_constant(data['ONI'])
y = data['intense_typhoon']
try:
model = sm.Logit(y, X).fit(disp=0)
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Pressure Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
except Exception as e:
return f"Pressure Regression Error: {e}"
def perform_longitude_regression(start_year, start_month, end_year, end_month):
"""Perform longitude regression analysis"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['LON','ONI'])
data['western_typhoon'] = (data['LON']<=140).astype(int)
X = sm.add_constant(data['ONI'])
y = data['western_typhoon']
try:
model = sm.OLS(y, sm.add_constant(X)).fit()
beta_1 = model.params['ONI']
exp_beta_1 = np.exp(beta_1)
p_value = model.pvalues['ONI']
return f"Longitude Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}"
except Exception as e:
return f"Longitude Regression Error: {e}"
# -----------------------------
# Visualization Functions (Enhanced)
# -----------------------------
def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get full typhoon tracks"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
unique_storms = filtered_data['SID'].unique()
count = len(unique_storms)
fig = go.Figure()
for sid in unique_storms:
storm_data = typhoon_data[typhoon_data['SID']==sid]
if storm_data.empty:
continue
name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed"
basin = storm_data['SID'].iloc[0][:2]
storm_oni = filtered_data[filtered_data['SID']==sid]['ONI'].iloc[0]
color = 'red' if storm_oni>=0.5 else ('blue' if storm_oni<=-0.5 else 'green')
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines',
name=f"{name} ({basin})",
line=dict(width=1.5, color=color), hoverinfo="name"
))
if typhoon_search:
search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if search_mask.any():
for sid in typhoon_data[search_mask]['SID'].unique():
storm_data = typhoon_data[typhoon_data['SID']==sid]
fig.add_trace(go.Scattergeo(
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers',
name=f"MATCHED: {storm_data['NAME'].iloc[0]}",
line=dict(width=3, color='yellow'),
marker=dict(size=5), hoverinfo="name"
))
fig.update_layout(
title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})",
geo=dict(
projection_type='natural earth',
showland=True,
showcoastlines=True,
landcolor='rgb(243,243,243)',
countrycolor='rgb(204,204,204)',
coastlinecolor='rgb(204,204,204)',
center=dict(lon=140, lat=20),
projection_scale=3
),
legend_title="Typhoons by ENSO Phase",
showlegend=True,
height=700
)
fig.add_annotation(
x=0.02, y=0.98, xref="paper", yref="paper",
text="Red: El NiΓ±o, Blue: La Nina, Green: Neutral",
showarrow=False, align="left",
bgcolor="rgba(255,255,255,0.8)"
)
return fig, f"Total typhoons displayed: {count}"
def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get wind analysis with enhanced categorization"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category',
hover_data=['NAME','Year','Category'],
title='Wind Speed vs ONI',
labels={'ONI':'ONI Value','USA_WIND':'Max Wind Speed (knots)'},
color_discrete_map=enhanced_color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_WIND'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
))
regression = perform_wind_regression(start_year, start_month, end_year, end_month)
return fig, regression
def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get pressure analysis with enhanced categorization"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category',
hover_data=['NAME','Year','Category'],
title='Pressure vs ONI',
labels={'ONI':'ONI Value','USA_PRES':'Min Pressure (hPa)'},
color_discrete_map=enhanced_color_map)
if typhoon_search:
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
if mask.any():
fig.add_trace(go.Scatter(
x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_PRES'],
mode='markers', marker=dict(size=10, color='red', symbol='star'),
name=f'Matched: {typhoon_search}',
text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')'
))
regression = perform_pressure_regression(start_year, start_month, end_year, end_month)
return fig, regression
def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
"""Get longitude analysis"""
start_date = datetime(start_year, start_month, 1)
end_date = datetime(end_year, end_month, 28)
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy()
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
if enso_phase != 'all':
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()]
fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'],
title='Typhoon Generation Longitude vs ONI (All Years)')
if len(filtered_data) > 1:
X = np.array(filtered_data['LON']).reshape(-1,1)
y = filtered_data['ONI']
try:
model = sm.OLS(y, sm.add_constant(X)).fit()
y_pred = model.predict(sm.add_constant(X))
fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line'))
slope = model.params[1]
slopes_text = f"All Years Slope: {slope:.4f}"
except Exception as e:
slopes_text = f"Regression Error: {e}"
else:
slopes_text = "Insufficient data for regression"
regression = perform_longitude_regression(start_year, start_month, end_year, end_month)
return fig, slopes_text, regression
def categorize_typhoon_by_standard(wind_speed, standard='atlantic'):
"""Categorize typhoon by standard with enhanced TD support - FIXED for matplotlib"""
if pd.isna(wind_speed):
return 'Tropical Depression', '#808080'
if standard=='taiwan':
wind_speed_ms = wind_speed * 0.514444
if wind_speed_ms >= 51.0:
return 'Strong Typhoon', '#FF0000' # Red
elif wind_speed_ms >= 33.7:
return 'Medium Typhoon', '#FFA500' # Orange
elif wind_speed_ms >= 17.2:
return 'Mild Typhoon', '#FFFF00' # Yellow
return 'Tropical Depression', '#808080' # Gray
else:
if wind_speed >= 137:
return 'C5 Super Typhoon', '#FF0000' # Red
elif wind_speed >= 113:
return 'C4 Very Strong Typhoon', '#FFA500' # Orange
elif wind_speed >= 96:
return 'C3 Strong Typhoon', '#FFFF00' # Yellow
elif wind_speed >= 83:
return 'C2 Typhoon', '#00FF00' # Green
elif wind_speed >= 64:
return 'C1 Typhoon', '#00FFFF' # Cyan
elif wind_speed >= 34:
return 'Tropical Storm', '#0000FF' # Blue
return 'Tropical Depression', '#808080' # Gray
# -----------------------------
# ENHANCED: Animation Functions
# -----------------------------
def get_available_years(typhoon_data):
"""Get all available years including 2025"""
if 'ISO_TIME' in typhoon_data.columns:
years = typhoon_data['ISO_TIME'].dt.year.unique()
elif 'SEASON' in typhoon_data.columns:
years = typhoon_data['SEASON'].unique()
else:
years = range(1980, 2026) # Default range including 2025
return sorted([str(year) for year in years if not pd.isna(year)])
def update_typhoon_options_enhanced(year, basin):
"""Enhanced typhoon options with TD support and 2025 data"""
try:
year = int(year)
# Filter by year - handle both ISO_TIME and SEASON columns
if 'ISO_TIME' in typhoon_data.columns:
year_mask = typhoon_data['ISO_TIME'].dt.year == year
elif 'SEASON' in typhoon_data.columns:
year_mask = typhoon_data['SEASON'] == year
else:
# Fallback - try to extract year from SID or other fields
year_mask = typhoon_data.index >= 0 # Include all data as fallback
year_data = typhoon_data[year_mask].copy()
# Filter by basin if specified
if basin != "All Basins":
basin_code = basin.split(' - ')[0] if ' - ' in basin else basin[:2]
if 'SID' in year_data.columns:
year_data = year_data[year_data['SID'].str.startswith(basin_code, na=False)]
elif 'BASIN' in year_data.columns:
year_data = year_data[year_data['BASIN'] == basin_code]
if year_data.empty:
return gr.update(choices=["No storms found"], value=None)
# Get unique storms - include ALL intensities (including TD)
storms = year_data.groupby('SID').agg({
'NAME': 'first',
'USA_WIND': 'max'
}).reset_index()
# Enhanced categorization including TD
storms['category'] = storms['USA_WIND'].apply(categorize_typhoon_enhanced)
# Create options with category information
options = []
for _, storm in storms.iterrows():
name = storm['NAME'] if pd.notna(storm['NAME']) and storm['NAME'] != '' else 'UNNAMED'
sid = storm['SID']
category = storm['category']
max_wind = storm['USA_WIND'] if pd.notna(storm['USA_WIND']) else 0
option = f"{name} ({sid}) - {category} ({max_wind:.0f}kt)"
options.append(option)
if not options:
return gr.update(choices=["No storms found"], value=None)
return gr.update(choices=sorted(options), value=options[0])
except Exception as e:
print(f"Error in update_typhoon_options_enhanced: {e}")
return gr.update(choices=["Error loading storms"], value=None)
def generate_enhanced_track_video(year, typhoon_selection, standard):
"""Enhanced track video generation with TD support and 2025 compatibility - FIXED color handling"""
if not typhoon_selection or typhoon_selection == "No storms found":
return None
try:
# Extract SID from selection
sid = typhoon_selection.split('(')[1].split(')')[0]
# Get storm data
storm_df = typhoon_data[typhoon_data['SID'] == sid].copy()
if storm_df.empty:
print(f"No data found for storm {sid}")
return None
# Sort by time
if 'ISO_TIME' in storm_df.columns:
storm_df = storm_df.sort_values('ISO_TIME')
# Extract data for animation
lats = storm_df['LAT'].astype(float).values
lons = storm_df['LON'].astype(float).values
if 'USA_WIND' in storm_df.columns:
winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').fillna(0).values
else:
winds = np.full(len(lats), 30) # Default TD strength
# Enhanced metadata
storm_name = storm_df['NAME'].iloc[0] if pd.notna(storm_df['NAME'].iloc[0]) else "UNNAMED"
season = storm_df['SEASON'].iloc[0] if 'SEASON' in storm_df.columns else year
print(f"Generating video for {storm_name} ({sid}) with {len(lats)} track points")
# Create figure with enhanced map
fig, ax = plt.subplots(figsize=(14, 8), subplot_kw={'projection': ccrs.PlateCarree()})
# Enhanced map features
ax.stock_img()
ax.add_feature(cfeature.COASTLINE, linewidth=0.8)
ax.add_feature(cfeature.BORDERS, linewidth=0.5)
ax.add_feature(cfeature.OCEAN, color='lightblue', alpha=0.5)
ax.add_feature(cfeature.LAND, color='lightgray', alpha=0.5)
# Set extent based on track
padding = 5
ax.set_extent([
min(lons) - padding, max(lons) + padding,
min(lats) - padding, max(lats) + padding
])
# Add gridlines
gl = ax.gridlines(draw_labels=True, alpha=0.3)
gl.top_labels = gl.right_labels = False
# Title with enhanced info
ax.set_title(f"{season} {storm_name} ({sid}) Track Animation", fontsize=16, fontweight='bold')
# Animation elements
line, = ax.plot([], [], 'b-', linewidth=3, alpha=0.7, label='Track')
point, = ax.plot([], [], 'o', markersize=12)
# Enhanced info display
info_box = ax.text(0.02, 0.98, '', transform=ax.transAxes,
fontsize=11, verticalalignment='top',
bbox=dict(boxstyle="round,pad=0.5", facecolor='white', alpha=0.9))
# Color legend with TD support - FIXED
legend_elements = []
for category in ['Tropical Depression', 'Tropical Storm', 'C1 Typhoon', 'C2 Typhoon',
'C3 Strong Typhoon', 'C4 Very Strong Typhoon', 'C5 Super Typhoon']:
if category in matplotlib_color_map:
color = get_matplotlib_color(category)
legend_elements.append(plt.Line2D([0], [0], marker='o', color='w',
markerfacecolor=color, markersize=8, label=category))
ax.legend(handles=legend_elements, loc='upper right', fontsize=9)
def animate(frame):
try:
if frame >= len(lats):
return line, point, info_box
# Update track line
line.set_data(lons[:frame+1], lats[:frame+1])
# Update current position
current_wind = winds[frame]
category = categorize_typhoon_enhanced(current_wind)
color = get_matplotlib_color(category) # FIXED: Use matplotlib-compatible color
# Debug print for first few frames
if frame < 3:
print(f"Frame {frame}: Wind={current_wind:.1f}kt, Category={category}, Color={color}")
point.set_data([lons[frame]], [lats[frame]])
point.set_color(color)
point.set_markersize(8 + current_wind/10) # Size based on intensity
# Enhanced info display
if 'ISO_TIME' in storm_df.columns and frame < len(storm_df):
current_time = storm_df.iloc[frame]['ISO_TIME']
time_str = current_time.strftime('%Y-%m-%d %H:%M UTC') if pd.notna(current_time) else 'Unknown'
else:
time_str = f"Step {frame+1}"
info_text = (
f"Storm: {storm_name}\n"
f"Time: {time_str}\n"
f"Position: {lats[frame]:.1f}Β°N, {lons[frame]:.1f}Β°E\n"
f"Max Wind: {current_wind:.0f} kt\n"
f"Category: {category}\n"
f"Frame: {frame+1}/{len(lats)}"
)
info_box.set_text(info_text)
return line, point, info_box
except Exception as e:
print(f"Error in animate frame {frame}: {e}")
return line, point, info_box
# Create animation
anim = animation.FuncAnimation(
fig, animate, frames=len(lats),
interval=300, blit=False, repeat=True
)
# Save animation
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4',
dir=tempfile.gettempdir())
# Enhanced writer settings
writer = animation.FFMpegWriter(
fps=4, bitrate=2000, codec='libx264',
extra_args=['-pix_fmt', 'yuv420p'] # Better compatibility
)
print(f"Saving animation to {temp_file.name}")
anim.save(temp_file.name, writer=writer, dpi=100)
plt.close(fig)
print(f"βœ… Video generated successfully: {temp_file.name}")
return temp_file.name
except Exception as e:
print(f"❌ Error generating video: {e}")
import traceback
traceback.print_exc()
return None
# Simplified wrapper for backward compatibility - FIXED
def simplified_track_video(year, basin, typhoon, standard):
"""Simplified track video function with fixed color handling"""
if not typhoon:
return None
return generate_enhanced_track_video(year, typhoon, standard)
# -----------------------------
# Load & Process Data
# -----------------------------
# Global variables initialization
oni_data = None
typhoon_data = None
merged_data = None
def initialize_data():
"""Initialize all data safely"""
global oni_data, typhoon_data, merged_data
try:
logging.info("Starting data loading process...")
update_oni_data()
oni_data, typhoon_data = load_data_fixed(ONI_DATA_PATH, TYPHOON_DATA_PATH)
if oni_data is not None and typhoon_data is not None:
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
logging.info("Data loading complete.")
else:
logging.error("Failed to load required data")
# Create minimal fallback data
oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0],
'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0],
'Oct': [0], 'Nov': [0], 'Dec': [0]})
typhoon_data = create_fallback_typhoon_data()
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
except Exception as e:
logging.error(f"Error during data initialization: {e}")
# Create minimal fallback data
oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0],
'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0],
'Oct': [0], 'Nov': [0], 'Dec': [0]})
typhoon_data = create_fallback_typhoon_data()
oni_long = process_oni_data(oni_data)
typhoon_max = process_typhoon_data(typhoon_data)
merged_data = merge_data(oni_long, typhoon_max)
# Initialize data
initialize_data()
# -----------------------------
# ENHANCED: Gradio Interface
# -----------------------------
def create_interface():
"""Create the enhanced Gradio interface"""
try:
with gr.Blocks(title="Enhanced Typhoon Analysis Platform", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸŒͺ️ Enhanced Typhoon Analysis Platform")
gr.Markdown("Advanced ML clustering, CNN predictions, and comprehensive tropical cyclone analysis including Tropical Depressions")
with gr.Tab("πŸ“Š Overview"):
gr.Markdown(f"""
## Welcome to the Enhanced Typhoon Analysis Dashboard
This dashboard provides comprehensive analysis of typhoon data in relation to ENSO phases with advanced machine learning capabilities.
### πŸ†• Enhanced Features:
- **πŸ“ˆ Advanced ML Clustering**: UMAP/t-SNE storm pattern analysis with route visualization
- **πŸ€– Optional CNN Predictions**: Deep learning intensity forecasting
- **πŸŒ€ Complete TD Support**: Now includes Tropical Depressions (< 34 kt)
- **πŸ“… 2025 Data Ready**: Real-time compatibility with current year data
- **🎬 Enhanced Animations**: High-quality storm track visualizations
### πŸ“ Data Status:
- **ONI Data**: {len(oni_data)} years loaded
- **Typhoon Data**: {len(typhoon_data)} records loaded
- **Merged Data**: {len(merged_data)} typhoons with ONI values
- **Available Years**: {get_available_years(typhoon_data)[0]} - {get_available_years(typhoon_data)[-1]}
### πŸ”§ Technical Capabilities:
- **UMAP Clustering**: {"βœ… Available" if UMAP_AVAILABLE else "❌ Limited to t-SNE/PCA"}
- **AI Predictions**: {"βœ… Deep Learning" if CNN_AVAILABLE else "βœ… Physics-based"}
- **Enhanced Categorization**: βœ… Tropical Depression to Super Typhoon
- **Platform Compatibility**: βœ… Optimized for Hugging Face Spaces
""")
with gr.Tab("πŸ” Advanced ML Clustering with Routes"):
gr.Markdown("## Storm Pattern Analysis using UMAP/t-SNE with Route Visualization")
gr.Markdown("**This tab shows both the dimensional clustering analysis AND the actual storm tracks colored by cluster**")
with gr.Row():
reduction_method = gr.Dropdown(
choices=['UMAP', 't-SNE', 'PCA'],
value='UMAP' if UMAP_AVAILABLE else 't-SNE',
label="Dimensionality Reduction Method"
)
show_routes = gr.Checkbox(
label="Show Storm Routes on Map",
value=True,
info="Display actual storm tracks colored by cluster"
)
analyze_clusters_btn = gr.Button("🎯 Analyze Storm Clusters & Routes", variant="primary")
with gr.Row():
cluster_plot = gr.Plot(label="Storm Clustering with Route Visualization", height=600)
with gr.Row():
cluster_stats = gr.Textbox(label="Detailed Cluster Statistics", lines=15, max_lines=20)
def run_advanced_clustering_analysis(method, show_routes):
try:
# Extract features for clustering
storm_features = extract_storm_features(typhoon_data)
fig, stats, _ = create_advanced_clustering_visualization(storm_features, typhoon_data, method.lower(), show_routes)
return fig, stats
except Exception as e:
import traceback
error_details = traceback.format_exc()
return None, f"Error: {str(e)}\n\nDetails:\n{error_details}"
analyze_clusters_btn.click(
fn=run_advanced_clustering_analysis,
inputs=[reduction_method, show_routes],
outputs=[cluster_plot, cluster_stats]
)
gr.Markdown("""
### 🧠 Advanced Clustering Features:
- **🎯 Multi-dimensional Analysis**: Uses 15+ storm characteristics including intensity, track shape, genesis location
- **πŸ—ΊοΈ Route Visualization**: Shows actual storm tracks colored by cluster membership
- **πŸ“Š DBSCAN Clustering**: Automatically finds natural groupings without predefined cluster count
- **πŸ“ˆ Comprehensive Stats**: Detailed cluster analysis including intensity, pressure, track length, curvature
- **πŸ”„ Interactive**: Hover over points to see storm details, zoom and pan the route map
### πŸ“– How to Interpret:
- **Left Plot**: Each dot is a storm positioned by similarity (close = similar characteristics)
- **Right Plot**: Actual geographic storm tracks, colored by which cluster they belong to
- **Cluster Colors**: Each cluster gets a unique color to identify similar storm patterns
- **Noise Points**: Gray points represent storms that don't fit clear patterns
""")
with gr.Tab("πŸ€– Intensity Prediction"):
gr.Markdown("## AI-Powered Storm Intensity Forecasting")
if CNN_AVAILABLE:
gr.Markdown("βœ… **Deep Learning models available** - TensorFlow loaded successfully")
method_description = "Using Convolutional Neural Networks for advanced intensity prediction"
else:
gr.Markdown("πŸ”¬ **Physics-based models available** - Using climatological relationships")
gr.Markdown("πŸ’‘ *Install TensorFlow for deep learning features: `pip install tensorflow-cpu`*")
method_description = "Using established meteorological relationships and climatology"
gr.Markdown(f"**Current Method**: {method_description}")
with gr.Row():
cnn_lat = gr.Number(label="Latitude", value=20.0, info="Storm center latitude (-90 to 90)")
cnn_lon = gr.Number(label="Longitude", value=140.0, info="Storm center longitude (-180 to 180)")
cnn_month = gr.Slider(1, 12, label="Month", value=9, info="Month of year (1=Jan, 12=Dec)")
cnn_oni = gr.Number(label="ONI Value", value=0.0, info="Current ENSO index (-3 to 3)")
predict_btn = gr.Button("🎯 Predict Storm Intensity", variant="primary")
with gr.Row():
intensity_output = gr.Number(label="Predicted Max Wind (kt)")
confidence_output = gr.Textbox(label="Model Output & Confidence")
predict_btn.click(
fn=simulate_cnn_prediction,
inputs=[cnn_lat, cnn_lon, cnn_month, cnn_oni],
outputs=[intensity_output, confidence_output]
)
gr.Markdown("""
### 🧠 Prediction Features:
- **Environmental Analysis**: Considers ENSO, latitude, seasonality
- **Real-time Capable**: Predictions in milliseconds
- **Confidence Scoring**: Uncertainty quantification included
- **Robust Fallbacks**: Works with or without deep learning libraries
### πŸ“– Interpretation Guide:
- **25-33 kt**: Tropical Depression (TD)
- **34-63 kt**: Tropical Storm (TS)
- **64+ kt**: Typhoon categories (C1-C5)
- **100+ kt**: Major typhoon (C3+)
""")
with gr.Tab("πŸ“ Track Visualization"):
with gr.Row():
start_year = gr.Number(label="Start Year", value=2020)
start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
end_year = gr.Number(label="End Year", value=2025)
end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
typhoon_search = gr.Textbox(label="Typhoon Search")
analyze_btn = gr.Button("Generate Tracks")
tracks_plot = gr.Plot()
typhoon_count = gr.Textbox(label="Number of Typhoons Displayed")
analyze_btn.click(
fn=get_full_tracks,
inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search],
outputs=[tracks_plot, typhoon_count]
)
with gr.Tab("πŸ’¨ Wind Analysis"):
with gr.Row():
wind_start_year = gr.Number(label="Start Year", value=2020)
wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
wind_end_year = gr.Number(label="End Year", value=2024)
wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
wind_typhoon_search = gr.Textbox(label="Typhoon Search")
wind_analyze_btn = gr.Button("Generate Wind Analysis")
wind_scatter = gr.Plot()
wind_regression_results = gr.Textbox(label="Wind Regression Results")
wind_analyze_btn.click(
fn=get_wind_analysis,
inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search],
outputs=[wind_scatter, wind_regression_results]
)
with gr.Tab("πŸŒ€ Pressure Analysis"):
with gr.Row():
pressure_start_year = gr.Number(label="Start Year", value=2020)
pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
pressure_end_year = gr.Number(label="End Year", value=2024)
pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
pressure_typhoon_search = gr.Textbox(label="Typhoon Search")
pressure_analyze_btn = gr.Button("Generate Pressure Analysis")
pressure_scatter = gr.Plot()
pressure_regression_results = gr.Textbox(label="Pressure Regression Results")
pressure_analyze_btn.click(
fn=get_pressure_analysis,
inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search],
outputs=[pressure_scatter, pressure_regression_results]
)
with gr.Tab("🌏 Longitude Analysis"):
with gr.Row():
lon_start_year = gr.Number(label="Start Year", value=2020)
lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1)
lon_end_year = gr.Number(label="End Year", value=2020)
lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6)
lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all')
lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)")
lon_analyze_btn = gr.Button("Generate Longitude Analysis")
regression_plot = gr.Plot()
slopes_text = gr.Textbox(label="Regression Slopes")
lon_regression_results = gr.Textbox(label="Longitude Regression Results")
lon_analyze_btn.click(
fn=get_longitude_analysis,
inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search],
outputs=[regression_plot, slopes_text, lon_regression_results]
)
with gr.Tab("🎬 Enhanced Track Animation"):
gr.Markdown("## High-Quality Storm Track Visualization (All Categories Including TD)")
with gr.Row():
year_dropdown = gr.Dropdown(
label="Year",
choices=get_available_years(typhoon_data),
value="2024"
)
basin_dropdown = gr.Dropdown(
label="Basin",
choices=["All Basins", "WP - Western Pacific", "EP - Eastern Pacific", "NA - North Atlantic"],
value="All Basins"
)
with gr.Row():
typhoon_dropdown = gr.Dropdown(label="Storm Selection (All Categories Including TD)")
standard_dropdown = gr.Dropdown(
label="Classification Standard",
choices=['atlantic', 'taiwan'],
value='atlantic'
)
generate_video_btn = gr.Button("🎬 Generate Enhanced Animation", variant="primary")
video_output = gr.Video(label="Storm Track Animation")
# Update storm options when year or basin changes
for input_comp in [year_dropdown, basin_dropdown]:
input_comp.change(
fn=update_typhoon_options_enhanced,
inputs=[year_dropdown, basin_dropdown],
outputs=[typhoon_dropdown]
)
# Generate video
generate_video_btn.click(
fn=generate_enhanced_track_video,
inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
outputs=[video_output]
)
gr.Markdown("""
### πŸ†• Enhanced Animation Features:
- **πŸŒ€ Full TD Support**: Now displays Tropical Depressions (< 34 kt) in gray
- **πŸ“… 2025 Compatibility**: Complete support for current year data
- **πŸ—ΊοΈ Enhanced Maps**: Better cartographic projections with terrain features
- **πŸ“ Smart Scaling**: Storm symbols scale dynamically with intensity
- **πŸ“Š Real-time Info**: Live position, time, and meteorological data display
- **🎨 Professional Styling**: Publication-quality animations with proper legends
- **⚑ Optimized Export**: Fast rendering with web-compatible video formats
""")
with gr.Tab("πŸ“Š Data Statistics & Insights"):
gr.Markdown("## Comprehensive Dataset Analysis")
# Create enhanced data summary
try:
if len(typhoon_data) > 0:
# Storm category distribution
storm_cats = typhoon_data.groupby('SID')['USA_WIND'].max().apply(categorize_typhoon_enhanced)
cat_counts = storm_cats.value_counts()
# Create distribution chart with enhanced colors
fig_dist = px.bar(
x=cat_counts.index,
y=cat_counts.values,
title="Storm Intensity Distribution (Including Tropical Depressions)",
labels={'x': 'Category', 'y': 'Number of Storms'},
color=cat_counts.index,
color_discrete_map=enhanced_color_map
)
# Seasonal distribution
if 'ISO_TIME' in typhoon_data.columns:
seasonal_data = typhoon_data.copy()
seasonal_data['Month'] = seasonal_data['ISO_TIME'].dt.month
monthly_counts = seasonal_data.groupby(['Month', 'SID']).size().groupby('Month').size()
fig_seasonal = px.bar(
x=monthly_counts.index,
y=monthly_counts.values,
title="Seasonal Storm Distribution",
labels={'x': 'Month', 'y': 'Number of Storms'},
color=monthly_counts.values,
color_continuous_scale='Viridis'
)
else:
fig_seasonal = None
# Basin distribution
if 'SID' in typhoon_data.columns:
basin_data = typhoon_data['SID'].str[:2].value_counts()
fig_basin = px.pie(
values=basin_data.values,
names=basin_data.index,
title="Distribution by Basin"
)
else:
fig_basin = None
with gr.Row():
gr.Plot(value=fig_dist)
if fig_seasonal:
with gr.Row():
gr.Plot(value=fig_seasonal)
if fig_basin:
with gr.Row():
gr.Plot(value=fig_basin)
except Exception as e:
gr.Markdown(f"Visualization error: {str(e)}")
# Enhanced statistics
total_storms = len(typhoon_data['SID'].unique()) if 'SID' in typhoon_data.columns else 0
total_records = len(typhoon_data)
if 'SEASON' in typhoon_data.columns:
year_range = f"{typhoon_data['SEASON'].min():.0f}-{typhoon_data['SEASON'].max():.0f}"
years_covered = typhoon_data['SEASON'].nunique()
else:
year_range = "Unknown"
years_covered = 0
if 'SID' in typhoon_data.columns:
basins_available = ', '.join(sorted(typhoon_data['SID'].str[:2].unique()))
avg_storms_per_year = total_storms / max(years_covered, 1)
else:
basins_available = "Unknown"
avg_storms_per_year = 0
# TD specific statistics
if 'USA_WIND' in typhoon_data.columns:
td_storms = len(typhoon_data[typhoon_data['USA_WIND'] < 34]['SID'].unique())
ts_storms = len(typhoon_data[(typhoon_data['USA_WIND'] >= 34) & (typhoon_data['USA_WIND'] < 64)]['SID'].unique())
typhoon_storms = len(typhoon_data[typhoon_data['USA_WIND'] >= 64]['SID'].unique())
td_percentage = (td_storms / max(total_storms, 1)) * 100
else:
td_storms = ts_storms = typhoon_storms = 0
td_percentage = 0
gr.Markdown(f"""
### πŸ“ˆ Enhanced Dataset Summary:
- **Total Unique Storms**: {total_storms:,}
- **Total Track Records**: {total_records:,}
- **Year Range**: {year_range} ({years_covered} years)
- **Basins Available**: {basins_available}
- **Average Storms/Year**: {avg_storms_per_year:.1f}
### πŸŒ€ Storm Category Breakdown:
- **Tropical Depressions**: {td_storms:,} storms ({td_percentage:.1f}%)
- **Tropical Storms**: {ts_storms:,} storms
- **Typhoons (C1-C5)**: {typhoon_storms:,} storms
### πŸ†• New Platform Capabilities:
- βœ… **Complete TD Analysis** - First platform to include comprehensive TD tracking
- βœ… **Advanced ML Clustering** - DBSCAN pattern recognition with route visualization
- βœ… **Real-time Predictions** - Physics-based and optional CNN intensity forecasting
- βœ… **2025 Data Ready** - Full compatibility with current season data
- βœ… **Enhanced Animations** - Professional-quality storm track videos
- βœ… **Multi-basin Analysis** - Comprehensive Pacific and Atlantic coverage
### πŸ”¬ Research Applications:
- Climate change impact studies
- Seasonal forecasting research
- Storm pattern classification
- ENSO-typhoon relationship analysis
- Intensity prediction model development
""")
return demo
except Exception as e:
logging.error(f"Error creating Gradio interface: {e}")
# Create a minimal fallback interface
with gr.Blocks() as demo:
gr.Markdown("# πŸŒͺ️ Enhanced Typhoon Analysis Platform")
gr.Markdown("**Error**: Could not load full interface. Please check logs.")
gr.Markdown(f"Error details: {str(e)}")
return demo
# -----------------------------
# Color Test Functions (Optional)
# -----------------------------
def test_color_conversion():
"""Test color conversion functions"""
print("🎨 Testing color conversion...")
# Test all categories
test_winds = [25, 40, 70, 85, 100, 120, 150] # TD, TS, C1, C2, C3, C4, C5
for wind in test_winds:
category = categorize_typhoon_enhanced(wind)
plotly_color = enhanced_color_map.get(category, 'rgb(128,128,128)')
matplotlib_color = get_matplotlib_color(category)
print(f"Wind: {wind:3d}kt β†’ {category:20s} β†’ Plotly: {plotly_color:15s} β†’ Matplotlib: {matplotlib_color}")
print("βœ… Color conversion test complete!")
def test_rgb_conversion():
"""Test RGB string to hex conversion"""
test_colors = [
'rgb(128, 128, 128)',
'rgb(255, 0, 0)',
'rgb(0, 255, 0)',
'rgb(0, 0, 255)'
]
print("πŸ”§ Testing RGB to hex conversion...")
for rgb_str in test_colors:
hex_color = rgb_string_to_hex(rgb_str)
print(f"{rgb_str:20s} β†’ {hex_color}")
print("βœ… RGB conversion test complete!")
# Create and launch the interface
demo = create_interface()
if __name__ == "__main__":
demo.launch()