Spaces:
Sleeping
Sleeping
import os | |
import argparse | |
import logging | |
import pickle | |
import threading | |
import time | |
from datetime import datetime, timedelta | |
from collections import defaultdict | |
import csv | |
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.animation as animation | |
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas | |
import cartopy.crs as ccrs | |
import cartopy.feature as cfeature | |
import plotly.graph_objects as go | |
import plotly.express as px | |
from plotly.subplots import make_subplots | |
from sklearn.manifold import TSNE | |
from sklearn.cluster import DBSCAN | |
from sklearn.preprocessing import StandardScaler | |
from scipy.interpolate import interp1d | |
import statsmodels.api as sm | |
import requests | |
import tempfile | |
import shutil | |
import xarray as xr | |
try: | |
import cdsapi | |
CDSAPI_AVAILABLE = True | |
except ImportError: | |
CDSAPI_AVAILABLE = False | |
import tropycal.tracks as tracks | |
# ----------------------------- | |
# Configuration and Setup | |
# ----------------------------- | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s' | |
) | |
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard') | |
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory') | |
args = parser.parse_args() | |
DATA_PATH = args.data_path | |
# Update data paths for Huggingface Spaces | |
TEMP_DIR = tempfile.gettempdir() | |
DATA_PATH = os.environ.get('DATA_PATH', TEMP_DIR) | |
# Ensure directory exists | |
os.makedirs(DATA_PATH, exist_ok=True) | |
# Update your file paths | |
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv') | |
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv') | |
MERGED_DATA_CSV = os.path.join(DATA_PATH, 'merged_typhoon_era5_data.csv') | |
# IBTrACS settings (for typhoon options) | |
BASIN_FILES = { | |
'EP': 'ibtracs.EP.list.v04r01.csv', | |
'NA': 'ibtracs.NA.list.v04r01.csv', | |
'WP': 'ibtracs.WP.list.v04r01.csv' | |
} | |
IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/' | |
LOCAL_IBTRACS_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv') | |
CACHE_FILE = os.path.join(DATA_PATH, 'ibtracs_cache.pkl') | |
CACHE_EXPIRY_DAYS = 1 | |
# ----------------------------- | |
# Color Maps and Standards | |
# ----------------------------- | |
color_map = { | |
'C5 Super Typhoon': 'rgb(255, 0, 0)', | |
'C4 Very Strong Typhoon': 'rgb(255, 165, 0)', | |
'C3 Strong Typhoon': 'rgb(255, 255, 0)', | |
'C2 Typhoon': 'rgb(0, 255, 0)', | |
'C1 Typhoon': 'rgb(0, 255, 255)', | |
'Tropical Storm': 'rgb(0, 0, 255)', | |
'Tropical Depression': 'rgb(128, 128, 128)' | |
} | |
atlantic_standard = { | |
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'}, | |
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'}, | |
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'}, | |
'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'}, | |
'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'}, | |
'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'}, | |
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'} | |
} | |
taiwan_standard = { | |
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'}, | |
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'}, | |
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'}, | |
'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'} | |
} | |
# ----------------------------- | |
# Season and Regions | |
# ----------------------------- | |
season_months = { | |
'all': list(range(1, 13)), | |
'summer': [6, 7, 8], | |
'winter': [12, 1, 2] | |
} | |
regions = { | |
"Taiwan Land": {"lat_min": 21.8, "lat_max": 25.3, "lon_min": 119.5, "lon_max": 122.1}, | |
"Taiwan Sea": {"lat_min": 19, "lat_max": 28, "lon_min": 117, "lon_max": 125}, | |
"Japan": {"lat_min": 20, "lat_max": 45, "lon_min": 120, "lon_max": 150}, | |
"China": {"lat_min": 18, "lat_max": 53, "lon_min": 73, "lon_max": 135}, | |
"Hong Kong": {"lat_min": 21.5, "lat_max": 23, "lon_min": 113, "lon_max": 115}, | |
"Philippines": {"lat_min": 5, "lat_max": 21, "lon_min": 115, "lon_max": 130} | |
} | |
# ----------------------------- | |
# ONI and Typhoon Data Functions | |
# ----------------------------- | |
def download_oni_file(url, filename): | |
response = requests.get(url) | |
response.raise_for_status() | |
with open(filename, 'wb') as f: | |
f.write(response.content) | |
return True | |
def convert_oni_ascii_to_csv(input_file, output_file): | |
data = defaultdict(lambda: [''] * 12) | |
season_to_month = {'DJF':12, 'JFM':1, 'FMA':2, 'MAM':3, 'AMJ':4, 'MJJ':5, | |
'JJA':6, 'JAS':7, 'ASO':8, 'SON':9, 'OND':10, 'NDJ':11} | |
with open(input_file, 'r') as f: | |
lines = f.readlines()[1:] | |
for line in lines: | |
parts = line.split() | |
if len(parts) >= 4: | |
season, year, anom = parts[0], parts[1], parts[-1] | |
if season in season_to_month: | |
month = season_to_month[season] | |
if season == 'DJF': | |
year = str(int(year)-1) | |
data[year][month-1] = anom | |
with open(output_file, 'w', newline='') as f: | |
writer = csv.writer(f) | |
writer.writerow(['Year','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']) | |
for year in sorted(data.keys()): | |
writer.writerow([year] + data[year]) | |
def update_oni_data(): | |
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt" | |
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt") | |
input_file = os.path.join(DATA_PATH, "oni.ascii.txt") | |
output_file = ONI_DATA_PATH | |
if download_oni_file(url, temp_file): | |
if not os.path.exists(input_file) or not os.path.exists(output_file): | |
os.replace(temp_file, input_file) | |
convert_oni_ascii_to_csv(input_file, output_file) | |
else: | |
os.remove(temp_file) | |
def load_data(oni_path, typhoon_path): | |
# Create default empty DataFrames with minimum structure | |
oni_data = pd.DataFrame({'Year': [], 'Jan': [], 'Feb': [], 'Mar': [], 'Apr': [], | |
'May': [], 'Jun': [], 'Jul': [], 'Aug': [], 'Sep': [], | |
'Oct': [], 'Nov': [], 'Dec': []}) | |
# Try to load ONI data or create it | |
if not os.path.exists(oni_path): | |
logging.warning(f"ONI data file not found: {oni_path}") | |
update_oni_data() | |
try: | |
oni_data = pd.read_csv(oni_path) | |
except Exception as e: | |
logging.error(f"Error loading ONI data: {e}") | |
update_oni_data() | |
try: | |
oni_data = pd.read_csv(oni_path) | |
except Exception as e: | |
logging.error(f"Still can't load ONI data: {e}") | |
# For typhoon data, focus on getting WP data | |
if os.path.exists(typhoon_path): | |
try: | |
typhoon_data = pd.read_csv(typhoon_path, low_memory=False) | |
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') | |
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME']) | |
# Log WP data count | |
wp_count = len(typhoon_data[typhoon_data['SID'].str.startswith('WP')]) | |
logging.info(f"Loaded {wp_count} Western Pacific typhoon records") | |
except Exception as e: | |
logging.error(f"Error loading typhoon data: {e}") | |
typhoon_data = pd.DataFrame() | |
else: | |
logging.error(f"Typhoon data file not found: {typhoon_path}") | |
# Download WP typhoon data directly from IBTrACS if available | |
try: | |
if LOCAL_IBTRACS_PATH and os.path.exists(LOCAL_IBTRACS_PATH): | |
logging.info("Loading WP data from local IBTrACS file") | |
wp_data = pd.read_csv(LOCAL_IBTRACS_PATH, low_memory=False) | |
typhoon_data = wp_data | |
logging.info(f"Loaded {len(typhoon_data)} WP records from IBTrACS") | |
else: | |
# Try to download WP file if not exists | |
logging.info("Downloading WP basin file...") | |
response = requests.get(IBTRACS_BASE_URL + BASIN_FILES['WP']) | |
if response.status_code == 200: | |
os.makedirs(os.path.dirname(LOCAL_IBTRACS_PATH), exist_ok=True) | |
with open(LOCAL_IBTRACS_PATH, 'wb') as f: | |
f.write(response.content) | |
wp_data = pd.read_csv(LOCAL_IBTRACS_PATH, low_memory=False) | |
typhoon_data = wp_data | |
logging.info(f"Downloaded and loaded {len(typhoon_data)} WP records") | |
except Exception as e: | |
logging.error(f"Failed to load or download WP data: {e}") | |
# Create minimal WP sample data to prevent crashes | |
typhoon_data = pd.DataFrame({ | |
'SID': ['WP012000', 'WP022000', 'WP032000'], | |
'ISO_TIME': [pd.Timestamp('2000-01-01'), pd.Timestamp('2000-02-01'), pd.Timestamp('2000-03-01')], | |
'NAME': ['SAMPLE_WP1', 'SAMPLE_WP2', 'SAMPLE_WP3'], | |
'SEASON': [2000, 2000, 2000], | |
'LAT': [20.0, 21.0, 22.0], | |
'LON': [140.0, 141.0, 142.0], | |
'USA_WIND': [50.0, 60.0, 70.0], | |
'USA_PRES': [990.0, 980.0, 970.0] | |
}) | |
logging.warning("Created minimal Western Pacific sample data to prevent crashes") | |
return oni_data, typhoon_data | |
def process_oni_data(oni_data): | |
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI') | |
month_map = {'Jan':'01','Feb':'02','Mar':'03','Apr':'04','May':'05','Jun':'06', | |
'Jul':'07','Aug':'08','Sep':'09','Oct':'10','Nov':'11','Dec':'12'} | |
oni_long['Month'] = oni_long['Month'].map(month_map) | |
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str)+'-'+oni_long['Month']+'-01') | |
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce') | |
return oni_long | |
def process_typhoon_data(typhoon_data): | |
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') | |
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce') | |
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce') | |
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce') | |
logging.info(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}") | |
typhoon_max = typhoon_data.groupby('SID').agg({ | |
'USA_WIND':'max','USA_PRES':'min','ISO_TIME':'first','SEASON':'first','NAME':'first', | |
'LAT':'first','LON':'first' | |
}).reset_index() | |
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m') | |
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year | |
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon) | |
return typhoon_max | |
def merge_data(oni_long, typhoon_max): | |
return pd.merge(typhoon_max, oni_long, on=['Year','Month']) | |
def categorize_typhoon(wind_speed): | |
if wind_speed >= 137: | |
return 'C5 Super Typhoon' | |
elif wind_speed >= 113: | |
return 'C4 Very Strong Typhoon' | |
elif wind_speed >= 96: | |
return 'C3 Strong Typhoon' | |
elif wind_speed >= 83: | |
return 'C2 Typhoon' | |
elif wind_speed >= 64: | |
return 'C1 Typhoon' | |
elif wind_speed >= 34: | |
return 'Tropical Storm' | |
else: | |
return 'Tropical Depression' | |
def classify_enso_phases(oni_value): | |
if isinstance(oni_value, pd.Series): | |
oni_value = oni_value.iloc[0] | |
if oni_value >= 0.5: | |
return 'El Nino' | |
elif oni_value <= -0.5: | |
return 'La Nina' | |
else: | |
return 'Neutral' | |
# ----------------------------- | |
# Regression Functions | |
# ----------------------------- | |
def perform_wind_regression(start_year, start_month, end_year, end_month): | |
start_date = datetime(start_year, start_month, 1) | |
end_date = datetime(end_year, end_month, 28) | |
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_WIND','ONI']) | |
data['severe_typhoon'] = (data['USA_WIND']>=64).astype(int) | |
X = sm.add_constant(data['ONI']) | |
y = data['severe_typhoon'] | |
model = sm.Logit(y, X).fit(disp=0) | |
beta_1 = model.params['ONI'] | |
exp_beta_1 = np.exp(beta_1) | |
p_value = model.pvalues['ONI'] | |
return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" | |
def perform_pressure_regression(start_year, start_month, end_year, end_month): | |
start_date = datetime(start_year, start_month, 1) | |
end_date = datetime(end_year, end_month, 28) | |
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_PRES','ONI']) | |
data['intense_typhoon'] = (data['USA_PRES']<=950).astype(int) | |
X = sm.add_constant(data['ONI']) | |
y = data['intense_typhoon'] | |
model = sm.Logit(y, X).fit(disp=0) | |
beta_1 = model.params['ONI'] | |
exp_beta_1 = np.exp(beta_1) | |
p_value = model.pvalues['ONI'] | |
return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" | |
def perform_longitude_regression(start_year, start_month, end_year, end_month): | |
start_date = datetime(start_year, start_month, 1) | |
end_date = datetime(end_year, end_month, 28) | |
data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['LON','ONI']) | |
data['western_typhoon'] = (data['LON']<=140).astype(int) | |
X = sm.add_constant(data['ONI']) | |
y = data['western_typhoon'] | |
model = sm.OLS(y, sm.add_constant(X)).fit() | |
beta_1 = model.params['ONI'] | |
exp_beta_1 = np.exp(beta_1) | |
p_value = model.pvalues['ONI'] | |
return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" | |
# ----------------------------- | |
# IBTrACS Data Loading | |
# ----------------------------- | |
def load_ibtracs_data(): | |
ibtracs_data = {} | |
for basin, filename in BASIN_FILES.items(): | |
local_path = os.path.join(DATA_PATH, filename) | |
if not os.path.exists(local_path): | |
logging.info(f"Downloading {basin} basin file...") | |
response = requests.get(IBTRACS_BASE_URL+filename) | |
response.raise_for_status() | |
with open(local_path, 'wb') as f: | |
f.write(response.content) | |
logging.info(f"Downloaded {basin} basin file.") | |
try: | |
logging.info(f"--> Starting to read in IBTrACS data for basin {basin}") | |
ds = tracks.TrackDataset(source='ibtracs', ibtracs_url=local_path) | |
logging.info(f"--> Completed reading in IBTrACS data for basin {basin}") | |
ibtracs_data[basin] = ds | |
except ValueError as e: | |
logging.warning(f"Skipping basin {basin} due to error: {e}") | |
ibtracs_data[basin] = None | |
return ibtracs_data | |
ibtracs = load_ibtracs_data() | |
# ----------------------------- | |
# Load & Process Data | |
# ----------------------------- | |
update_oni_data() | |
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH) | |
oni_long = process_oni_data(oni_data) | |
typhoon_max = process_typhoon_data(typhoon_data) | |
merged_data = merge_data(oni_long, typhoon_max) | |
# ----------------------------- | |
# Visualization Functions | |
# ----------------------------- | |
def generate_typhoon_tracks(filtered_data, typhoon_search): | |
fig = go.Figure() | |
for sid in filtered_data['SID'].unique(): | |
storm_data = filtered_data[filtered_data['SID'] == sid] | |
phase = storm_data['ENSO_Phase'].iloc[0] | |
color = {'El Nino':'red','La Nina':'blue','Neutral':'green'}.get(phase, 'black') | |
fig.add_trace(go.Scattergeo( | |
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines', | |
name=storm_data['NAME'].iloc[0], line=dict(width=2, color=color) | |
)) | |
if typhoon_search: | |
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False) | |
if mask.any(): | |
storm_data = filtered_data[mask] | |
fig.add_trace(go.Scattergeo( | |
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines', | |
name=f'Matched: {typhoon_search}', line=dict(width=5, color='yellow') | |
)) | |
fig.update_layout( | |
title='Typhoon Tracks', | |
geo=dict(projection_type='natural earth', showland=True), | |
height=700 | |
) | |
return fig | |
def generate_wind_oni_scatter(filtered_data, typhoon_search): | |
fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', | |
hover_data=['NAME','Year','Category'], | |
title='Wind Speed vs ONI', | |
labels={'ONI':'ONI Value','USA_WIND':'Max Wind Speed (knots)'}, | |
color_discrete_map=color_map) | |
if typhoon_search: | |
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False) | |
if mask.any(): | |
fig.add_trace(go.Scatter( | |
x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_WIND'], | |
mode='markers', marker=dict(size=10, color='red', symbol='star'), | |
name=f'Matched: {typhoon_search}', | |
text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')' | |
)) | |
return fig | |
def generate_pressure_oni_scatter(filtered_data, typhoon_search): | |
fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', | |
hover_data=['NAME','Year','Category'], | |
title='Pressure vs ONI', | |
labels={'ONI':'ONI Value','USA_PRES':'Min Pressure (hPa)'}, | |
color_discrete_map=color_map) | |
if typhoon_search: | |
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False) | |
if mask.any(): | |
fig.add_trace(go.Scatter( | |
x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_PRES'], | |
mode='markers', marker=dict(size=10, color='red', symbol='star'), | |
name=f'Matched: {typhoon_search}', | |
text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')' | |
)) | |
return fig | |
def generate_regression_analysis(filtered_data): | |
fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'], | |
title='Typhoon Generation Longitude vs ONI (All Years)') | |
if len(filtered_data) > 1: | |
X = np.array(filtered_data['LON']).reshape(-1,1) | |
y = filtered_data['ONI'] | |
model = sm.OLS(y, sm.add_constant(X)).fit() | |
y_pred = model.predict(sm.add_constant(X)) | |
fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line')) | |
slope = model.params[1] | |
slopes_text = f"All Years Slope: {slope:.4f}" | |
else: | |
slopes_text = "Insufficient data for regression" | |
return fig, slopes_text | |
def generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): | |
start_date = datetime(start_year, start_month, 1) | |
end_date = datetime(end_year, end_month, 28) | |
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy() | |
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) | |
if enso_phase != 'all': | |
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] | |
tracks_fig = generate_typhoon_tracks(filtered_data, typhoon_search) | |
wind_scatter = generate_wind_oni_scatter(filtered_data, typhoon_search) | |
pressure_scatter = generate_pressure_oni_scatter(filtered_data, typhoon_search) | |
regression_fig, slopes_text = generate_regression_analysis(filtered_data) | |
return tracks_fig, wind_scatter, pressure_scatter, regression_fig, slopes_text | |
def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): | |
start_date = datetime(start_year, start_month, 1) | |
end_date = datetime(end_year, end_month, 28) | |
filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy() | |
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) | |
if enso_phase != 'all': | |
filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] | |
unique_storms = filtered_data['SID'].unique() | |
count = len(unique_storms) | |
fig = go.Figure() | |
for sid in unique_storms: | |
storm_data = typhoon_data[typhoon_data['SID']==sid] | |
name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed" | |
basin = storm_data['SID'].iloc[0][:2] # First 2 characters often denote basin | |
storm_oni = filtered_data[filtered_data['SID']==sid]['ONI'].iloc[0] | |
color = 'red' if storm_oni>=0.5 else ('blue' if storm_oni<=-0.5 else 'green') | |
fig.add_trace(go.Scattergeo( | |
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines', | |
name=f"{name} ({basin})", | |
line=dict(width=1.5, color=color), hoverinfo="name" | |
)) | |
if typhoon_search: | |
search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False) | |
if search_mask.any(): | |
for sid in typhoon_data[search_mask]['SID'].unique(): | |
storm_data = typhoon_data[typhoon_data['SID']==sid] | |
fig.add_trace(go.Scattergeo( | |
lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers', | |
name=f"MATCHED: {storm_data['NAME'].iloc[0]}", | |
line=dict(width=3, color='yellow'), | |
marker=dict(size=5), hoverinfo="name" | |
)) | |
fig.update_layout( | |
title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})", | |
geo=dict( | |
projection_type='natural earth', | |
showland=True, | |
showcoastlines=True, | |
landcolor='rgb(243,243,243)', | |
countrycolor='rgb(204,204,204)', | |
coastlinecolor='rgb(204,204,204)', | |
center=dict(lon=140, lat=20), | |
projection_scale=3 | |
), | |
legend_title="Typhoons by ENSO Phase", | |
showlegend=True, | |
height=700 | |
) | |
fig.add_annotation( | |
x=0.02, y=0.98, xref="paper", yref="paper", | |
text="Red: El Niño, Blue: La Nina, Green: Neutral", | |
showarrow=False, align="left", | |
bgcolor="rgba(255,255,255,0.8)" | |
) | |
return fig, f"Total typhoons displayed: {count}" | |
def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): | |
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search) | |
regression = perform_wind_regression(start_year, start_month, end_year, end_month) | |
return results[1], regression | |
def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): | |
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search) | |
regression = perform_pressure_regression(start_year, start_month, end_year, end_month) | |
return results[2], regression | |
def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): | |
results = generate_main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search) | |
regression = perform_longitude_regression(start_year, start_month, end_year, end_month) | |
return results[3], results[4], regression | |
def categorize_typhoon_by_standard(wind_speed, standard='atlantic'): | |
if standard=='taiwan': | |
wind_speed_ms = wind_speed * 0.514444 | |
if wind_speed_ms >= 51.0: | |
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['hex'] | |
elif wind_speed_ms >= 33.7: | |
return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['hex'] | |
elif wind_speed_ms >= 17.2: | |
return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['hex'] | |
return 'Tropical Depression', taiwan_standard['Tropical Depression']['hex'] | |
else: | |
if wind_speed >= 137: | |
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['hex'] | |
elif wind_speed >= 113: | |
return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['hex'] | |
elif wind_speed >= 96: | |
return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['hex'] | |
elif wind_speed >= 83: | |
return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['hex'] | |
elif wind_speed >= 64: | |
return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['hex'] | |
elif wind_speed >= 34: | |
return 'Tropical Storm', atlantic_standard['Tropical Storm']['hex'] | |
return 'Tropical Depression', atlantic_standard['Tropical Depression']['hex'] | |
# ----------------------------- | |
# Updated TSNE Cluster Function with Mean Curves | |
# ----------------------------- | |
def update_route_clusters(start_year, start_month, end_year, end_month, enso_value, season): | |
try: | |
# Merge raw typhoon data with ONI so each storm has multiple observations. | |
raw_data = typhoon_data.copy() | |
raw_data['Year'] = raw_data['ISO_TIME'].dt.year | |
raw_data['Month'] = raw_data['ISO_TIME'].dt.strftime('%m') | |
merged_raw = pd.merge(raw_data, process_oni_data(oni_data), on=['Year','Month'], how='left') | |
# Filter by date | |
start_date = datetime(start_year, start_month, 1) | |
end_date = datetime(end_year, end_month, 28) | |
merged_raw = merged_raw[(merged_raw['ISO_TIME'] >= start_date) & (merged_raw['ISO_TIME'] <= end_date)] | |
logging.info(f"Total points after date filtering: {merged_raw.shape[0]}") | |
# Filter by ENSO phase if specified | |
merged_raw['ENSO_Phase'] = merged_raw['ONI'].apply(classify_enso_phases) | |
if enso_value != 'all': | |
merged_raw = merged_raw[merged_raw['ENSO_Phase'] == enso_value.capitalize()] | |
logging.info(f"Total points after ENSO filtering: {merged_raw.shape[0]}") | |
# Regional filtering for Western Pacific | |
wp_data = merged_raw[(merged_raw['LON'] >= 100) & (merged_raw['LON'] <= 180) & | |
(merged_raw['LAT'] >= 0) & (merged_raw['LAT'] <= 40)] | |
logging.info(f"Total points after WP regional filtering: {wp_data.shape[0]}") | |
if wp_data.empty: | |
logging.info("WP regional filter returned no data; using all filtered data.") | |
wp_data = merged_raw | |
# Group by storm ID so each storm has multiple observations | |
all_storms_data = [] | |
for sid, group in wp_data.groupby('SID'): | |
group = group.sort_values('ISO_TIME') | |
times = pd.to_datetime(group['ISO_TIME']).values | |
lats = group['LAT'].astype(float).values | |
lons = group['LON'].astype(float).values | |
if len(lons) < 2: | |
continue | |
# Also extract wind and pressure curves | |
wind = group['USA_WIND'].astype(float).values if 'USA_WIND' in group.columns else None | |
pres = group['USA_PRES'].astype(float).values if 'USA_PRES' in group.columns else None | |
all_storms_data.append((sid, lons, lats, times, wind, pres)) | |
logging.info(f"Storms available for TSNE after grouping: {len(all_storms_data)}") | |
if not all_storms_data: | |
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid storms for clustering." | |
# Interpolate each storm's route, wind, and pressure to a common length | |
max_length = max(len(item[1]) for item in all_storms_data) | |
route_vectors = [] | |
wind_curves = [] | |
pres_curves = [] | |
storm_ids = [] | |
for sid, lons, lats, times, wind, pres in all_storms_data: | |
t = np.linspace(0, 1, len(lons)) | |
t_new = np.linspace(0, 1, max_length) | |
try: | |
lon_interp = interp1d(t, lons, kind='linear', fill_value='extrapolate')(t_new) | |
lat_interp = interp1d(t, lats, kind='linear', fill_value='extrapolate')(t_new) | |
except Exception as ex: | |
logging.error(f"Interpolation error for storm {sid}: {ex}") | |
continue | |
route_vector = np.column_stack((lon_interp, lat_interp)).flatten() | |
if np.isnan(route_vector).any(): | |
continue | |
route_vectors.append(route_vector) | |
storm_ids.append(sid) | |
# Interpolate wind and pressure if available | |
if wind is not None and len(wind) >= 2: | |
try: | |
wind_interp = interp1d(t, wind, kind='linear', fill_value='extrapolate')(t_new) | |
except Exception as ex: | |
logging.error(f"Wind interpolation error for storm {sid}: {ex}") | |
wind_interp = np.full(max_length, np.nan) | |
else: | |
wind_interp = np.full(max_length, np.nan) | |
if pres is not None and len(pres) >= 2: | |
try: | |
pres_interp = interp1d(t, pres, kind='linear', fill_value='extrapolate')(t_new) | |
except Exception as ex: | |
logging.error(f"Pressure interpolation error for storm {sid}: {ex}") | |
pres_interp = np.full(max_length, np.nan) | |
else: | |
pres_interp = np.full(max_length, np.nan) | |
wind_curves.append(wind_interp) | |
pres_curves.append(pres_interp) | |
logging.info(f"Storms with valid route vectors: {len(route_vectors)}") | |
if len(route_vectors) == 0: | |
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), "No valid storms after interpolation." | |
route_vectors = np.array(route_vectors) | |
wind_curves = np.array(wind_curves) | |
pres_curves = np.array(pres_curves) | |
# Run TSNE on route vectors | |
tsne = TSNE(n_components=2, random_state=42, verbose=1) | |
tsne_results = tsne.fit_transform(route_vectors) | |
# Dynamic DBSCAN: choose eps to yield roughly 5 to 20 clusters | |
selected_labels = None | |
selected_eps = None | |
for eps in np.linspace(1.0, 10.0, 91): | |
dbscan = DBSCAN(eps=eps, min_samples=3) | |
labels = dbscan.fit_predict(tsne_results) | |
clusters = set(labels) - {-1} | |
if 5 <= len(clusters) <= 20: | |
selected_labels = labels | |
selected_eps = eps | |
break | |
if selected_labels is None: | |
selected_eps = 5.0 | |
dbscan = DBSCAN(eps=selected_eps, min_samples=3) | |
selected_labels = dbscan.fit_predict(tsne_results) | |
logging.info(f"Selected DBSCAN eps: {selected_eps:.2f} yielding {len(set(selected_labels)-{-1})} clusters.") | |
# TSNE scatter plot | |
fig_tsne = go.Figure() | |
colors = px.colors.qualitative.Safe | |
unique_labels = sorted(set(selected_labels) - {-1}) | |
for i, label in enumerate(unique_labels): | |
indices = np.where(selected_labels == label)[0] | |
fig_tsne.add_trace(go.Scatter( | |
x=tsne_results[indices, 0], | |
y=tsne_results[indices, 1], | |
mode='markers', | |
marker=dict(color=colors[i % len(colors)]), | |
name=f"Cluster {label}" | |
)) | |
noise_indices = np.where(selected_labels == -1)[0] | |
if len(noise_indices) > 0: | |
fig_tsne.add_trace(go.Scatter( | |
x=tsne_results[noise_indices, 0], | |
y=tsne_results[noise_indices, 1], | |
mode='markers', | |
marker=dict(color='grey'), | |
name='Noise' | |
)) | |
fig_tsne.update_layout( | |
title="t-SNE of Storm Routes", | |
xaxis_title="t-SNE Dim 1", | |
yaxis_title="t-SNE Dim 2" | |
) | |
# For each cluster, compute mean route, and compute mean wind and pressure curves along normalized route index. | |
fig_routes = go.Figure() | |
cluster_stats = [] # To hold mean curves per cluster | |
for i, label in enumerate(unique_labels): | |
indices = np.where(selected_labels == label)[0] | |
cluster_ids = [storm_ids[j] for j in indices] | |
cluster_vectors = route_vectors[indices, :] | |
mean_vector = np.mean(cluster_vectors, axis=0) | |
mean_route = mean_vector.reshape((max_length, 2)) | |
mean_lon = mean_route[:, 0] | |
mean_lat = mean_route[:, 1] | |
fig_routes.add_trace(go.Scattergeo( | |
lon=mean_lon, | |
lat=mean_lat, | |
mode='lines', | |
line=dict(width=4, color=colors[i % len(colors)]), | |
name=f"Cluster {label} Mean Route" | |
)) | |
# Retrieve raw wind and pressure curves for storms in this cluster | |
cluster_winds = wind_curves[indices, :] | |
cluster_pres = pres_curves[indices, :] | |
mean_wind_curve = np.nanmean(cluster_winds, axis=0) | |
mean_pres_curve = np.nanmean(cluster_pres, axis=0) | |
cluster_stats.append((label, mean_wind_curve, mean_pres_curve)) | |
# Create a cluster stats plot with curves vs normalized route index (0 to 1) | |
x_axis = np.linspace(0, 1, max_length) | |
fig_stats = make_subplots(rows=2, cols=1, shared_xaxes=True, | |
subplot_titles=("Mean Wind Speed (knots)", "Mean MSLP (hPa)")) | |
for i, (label, wind_curve, pres_curve) in enumerate(cluster_stats): | |
fig_stats.add_trace(go.Scatter( | |
x=x_axis, | |
y=wind_curve, | |
mode='lines', | |
line=dict(width=2, color=colors[i % len(colors)]), | |
name=f"Cluster {label} Mean Wind" | |
), row=1, col=1) | |
fig_stats.add_trace(go.Scatter( | |
x=x_axis, | |
y=pres_curve, | |
mode='lines', | |
line=dict(width=2, color=colors[i % len(colors)]), | |
name=f"Cluster {label} Mean MSLP" | |
), row=2, col=1) | |
fig_stats.update_layout( | |
title="Cluster Mean Curves", | |
xaxis_title="Normalized Route Index", | |
yaxis_title="Mean Wind Speed (knots)", | |
xaxis2_title="Normalized Route Index", | |
yaxis2_title="Mean MSLP (hPa)", | |
showlegend=True | |
) | |
info = f"TSNE clustering complete. Selected eps: {selected_eps:.2f}. Clusters: {len(unique_labels)}." | |
return fig_tsne, fig_routes, fig_stats, info | |
except Exception as e: | |
logging.error(f"Error in TSNE clustering: {e}") | |
return go.Figure(), go.Figure(), make_subplots(rows=2, cols=1), f"Error in TSNE clustering: {e}" | |
# ----------------------------- | |
# Animation Functions Using Processed CSV & Stock Map | |
# ----------------------------- | |
def generate_track_video_from_csv(year, storm_id, standard): | |
storm_df = typhoon_data[typhoon_data['SID'] == storm_id].copy() | |
if storm_df.empty: | |
logging.error(f"No data found for storm: {storm_id}") | |
return None | |
storm_df = storm_df.sort_values('ISO_TIME') | |
lats = storm_df['LAT'].astype(float).values | |
lons = storm_df['LON'].astype(float).values | |
times = pd.to_datetime(storm_df['ISO_TIME']).values | |
if 'USA_WIND' in storm_df.columns: | |
winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').values | |
else: | |
winds = np.full(len(lats), np.nan) | |
storm_name = storm_df['NAME'].iloc[0] | |
basin = storm_df['SID'].iloc[0][:2] # Use first 2 characters as basin code | |
season = storm_df['SEASON'].iloc[0] | |
min_lat, max_lat = np.min(lats), np.max(lats) | |
min_lon, max_lon = np.min(lons), np.max(lons) | |
lat_padding = max((max_lat - min_lat)*0.3, 5) | |
lon_padding = max((max_lon - min_lon)*0.3, 5) | |
fig = plt.figure(figsize=(12,6), dpi=100) | |
ax = plt.axes([0.05, 0.05, 0.60, 0.85], | |
projection=ccrs.PlateCarree(central_longitude=180)) | |
ax.stock_img() | |
ax.set_extent([min_lon - lon_padding, max_lon + lon_padding, min_lat - lat_padding, max_lat + lat_padding], | |
crs=ccrs.PlateCarree()) | |
ax.coastlines(resolution='50m', color='black', linewidth=1) | |
gl = ax.gridlines(draw_labels=True, color='gray', alpha=0.4, linestyle='--') | |
gl.top_labels = gl.right_labels = False | |
ax.set_title(f"{year} {storm_name} ({basin}) - {season}", fontsize=14) | |
line, = ax.plot([], [], transform=ccrs.PlateCarree(), color='blue', linewidth=2) | |
point, = ax.plot([], [], 'o', markersize=8, transform=ccrs.PlateCarree()) | |
date_text = ax.text(0.02, 0.02, '', transform=ax.transAxes, fontsize=10, | |
bbox=dict(facecolor='white', alpha=0.8)) | |
# Display storm name and basin in a dynamic sidebar | |
storm_info_text = fig.text(0.70, 0.60, '', fontsize=10, | |
bbox=dict(facecolor='white', alpha=0.8, boxstyle='round,pad=0.5')) | |
from matplotlib.lines import Line2D | |
standard_dict = atlantic_standard if standard=='atlantic' else taiwan_standard | |
legend_elements = [Line2D([0],[0], marker='o', color='w', label=cat, | |
markerfacecolor=details['hex'], markersize=8) | |
for cat, details in standard_dict.items()] | |
ax.legend(handles=legend_elements, title="Storm Categories", | |
loc='upper right', fontsize=9) | |
def init(): | |
line.set_data([], []) | |
point.set_data([], []) | |
date_text.set_text('') | |
storm_info_text.set_text('') | |
return line, point, date_text, storm_info_text | |
def update(frame): | |
line.set_data(lons[:frame+1], lats[:frame+1]) | |
point.set_data([lons[frame]], [lats[frame]]) | |
wind_speed = winds[frame] if frame < len(winds) else np.nan | |
category, color = categorize_typhoon_by_standard(wind_speed, standard) | |
point.set_color(color) | |
dt_str = pd.to_datetime(times[frame]).strftime('%Y-%m-%d %H:%M') | |
date_text.set_text(dt_str) | |
info_str = (f"Name: {storm_name}\nBasin: {basin}\nDate: {dt_str}\nWind: {wind_speed:.1f} kt\nCategory: {category}") | |
storm_info_text.set_text(info_str) | |
return line, point, date_text, storm_info_text | |
ani = animation.FuncAnimation(fig, update, init_func=init, frames=len(times), | |
interval=200, blit=True, repeat=True) | |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') | |
writer = animation.FFMpegWriter(fps=5, bitrate=1800) | |
ani.save(temp_file.name, writer=writer) | |
plt.close(fig) | |
return temp_file.name | |
def simplified_track_video(year, basin, typhoon, standard): | |
if not typhoon: | |
return None | |
storm_id = typhoon.split('(')[-1].strip(')') | |
return generate_track_video_from_csv(year, storm_id, standard) | |
# ----------------------------- | |
# Typhoon Options Update Functions | |
# ----------------------------- | |
basin_to_prefix = { | |
"All Basins": "all", | |
"NA - North Atlantic": "NA", | |
"EP - Eastern North Pacific": "EP", | |
"WP - Western North Pacific": "WP" | |
} | |
def update_typhoon_options(year, basin): | |
try: | |
if basin == "All Basins": | |
summaries = [] | |
for data in ibtracs.values(): | |
if data is not None: | |
season_data = data.get_season(int(year)) | |
if season_data.summary().empty: | |
continue | |
summaries.append(season_data.summary()) | |
if len(summaries) == 0: | |
logging.error("No storms found for given year and basin.") | |
return gr.update(choices=[], value=None) | |
combined_summary = pd.concat(summaries, ignore_index=True) | |
else: | |
prefix = basin_to_prefix.get(basin) | |
ds = ibtracs.get(prefix) | |
if ds is None: | |
logging.error(f"Dataset not found for basin {basin}") | |
return gr.update(choices=[], value=None) | |
season_data = ds.get_season(int(year)) | |
if season_data.summary().empty: | |
logging.error("No storms found for given year and basin.") | |
return gr.update(choices=[], value=None) | |
combined_summary = season_data.summary() | |
options = [] | |
for i in range(len(combined_summary)): | |
try: | |
name = combined_summary['name'][i] if pd.notnull(combined_summary['name'][i]) else "Unnamed" | |
storm_id = combined_summary['id'][i] | |
options.append(f"{name} ({storm_id})") | |
except Exception: | |
continue | |
return gr.update(choices=options, value=options[0] if options else None) | |
except Exception as e: | |
logging.error(f"Error in update_typhoon_options: {e}") | |
return gr.update(choices=[], value=None) | |
def update_typhoon_options_anim(year, basin): | |
try: | |
data = typhoon_data.copy() | |
data['Year'] = data['ISO_TIME'].dt.year | |
season_data = data[data['Year'] == int(year)] | |
if season_data.empty: | |
logging.error(f"No storms found for year {year} in animation update.") | |
return gr.update(choices=[], value=None) | |
summary = season_data.groupby('SID').first().reset_index() | |
options = [] | |
for idx, row in summary.iterrows(): | |
name = row['NAME'] if pd.notnull(row['NAME']) else "Unnamed" | |
options.append(f"{name} ({row['SID']})") | |
return gr.update(choices=options, value=options[0] if options else None) | |
except Exception as e: | |
logging.error(f"Error in update_typhoon_options_anim: {e}") | |
return gr.update(choices=[], value=None) | |
# ----------------------------- | |
# Gradio Interface | |
# ----------------------------- | |
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo: | |
gr.Markdown("# Typhoon Analysis Dashboard") | |
with gr.Tab("Overview"): | |
gr.Markdown(""" | |
## Welcome to the Typhoon Analysis Dashboard | |
This dashboard allows you to analyze typhoon data in relation to ENSO phases. | |
### Features: | |
- **Track Visualization**: View typhoon tracks by time period and ENSO phase. | |
- **Wind Analysis**: Examine wind speed vs ONI relationships. | |
- **Pressure Analysis**: Analyze pressure vs ONI relationships. | |
- **Longitude Analysis**: Study typhoon generation longitude vs ONI. | |
- **Path Animation**: View animated storm tracks on a free stock world map (centered at 180°) with a dynamic sidebar that shows the typhoon name and basin. | |
- **TSNE Cluster**: Perform t-SNE clustering on WP storm routes using raw merged typhoon+ONI data with detailed error management. | |
Mean routes and evolving curves (wind and pressure vs. normalized route index) are computed. | |
""") | |
with gr.Tab("Track Visualization"): | |
with gr.Row(): | |
start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1) | |
start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) | |
end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1) | |
end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) | |
enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') | |
typhoon_search = gr.Textbox(label="Typhoon Search") | |
analyze_btn = gr.Button("Generate Tracks") | |
tracks_plot = gr.Plot(label="Typhoon Tracks", elem_id="tracks_plot") | |
typhoon_count = gr.Textbox(label="Number of Typhoons Displayed") | |
analyze_btn.click(fn=get_full_tracks, | |
inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search], | |
outputs=[tracks_plot, typhoon_count]) | |
with gr.Tab("Wind Analysis"): | |
with gr.Row(): | |
wind_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1) | |
wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) | |
wind_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1) | |
wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) | |
wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') | |
wind_typhoon_search = gr.Textbox(label="Typhoon Search") | |
wind_analyze_btn = gr.Button("Generate Wind Analysis") | |
wind_scatter = gr.Plot(label="Wind Speed vs ONI") | |
wind_regression_results = gr.Textbox(label="Wind Regression Results") | |
wind_analyze_btn.click(fn=get_wind_analysis, | |
inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search], | |
outputs=[wind_scatter, wind_regression_results]) | |
with gr.Tab("Pressure Analysis"): | |
with gr.Row(): | |
pressure_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1) | |
pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) | |
pressure_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1) | |
pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) | |
pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') | |
pressure_typhoon_search = gr.Textbox(label="Typhoon Search") | |
pressure_analyze_btn = gr.Button("Generate Pressure Analysis") | |
pressure_scatter = gr.Plot(label="Pressure vs ONI") | |
pressure_regression_results = gr.Textbox(label="Pressure Regression Results") | |
pressure_analyze_btn.click(fn=get_pressure_analysis, | |
inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search], | |
outputs=[pressure_scatter, pressure_regression_results]) | |
with gr.Tab("Longitude Analysis"): | |
with gr.Row(): | |
lon_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1) | |
lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) | |
lon_end_year = gr.Number(label="End Year", value=2000, minimum=1900, maximum=2024, step=1) | |
lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) | |
lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') | |
lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)") | |
lon_analyze_btn = gr.Button("Generate Longitude Analysis") | |
regression_plot = gr.Plot(label="Longitude vs ONI") | |
slopes_text = gr.Textbox(label="Regression Slopes") | |
lon_regression_results = gr.Textbox(label="Longitude Regression Results") | |
lon_analyze_btn.click(fn=get_longitude_analysis, | |
inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search], | |
outputs=[regression_plot, slopes_text, lon_regression_results]) | |
with gr.Tab("Tropical Cyclone Path Animation"): | |
with gr.Row(): | |
year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2000") | |
# Create a hidden component for basin constant; always "All Basins" | |
basin_constant = gr.Textbox(value="All Basins", visible=False) | |
with gr.Row(): | |
typhoon_dropdown = gr.Dropdown(label="Tropical Cyclone") | |
standard_dropdown = gr.Dropdown(label="Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic') | |
animate_btn = gr.Button("Generate Animation") | |
path_video = gr.Video(label="Tropical Cyclone Path Animation", format="mp4", interactive=False, elem_id="path_video") | |
animation_info = gr.Markdown(""" | |
### Animation Instructions | |
1. Select a year (data is from your processed CSV, using all basins). | |
2. Choose a tropical cyclone from the populated list. | |
3. Select a classification standard (Atlantic or Taiwan). | |
4. Click "Generate Animation". | |
5. The animation displays the storm track on a free stock world map (centered at 180°) with a dynamic sidebar. | |
The sidebar shows the storm name and basin. | |
""") | |
# Update typhoon dropdown using only year (ignore basin since it's fixed) | |
year_dropdown.change(fn=update_typhoon_options_anim, inputs=[year_dropdown, gr.State("dummy")], outputs=typhoon_dropdown) | |
animate_btn.click(fn=simplified_track_video, | |
inputs=[year_dropdown, basin_constant, typhoon_dropdown, standard_dropdown], | |
outputs=path_video) | |
with gr.Tab("TSNE Cluster"): | |
with gr.Row(): | |
tsne_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1) | |
tsne_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) | |
tsne_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1) | |
tsne_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=12) | |
tsne_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') | |
tsne_season = gr.Dropdown(label="Season", choices=['all', 'summer', 'winter'], value='all') | |
tsne_analyze_btn = gr.Button("Analyze") | |
tsne_plot = gr.Plot(label="t-SNE Clusters") | |
routes_plot = gr.Plot(label="Typhoon Routes with Mean Routes") | |
stats_plot = gr.Plot(label="Cluster Statistics") | |
cluster_info = gr.Textbox(label="Cluster Information", lines=10) | |
tsne_analyze_btn.click(fn=update_route_clusters, | |
inputs=[tsne_start_year, tsne_start_month, tsne_end_year, tsne_end_month, tsne_enso_phase, tsne_season], | |
outputs=[tsne_plot, routes_plot, stats_plot, cluster_info]) | |
demo.launch(share=True) | |