Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
-
import
|
2 |
import plotly.graph_objects as go
|
3 |
import plotly.express as px
|
|
|
4 |
import pickle
|
5 |
import tropycal.tracks as tracks
|
6 |
import pandas as pd
|
@@ -9,23 +10,15 @@ import cachetools
|
|
9 |
import functools
|
10 |
import hashlib
|
11 |
import os
|
12 |
-
import argparse
|
13 |
-
from dash import dcc, html
|
14 |
-
from dash.dependencies import Input, Output, State
|
15 |
-
from dash.exceptions import PreventUpdate
|
16 |
-
from plotly.subplots import make_subplots
|
17 |
from datetime import datetime, timedelta
|
18 |
-
from datetime import date
|
19 |
from scipy import stats
|
20 |
from scipy.optimize import minimize, curve_fit
|
21 |
from sklearn.linear_model import LinearRegression
|
22 |
from sklearn.cluster import KMeans
|
23 |
from scipy.interpolate import interp1d
|
24 |
from fractions import Fraction
|
25 |
-
from concurrent.futures import ThreadPoolExecutor
|
26 |
-
from sklearn.metrics import mean_squared_error
|
27 |
import statsmodels.api as sm
|
28 |
-
import schedule
|
29 |
import time
|
30 |
import threading
|
31 |
import requests
|
@@ -35,1410 +28,497 @@ import csv
|
|
35 |
from collections import defaultdict
|
36 |
import shutil
|
37 |
import filecmp
|
|
|
|
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
|
42 |
-
args = parser.parse_args()
|
43 |
-
|
44 |
-
# Use the command-line argument for data path
|
45 |
-
DATA_PATH = args.data_path
|
46 |
-
|
47 |
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
|
48 |
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
|
49 |
-
LOCAL_iBtrace_PATH =
|
50 |
-
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/
|
51 |
-
|
52 |
CACHE_FILE = 'ibtracs_cache.pkl'
|
53 |
CACHE_EXPIRY_DAYS = 1
|
54 |
-
last_oni_update = None
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
if today.day == (today.replace(day=1, month=today.month%12+1) - timedelta(days=1)).day:
|
67 |
-
return True
|
68 |
-
return False
|
69 |
-
|
70 |
-
color_map = {
|
71 |
-
'C5 Super Typhoon': 'rgb(255, 0, 0)', # Red
|
72 |
-
'C4 Very Strong Typhoon': 'rgb(255, 63, 0)', # Red-Orange
|
73 |
-
'C3 Strong Typhoon': 'rgb(255, 127, 0)', # Orange
|
74 |
-
'C2 Typhoon': 'rgb(255, 191, 0)', # Orange-Yellow
|
75 |
-
'C1 Typhoon': 'rgb(255, 255, 0)', # Yellow
|
76 |
-
'Tropical Storm': 'rgb(0, 255, 255)', # Cyan
|
77 |
-
'Tropical Depression': 'rgb(173, 216, 230)' # Light Blue
|
78 |
}
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
next(infile)
|
85 |
-
|
86 |
-
reader = csv.reader(infile)
|
87 |
-
|
88 |
-
# Used for storing data for each SID
|
89 |
-
sid_data = defaultdict(list)
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
'END_DATE': end_date
|
123 |
-
})
|
124 |
-
|
125 |
-
|
126 |
-
def download_oni_file(url, filename):
|
127 |
-
print(f"Downloading file from {url}...")
|
128 |
-
try:
|
129 |
-
response = requests.get(url)
|
130 |
-
response.raise_for_status() # Raises an exception for non-200 status codes
|
131 |
-
with open(filename, 'wb') as f:
|
132 |
-
f.write(response.content)
|
133 |
-
print(f"File successfully downloaded and saved as {filename}")
|
134 |
-
return True
|
135 |
-
except requests.RequestException as e:
|
136 |
-
print(f"Download failed. Error: {e}")
|
137 |
-
return False
|
138 |
-
|
139 |
|
140 |
-
def convert_oni_ascii_to_csv(input_file, output_file):
|
141 |
-
data = defaultdict(lambda: [''] * 12)
|
142 |
-
season_to_month = {
|
143 |
-
'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
|
144 |
-
'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11
|
145 |
-
}
|
146 |
-
|
147 |
-
print(f"Attempting to read file: {input_file}")
|
148 |
-
try:
|
149 |
with open(input_file, 'r') as f:
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
if len(lines) <= 1:
|
154 |
-
print("Error: File is empty or contains only header")
|
155 |
-
return
|
156 |
-
|
157 |
-
for line in lines[1:]: # Skip header
|
158 |
parts = line.split()
|
159 |
if len(parts) >= 4:
|
160 |
-
season, year = parts[0], parts[1]
|
161 |
-
anom = parts[-1]
|
162 |
-
|
163 |
if season in season_to_month:
|
164 |
month = season_to_month[season]
|
165 |
-
|
166 |
if season == 'DJF':
|
167 |
year = str(int(year) - 1)
|
168 |
-
|
169 |
data[year][month-1] = anom
|
170 |
-
else:
|
171 |
-
print(f"Warning: Unknown season: {season}")
|
172 |
-
else:
|
173 |
-
print(f"Warning: Skipping invalid line: {line.strip()}")
|
174 |
-
|
175 |
-
print(f"Processed data for {len(data)} years")
|
176 |
-
except Exception as e:
|
177 |
-
print(f"Error reading file: {e}")
|
178 |
-
return
|
179 |
|
180 |
-
print(f"Attempting to write file: {output_file}")
|
181 |
-
try:
|
182 |
with open(output_file, 'w', newline='') as f:
|
183 |
writer = csv.writer(f)
|
184 |
-
writer.writerow(['Year'
|
185 |
-
|
186 |
for year in sorted(data.keys()):
|
187 |
-
|
188 |
-
writer.writerow(row)
|
189 |
-
|
190 |
-
print(f"Successfully wrote {len(data)} rows of data")
|
191 |
-
except Exception as e:
|
192 |
-
print(f"Error writing file: {e}")
|
193 |
-
return
|
194 |
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
# Check if already updated today
|
202 |
-
if last_oni_update == current_date:
|
203 |
-
print("ONI data already checked today. Skipping update.")
|
204 |
-
return
|
205 |
-
|
206 |
-
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
|
207 |
-
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
|
208 |
-
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
|
209 |
-
output_file = ONI_DATA_PATH
|
210 |
-
|
211 |
-
if download_oni_file(url, temp_file):
|
212 |
-
if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file, shallow=False):
|
213 |
-
# File doesn't exist or has been updated
|
214 |
-
os.replace(temp_file, input_file)
|
215 |
-
print("New ONI data detected. Converting to CSV.")
|
216 |
-
convert_oni_ascii_to_csv(input_file, output_file)
|
217 |
-
print("ONI data updated successfully.")
|
218 |
else:
|
219 |
-
print("ONI data is up to date. No conversion needed.")
|
220 |
-
os.remove(temp_file) # Remove temporary file
|
221 |
-
|
222 |
-
last_oni_update = current_date
|
223 |
-
else:
|
224 |
-
print("Failed to download ONI data.")
|
225 |
-
if os.path.exists(temp_file):
|
226 |
-
os.remove(temp_file) # Ensure cleanup of temporary file
|
227 |
-
|
228 |
-
def load_ibtracs_data():
|
229 |
-
if os.path.exists(CACHE_FILE):
|
230 |
-
cache_time = datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))
|
231 |
-
if datetime.now() - cache_time < timedelta(days=CACHE_EXPIRY_DAYS):
|
232 |
-
print("Loading data from cache...")
|
233 |
-
with open(CACHE_FILE, 'rb') as f:
|
234 |
-
return pickle.load(f)
|
235 |
-
|
236 |
-
if os.path.exists(LOCAL_iBtrace_PATH):
|
237 |
-
print("Using local IBTrACS file...")
|
238 |
-
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
239 |
-
else:
|
240 |
-
print("Local IBTrACS file not found. Fetching data from remote server...")
|
241 |
-
try:
|
242 |
response = requests.get(iBtrace_uri)
|
243 |
response.raise_for_status()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
print(f"
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
def
|
265 |
-
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
response = requests.head(iBtrace_uri)
|
271 |
-
remote_last_modified = datetime.strptime(response.headers['Last-Modified'], '%a, %d %b %Y %H:%M:%S GMT')
|
272 |
|
273 |
-
|
274 |
-
if
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
else:
|
277 |
-
|
278 |
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
if os.path.exists(CACHE_FILE):
|
283 |
-
# Update the cache file's timestamp to extend its validity
|
284 |
-
os.utime(CACHE_FILE, None)
|
285 |
-
print("Cache file timestamp updated.")
|
286 |
-
return
|
287 |
-
|
288 |
-
print("Remote data is newer. Updating IBTrACS data...")
|
289 |
-
|
290 |
-
# Download the new data
|
291 |
-
response = requests.get(iBtrace_uri)
|
292 |
-
response.raise_for_status()
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
|
|
297 |
|
298 |
-
|
299 |
-
|
300 |
-
|
|
|
|
|
|
|
301 |
|
302 |
-
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
else:
|
321 |
-
print("No local file available. Update failed.")
|
322 |
-
|
323 |
-
def run_schedule():
|
324 |
-
while True:
|
325 |
-
schedule.run_pending()
|
326 |
-
time.sleep(1)
|
327 |
-
|
328 |
-
def analyze_typhoon_generation(merged_data, start_date, end_date):
|
329 |
-
filtered_data = merged_data[
|
330 |
-
(merged_data['ISO_TIME'] >= start_date) &
|
331 |
-
(merged_data['ISO_TIME'] <= end_date)
|
332 |
-
]
|
333 |
-
|
334 |
-
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
|
335 |
-
|
336 |
-
typhoon_counts = filtered_data['ENSO_Phase'].value_counts().to_dict()
|
337 |
-
|
338 |
-
month_counts = filtered_data.groupby(['ENSO_Phase', filtered_data['ISO_TIME'].dt.month]).size().unstack(fill_value=0)
|
339 |
-
concentrated_months = month_counts.idxmax(axis=1).to_dict()
|
340 |
-
|
341 |
-
return typhoon_counts, concentrated_months
|
342 |
-
|
343 |
-
def cache_key_generator(*args, **kwargs):
|
344 |
-
key = hashlib.md5()
|
345 |
-
for arg in args:
|
346 |
-
key.update(str(arg).encode())
|
347 |
-
for k, v in sorted(kwargs.items()):
|
348 |
-
key.update(str(k).encode())
|
349 |
-
key.update(str(v).encode())
|
350 |
-
return key.hexdigest()
|
351 |
-
|
352 |
-
def categorize_typhoon(wind_speed):
|
353 |
-
wind_speed_kt = wind_speed / 2 # Convert kt to m/s
|
354 |
-
|
355 |
-
# Add category classification
|
356 |
-
if wind_speed_kt >= 137/2.35:
|
357 |
-
return 'C5 Super Typhoon'
|
358 |
-
elif wind_speed_kt >= 113/2.35:
|
359 |
-
return 'C4 Very Strong Typhoon'
|
360 |
-
elif wind_speed_kt >= 96/2.35:
|
361 |
-
return 'C3 Strong Typhoon'
|
362 |
-
elif wind_speed_kt >= 83/2.35:
|
363 |
-
return 'C2 Typhoon'
|
364 |
-
elif wind_speed_kt >= 64/2.35:
|
365 |
-
return 'C1 Typhoon'
|
366 |
-
elif wind_speed_kt >= 34/2.35:
|
367 |
-
return 'Tropical Storm'
|
368 |
-
else:
|
369 |
-
return 'Tropical Depression'
|
370 |
-
|
371 |
-
@functools.lru_cache(maxsize=None)
|
372 |
-
def process_oni_data_cached(oni_data_hash):
|
373 |
-
return process_oni_data(oni_data)
|
374 |
-
|
375 |
-
def process_oni_data(oni_data):
|
376 |
-
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
377 |
-
oni_long['Month'] = oni_long['Month'].map({
|
378 |
-
'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06',
|
379 |
-
'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'
|
380 |
-
})
|
381 |
-
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
|
382 |
-
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
|
383 |
-
return oni_long
|
384 |
-
|
385 |
-
def process_oni_data_with_cache(oni_data):
|
386 |
-
oni_data_hash = cache_key_generator(oni_data.to_json())
|
387 |
-
return process_oni_data_cached(oni_data_hash)
|
388 |
-
|
389 |
-
@functools.lru_cache(maxsize=None)
|
390 |
-
def process_typhoon_data_cached(typhoon_data_hash):
|
391 |
-
return process_typhoon_data(typhoon_data)
|
392 |
-
|
393 |
-
def process_typhoon_data(typhoon_data):
|
394 |
-
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
395 |
-
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
|
396 |
-
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
|
397 |
-
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
|
398 |
-
|
399 |
-
typhoon_max = typhoon_data.groupby('SID').agg({
|
400 |
-
'USA_WIND': 'max',
|
401 |
-
'USA_PRES': 'min',
|
402 |
-
'ISO_TIME': 'first',
|
403 |
-
'SEASON': 'first',
|
404 |
-
'NAME': 'first',
|
405 |
-
'LAT': 'first',
|
406 |
-
'LON': 'first'
|
407 |
-
}).reset_index()
|
408 |
-
|
409 |
-
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
|
410 |
-
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
|
411 |
-
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
|
412 |
-
return typhoon_max
|
413 |
-
|
414 |
-
def process_typhoon_data_with_cache(typhoon_data):
|
415 |
-
typhoon_data_hash = cache_key_generator(typhoon_data.to_json())
|
416 |
-
return process_typhoon_data_cached(typhoon_data_hash)
|
417 |
-
|
418 |
-
def merge_data(oni_long, typhoon_max):
|
419 |
-
return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])
|
420 |
-
|
421 |
-
def calculate_logistic_regression(merged_data):
|
422 |
-
data = merged_data.dropna(subset=['USA_WIND', 'ONI'])
|
423 |
-
|
424 |
-
# Create binary outcome for severe typhoons
|
425 |
-
data['severe_typhoon'] = (data['USA_WIND'] >= 51).astype(int)
|
426 |
-
|
427 |
-
# Create binary predictor for El Niño
|
428 |
-
data['el_nino'] = (data['ONI'] >= 0.5).astype(int)
|
429 |
-
|
430 |
-
X = data['el_nino']
|
431 |
-
X = sm.add_constant(X) # Add constant term
|
432 |
-
y = data['severe_typhoon']
|
433 |
-
|
434 |
-
model = sm.Logit(y, X).fit()
|
435 |
-
|
436 |
-
beta_1 = model.params['el_nino']
|
437 |
-
exp_beta_1 = np.exp(beta_1)
|
438 |
-
p_value = model.pvalues['el_nino']
|
439 |
-
|
440 |
-
return beta_1, exp_beta_1, p_value
|
441 |
-
|
442 |
-
@cachetools.cached(cache={})
|
443 |
-
def fetch_oni_data_from_csv(file_path):
|
444 |
-
df = pd.read_csv(file_path, sep=',', header=0, na_values='-99.90')
|
445 |
-
df.columns = ['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
446 |
-
df = df.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
447 |
-
df['Date'] = pd.to_datetime(df['Year'].astype(str) + df['Month'], format='%Y%b')
|
448 |
-
df = df.set_index('Date')
|
449 |
-
return df
|
450 |
-
|
451 |
-
def classify_enso_phases(oni_value):
|
452 |
-
if isinstance(oni_value, pd.Series):
|
453 |
-
oni_value = oni_value.iloc[0]
|
454 |
-
if oni_value >= 0.5:
|
455 |
-
return 'El Nino'
|
456 |
-
elif oni_value <= -0.5:
|
457 |
-
return 'La Nina'
|
458 |
-
else:
|
459 |
-
return 'Neutral'
|
460 |
-
|
461 |
-
def load_data(oni_data_path, typhoon_data_path):
|
462 |
-
oni_data = pd.read_csv(oni_data_path)
|
463 |
-
typhoon_data = pd.read_csv(typhoon_data_path, low_memory=False)
|
464 |
-
|
465 |
-
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
466 |
-
|
467 |
-
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
|
468 |
-
|
469 |
-
print(f"Typhoon data shape after cleaning: {typhoon_data.shape}")
|
470 |
-
print(f"Year range: {typhoon_data['ISO_TIME'].dt.year.min()} - {typhoon_data['ISO_TIME'].dt.year.max()}")
|
471 |
-
|
472 |
-
return oni_data, typhoon_data
|
473 |
-
|
474 |
-
def preprocess_data(oni_data, typhoon_data):
|
475 |
-
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
|
476 |
-
typhoon_data['WMO_PRES'] = pd.to_numeric(typhoon_data['WMO_PRES'], errors='coerce')
|
477 |
-
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
478 |
-
typhoon_data['Year'] = typhoon_data['ISO_TIME'].dt.year
|
479 |
-
typhoon_data['Month'] = typhoon_data['ISO_TIME'].dt.month
|
480 |
-
|
481 |
-
monthly_max_wind_speed = typhoon_data.groupby(['Year', 'Month'])['USA_WIND'].max().reset_index()
|
482 |
-
|
483 |
-
oni_data_long = pd.melt(oni_data, id_vars=['Year'], var_name='Month', value_name='ONI')
|
484 |
-
oni_data_long['Month'] = oni_data_long['Month'].apply(lambda x: pd.to_datetime(x, format='%b').month)
|
485 |
-
|
486 |
-
merged_data = pd.merge(monthly_max_wind_speed, oni_data_long, on=['Year', 'Month'])
|
487 |
-
|
488 |
-
return merged_data
|
489 |
-
|
490 |
-
def calculate_max_wind_min_pressure(typhoon_data):
|
491 |
-
max_wind_speed = typhoon_data['USA_WIND'].max()
|
492 |
-
min_pressure = typhoon_data['WMO_PRES'].min()
|
493 |
-
return max_wind_speed, min_pressure
|
494 |
-
|
495 |
-
@functools.lru_cache(maxsize=None)
|
496 |
-
def get_storm_data(storm_id):
|
497 |
-
return ibtracs.get_storm(storm_id)
|
498 |
-
|
499 |
-
def filter_west_pacific_coordinates(lons, lats):
|
500 |
-
mask = (100 <= lons) & (lons <= 180) & (0 <= lats) & (lats <= 40)
|
501 |
-
return lons[mask], lats[mask]
|
502 |
-
|
503 |
-
def polynomial_exp(x, a, b, c, d):
|
504 |
-
return a * x**2 + b * x + c + d * np.exp(x)
|
505 |
-
|
506 |
-
def exponential(x, a, b, c):
|
507 |
-
return a * np.exp(b * x) + c
|
508 |
-
|
509 |
-
def generate_cluster_equations(cluster_center):
|
510 |
-
X = cluster_center[:, 0] # Longitudes
|
511 |
-
y = cluster_center[:, 1] # Latitudes
|
512 |
-
|
513 |
-
x_min = X.min()
|
514 |
-
x_max = X.max()
|
515 |
-
|
516 |
-
equations = []
|
517 |
-
|
518 |
-
# Fourier Series (up to 4th order)
|
519 |
-
def fourier_series(x, a0, a1, b1, a2, b2, a3, b3, a4, b4):
|
520 |
-
return (a0 + a1*np.cos(x) + b1*np.sin(x) +
|
521 |
-
a2*np.cos(2*x) + b2*np.sin(2*x) +
|
522 |
-
a3*np.cos(3*x) + b3*np.sin(3*x) +
|
523 |
-
a4*np.cos(4*x) + b4*np.sin(4*x))
|
524 |
-
|
525 |
-
# Normalize X to the range [0, 2π]
|
526 |
-
X_normalized = 2 * np.pi * (X - x_min) / (x_max - x_min)
|
527 |
-
|
528 |
-
params, _ = curve_fit(fourier_series, X_normalized, y)
|
529 |
-
a0, a1, b1, a2, b2, a3, b3, a4, b4 = params
|
530 |
-
|
531 |
-
# Create the equation string
|
532 |
-
fourier_eq = (f"y = {a0:.4f} + {a1:.4f}*cos(x) + {b1:.4f}*sin(x) + "
|
533 |
-
f"{a2:.4f}*cos(2x) + {b2:.4f}*sin(2x) + "
|
534 |
-
f"{a3:.4f}*cos(3x) + {b3:.4f}*sin(3x) + "
|
535 |
-
f"{a4:.4f}*cos(4x) + {b4:.4f}*sin(4x)")
|
536 |
-
|
537 |
-
equations.append(("Fourier Series", fourier_eq))
|
538 |
-
equations.append(("X Range", f"x goes from 0 to {2*np.pi:.4f}"))
|
539 |
-
equations.append(("Longitude Range", f"Longitude goes from {x_min:.4f}°E to {x_max:.4f}°E"))
|
540 |
-
|
541 |
-
return equations, (x_min, x_max)
|
542 |
-
|
543 |
-
#oni_df = fetch_oni_data_from_csv(ONI_DATA_PATH)
|
544 |
-
#ibtracs = load_ibtracs_data()
|
545 |
-
#oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
|
546 |
-
#oni_long = process_oni_data_with_cache(oni_data)
|
547 |
-
#typhoon_max = process_typhoon_data_with_cache(typhoon_data)
|
548 |
-
#merged_data = merge_data(oni_long, typhoon_max)
|
549 |
-
#data = preprocess_data(oni_data, typhoon_data)
|
550 |
-
#max_wind_speed, min_pressure = calculate_max_wind_min_pressure(typhoon_data)
|
551 |
-
#
|
552 |
-
## Schedule the update to run daily at 1:00 AM
|
553 |
-
#schedule.every().day.at("01:00").do(update_ibtracs_data)
|
554 |
-
#
|
555 |
-
## Run the scheduler in a separate thread
|
556 |
-
#scheduler_thread = threading.Thread(target=run_schedule)
|
557 |
-
#scheduler_thread.start()
|
558 |
-
|
559 |
-
|
560 |
-
app = dash.Dash(__name__)
|
561 |
-
|
562 |
-
# First, add the classification standards
|
563 |
-
atlantic_standard = {
|
564 |
-
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'rgb(255, 0, 0)'},
|
565 |
-
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'rgb(255, 63, 0)'},
|
566 |
-
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'rgb(255, 127, 0)'},
|
567 |
-
'C2 Typhoon': {'wind_speed': 83, 'color': 'rgb(255, 191, 0)'},
|
568 |
-
'C1 Typhoon': {'wind_speed': 64, 'color': 'rgb(255, 255, 0)'},
|
569 |
-
'Tropical Storm': {'wind_speed': 34, 'color': 'rgb(0, 255, 255)'},
|
570 |
-
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
|
571 |
-
}
|
572 |
-
|
573 |
-
taiwan_standard = {
|
574 |
-
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'rgb(255, 0, 0)'}, # >= 51.0 m/s
|
575 |
-
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'rgb(255, 127, 0)'}, # 33.7-50.9 m/s
|
576 |
-
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'rgb(255, 255, 0)'}, # 17.2-33.6 m/s
|
577 |
-
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'} # < 17.2 m/s
|
578 |
-
}
|
579 |
-
|
580 |
-
app.layout = html.Div([
|
581 |
-
html.H1("Typhoon Analysis Dashboard"),
|
582 |
-
|
583 |
-
html.Div([
|
584 |
-
dcc.Input(id='start-year', type='number', placeholder='Start Year', value=2000, min=1900, max=2024, step=1),
|
585 |
-
dcc.Input(id='start-month', type='number', placeholder='Start Month', value=1, min=1, max=12, step=1),
|
586 |
-
dcc.Input(id='end-year', type='number', placeholder='End Year', value=2024, min=1900, max=2024, step=1),
|
587 |
-
dcc.Input(id='end-month', type='number', placeholder='End Month', value=6, min=1, max=12, step=1),
|
588 |
-
dcc.Dropdown(
|
589 |
-
id='enso-dropdown',
|
590 |
-
options=[
|
591 |
-
{'label': 'All Years', 'value': 'all'},
|
592 |
-
{'label': 'El Niño Years', 'value': 'el_nino'},
|
593 |
-
{'label': 'La Niña Years', 'value': 'la_nina'},
|
594 |
-
{'label': 'Neutral Years', 'value': 'neutral'}
|
595 |
-
],
|
596 |
-
value='all'
|
597 |
-
),
|
598 |
-
html.Button('Analyze', id='analyze-button', n_clicks=0),
|
599 |
-
]),
|
600 |
-
|
601 |
-
html.Div([
|
602 |
-
dcc.Input(id='typhoon-search', type='text', placeholder='Search Typhoon Name'),
|
603 |
-
html.Button('Find Typhoon', id='find-typhoon-button', n_clicks=0),
|
604 |
-
]),
|
605 |
-
|
606 |
-
html.Div([
|
607 |
-
html.Div(id='correlation-coefficient'),
|
608 |
-
html.Div(id='max-wind-speed'),
|
609 |
-
html.Div(id='min-pressure'),
|
610 |
-
]),
|
611 |
-
|
612 |
-
dcc.Graph(id='typhoon-tracks-graph'),
|
613 |
-
html.Div([
|
614 |
-
html.P("Number of Clusters"),
|
615 |
-
dcc.Input(id='n-clusters', type='number', placeholder='Number of Clusters', value=5, min=1, max=20, step=1),
|
616 |
-
html.Button('Show Clusters', id='show-clusters-button', n_clicks=0),
|
617 |
-
html.Button('Show Typhoon Routes', id='show-routes-button', n_clicks=0),
|
618 |
-
]),
|
619 |
-
|
620 |
-
dcc.Graph(id='typhoon-routes-graph'),
|
621 |
-
|
622 |
-
html.Div([
|
623 |
-
html.Button('Fourier Series', id='fourier-series-button', n_clicks=0),
|
624 |
-
]),
|
625 |
-
html.Div(id='cluster-equation-results'),
|
626 |
-
|
627 |
-
html.Div([
|
628 |
-
html.Button('Wind Speed Logistic Regression', id='wind-regression-button', n_clicks=0),
|
629 |
-
html.Button('Pressure Logistic Regression', id='pressure-regression-button', n_clicks=0),
|
630 |
-
html.Button('Longitude Logistic Regression', id='longitude-regression-button', n_clicks=0),
|
631 |
-
]),
|
632 |
-
html.Div(id='logistic-regression-results'),
|
633 |
-
|
634 |
-
html.H2("Typhoon Path Analysis"),
|
635 |
-
html.Div([
|
636 |
-
dcc.Dropdown(
|
637 |
-
id='year-dropdown',
|
638 |
-
options=[{'label': str(year), 'value': year} for year in range(1950, 2025)],
|
639 |
-
value=2024,
|
640 |
-
style={'width': '200px'}
|
641 |
-
),
|
642 |
-
dcc.Dropdown(
|
643 |
-
id='typhoon-dropdown',
|
644 |
-
style={'width': '300px'}
|
645 |
-
),
|
646 |
-
dcc.Dropdown(
|
647 |
-
id='classification-standard',
|
648 |
-
options=[
|
649 |
-
{'label': 'Atlantic Standard', 'value': 'atlantic'},
|
650 |
-
{'label': 'Taiwan Standard', 'value': 'taiwan'}
|
651 |
-
],
|
652 |
-
value='atlantic',
|
653 |
-
style={'width': '200px'}
|
654 |
-
)
|
655 |
-
], style={'display': 'flex', 'gap': '10px'}),
|
656 |
-
|
657 |
-
dcc.Graph(id='typhoon-path-animation'),
|
658 |
-
dcc.Graph(id='all-years-regression-graph'),
|
659 |
-
dcc.Graph(id='wind-oni-scatter-plot'),
|
660 |
-
dcc.Graph(id='pressure-oni-scatter'),
|
661 |
-
|
662 |
-
html.Div(id='regression-graphs'),
|
663 |
-
html.Div(id='slopes'),
|
664 |
-
html.Div([
|
665 |
-
html.H3("Correlation Analysis"),
|
666 |
-
html.Div(id='wind-oni-correlation'),
|
667 |
-
html.Div(id='pressure-oni-correlation'),
|
668 |
-
]),
|
669 |
-
html.Div([
|
670 |
-
html.H3("Typhoon Generation Analysis"),
|
671 |
-
html.Div(id='typhoon-count-analysis'),
|
672 |
-
html.Div(id='concentrated-months-analysis'),
|
673 |
-
]),
|
674 |
-
html.Div(id='cluster-info'),
|
675 |
-
|
676 |
-
html.Div([
|
677 |
-
dcc.Dropdown(
|
678 |
-
id='classification-standard',
|
679 |
-
options=[
|
680 |
-
{'label': 'Atlantic Standard', 'value': 'atlantic'},
|
681 |
-
{'label': 'Taiwan Standard', 'value': 'taiwan'}
|
682 |
-
],
|
683 |
-
value='atlantic',
|
684 |
-
style={'width': '200px'}
|
685 |
)
|
686 |
-
], style={'margin': '10px'}),
|
687 |
-
|
688 |
-
], style={'font-family': 'Arial, sans-serif'})
|
689 |
-
|
690 |
-
@app.callback(
|
691 |
-
Output('year-dropdown', 'options'),
|
692 |
-
Input('typhoon-tracks-graph', 'figure')
|
693 |
-
)
|
694 |
-
def initialize_year_dropdown(_):
|
695 |
-
try:
|
696 |
-
years = typhoon_data['ISO_TIME'].dt.year.unique()
|
697 |
-
years = years[~np.isnan(years)]
|
698 |
-
years = sorted(years)
|
699 |
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
)
|
712 |
-
|
713 |
-
|
714 |
-
raise PreventUpdate
|
715 |
-
|
716 |
-
selected_year = int(selected_year)
|
717 |
-
|
718 |
-
season = ibtracs.get_season(selected_year)
|
719 |
-
storm_summary = season.summary()
|
720 |
-
|
721 |
-
typhoon_options = []
|
722 |
-
for i in range(storm_summary['season_storms']):
|
723 |
-
storm_id = storm_summary['id'][i]
|
724 |
-
storm_name = storm_summary['name'][i]
|
725 |
-
typhoon_options.append({'label': f"{storm_name} ({storm_id})", 'value': storm_id})
|
726 |
-
|
727 |
-
selected_typhoon = typhoon_options[0]['value'] if typhoon_options else None
|
728 |
-
return typhoon_options, selected_typhoon
|
729 |
-
|
730 |
-
@app.callback(
|
731 |
-
Output('typhoon-path-animation', 'figure'),
|
732 |
-
[Input('year-dropdown', 'value'),
|
733 |
-
Input('typhoon-dropdown', 'value'),
|
734 |
-
Input('classification-standard', 'value')]
|
735 |
-
)
|
736 |
-
def update_typhoon_path(selected_year, selected_sid, standard):
|
737 |
-
if not selected_year or not selected_sid:
|
738 |
-
raise PreventUpdate
|
739 |
-
|
740 |
-
storm = ibtracs.get_storm(selected_sid)
|
741 |
-
return create_typhoon_path_figure(storm, selected_year, standard)
|
742 |
-
|
743 |
-
def create_typhoon_path_figure(storm, selected_year, standard='atlantic'):
|
744 |
-
fig = go.Figure()
|
745 |
-
|
746 |
-
fig.add_trace(
|
747 |
-
go.Scattergeo(
|
748 |
-
lon=storm.lon,
|
749 |
-
lat=storm.lat,
|
750 |
-
mode='lines',
|
751 |
-
line=dict(width=2, color='gray'),
|
752 |
-
name='Path',
|
753 |
-
showlegend=False,
|
754 |
-
)
|
755 |
-
)
|
756 |
-
|
757 |
-
fig.add_trace(
|
758 |
-
go.Scattergeo(
|
759 |
-
lon=[storm.lon[0]],
|
760 |
-
lat=[storm.lat[0]],
|
761 |
-
mode='markers',
|
762 |
-
marker=dict(size=10, color='green', symbol='star'),
|
763 |
-
name='Starting Point',
|
764 |
-
text=storm.time[0].strftime('%Y-%m-%d %H:%M'),
|
765 |
-
hoverinfo='text+name',
|
766 |
)
|
767 |
-
)
|
768 |
-
|
769 |
-
frames = []
|
770 |
-
for i in range(len(storm.time)):
|
771 |
-
category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
|
772 |
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
radius_info += f"RMW: {rmw}<br>"
|
782 |
-
radius_info += f"Eye Diameter: {eye_diameter}"
|
783 |
-
|
784 |
-
frame_data = [
|
785 |
-
go.Scattergeo(
|
786 |
-
lon=storm.lon[:i+1],
|
787 |
-
lat=storm.lat[:i+1],
|
788 |
mode='lines',
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
hoverinfo='text',
|
807 |
-
),
|
808 |
-
]
|
809 |
-
frames.append(go.Frame(data=frame_data, name=f"frame{i}"))
|
810 |
-
|
811 |
-
fig.frames = frames
|
812 |
-
|
813 |
-
fig.update_layout(
|
814 |
-
title=f"{selected_year} Year {storm.name} Typhoon Path",
|
815 |
-
showlegend=False,
|
816 |
-
geo=dict(
|
817 |
-
projection_type='natural earth',
|
818 |
-
showland=True,
|
819 |
-
landcolor='rgb(243, 243, 243)',
|
820 |
-
countrycolor='rgb(204, 204, 204)',
|
821 |
-
coastlinecolor='rgb(100, 100, 100)',
|
822 |
-
showocean=True,
|
823 |
-
oceancolor='rgb(230, 250, 255)',
|
824 |
-
),
|
825 |
-
updatemenus=[{
|
826 |
-
"buttons": [
|
827 |
-
{
|
828 |
-
"args": [None, {"frame": {"duration": 100, "redraw": True},
|
829 |
-
"fromcurrent": True,
|
830 |
-
"transition": {"duration": 0}}],
|
831 |
-
"label": "Play",
|
832 |
-
"method": "animate"
|
833 |
-
},
|
834 |
-
{
|
835 |
-
"args": [[None], {"frame": {"duration": 0, "redraw": True},
|
836 |
-
"mode": "immediate",
|
837 |
-
"transition": {"duration": 0}}],
|
838 |
-
"label": "Pause",
|
839 |
-
"method": "animate"
|
840 |
-
}
|
841 |
-
],
|
842 |
-
"direction": "left",
|
843 |
-
"pad": {"r": 10, "t": 87},
|
844 |
-
"showactive": False,
|
845 |
-
"type": "buttons",
|
846 |
-
"x": 0.1,
|
847 |
-
"xanchor": "right",
|
848 |
-
"y": 0,
|
849 |
-
"yanchor": "top"
|
850 |
-
}],
|
851 |
-
sliders=[{
|
852 |
-
"active": 0,
|
853 |
-
"yanchor": "top",
|
854 |
-
"xanchor": "left",
|
855 |
-
"currentvalue": {
|
856 |
-
"font": {"size": 20},
|
857 |
-
"prefix": "Time: ",
|
858 |
-
"visible": True,
|
859 |
-
"xanchor": "right"
|
860 |
},
|
861 |
-
|
862 |
-
|
863 |
-
"len": 0.9,
|
864 |
-
"x": 0.1,
|
865 |
-
"y": 0,
|
866 |
-
"steps": [
|
867 |
-
{
|
868 |
-
"args": [[f"frame{k}"],
|
869 |
-
{"frame": {"duration": 100, "redraw": True},
|
870 |
-
"mode": "immediate",
|
871 |
-
"transition": {"duration": 0}}
|
872 |
-
],
|
873 |
-
"label": storm.time[k].strftime('%Y-%m-%d %H:%M'),
|
874 |
-
"method": "animate"
|
875 |
-
}
|
876 |
-
for k in range(len(storm.time))
|
877 |
-
]
|
878 |
-
}]
|
879 |
-
)
|
880 |
-
|
881 |
-
return fig
|
882 |
-
|
883 |
-
@app.callback(
|
884 |
-
[Output('typhoon-routes-graph', 'figure'),
|
885 |
-
Output('cluster-equation-results', 'children')],
|
886 |
-
[Input('analyze-button', 'n_clicks'),
|
887 |
-
Input('show-clusters-button', 'n_clicks'),
|
888 |
-
Input('show-routes-button', 'n_clicks'),
|
889 |
-
Input('fourier-series-button', 'n_clicks')],
|
890 |
-
[State('start-year', 'value'),
|
891 |
-
State('start-month', 'value'),
|
892 |
-
State('end-year', 'value'),
|
893 |
-
State('end-month', 'value'),
|
894 |
-
State('n-clusters', 'value'),
|
895 |
-
State('enso-dropdown', 'value')]
|
896 |
-
)
|
897 |
-
|
898 |
-
def update_route_clusters(analyze_clicks, show_clusters_clicks, show_routes_clicks,
|
899 |
-
fourier_clicks, start_year, start_month, end_year, end_month,
|
900 |
-
n_clusters, enso_value):
|
901 |
-
ctx = dash.callback_context
|
902 |
-
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
|
903 |
-
|
904 |
-
start_date = datetime(start_year, start_month, 1)
|
905 |
-
end_date = datetime(end_year, end_month, 28)
|
906 |
-
|
907 |
-
filtered_oni_df = oni_df[(oni_df.index >= start_date) & (oni_df.index <= end_date)]
|
908 |
-
|
909 |
-
fig_routes = go.Figure()
|
910 |
-
|
911 |
-
clusters = np.array([]) # Initialize as empty NumPy array
|
912 |
-
cluster_equations = []
|
913 |
-
|
914 |
-
# Clustering analysis
|
915 |
-
west_pacific_storms = []
|
916 |
-
for year in range(start_year, end_year + 1):
|
917 |
-
season = ibtracs.get_season(year)
|
918 |
-
for storm_id in season.summary()['id']:
|
919 |
-
storm = get_storm_data(storm_id)
|
920 |
-
storm_date = storm.time[0]
|
921 |
-
storm_oni = oni_df.loc[storm_date.strftime('%Y-%b')]['ONI']
|
922 |
-
if isinstance(storm_oni, pd.Series):
|
923 |
-
storm_oni = storm_oni.iloc[0]
|
924 |
-
storm_phase = classify_enso_phases(storm_oni)
|
925 |
-
|
926 |
-
if enso_value == 'all' or \
|
927 |
-
(enso_value == 'el_nino' and storm_phase == 'El Nino') or \
|
928 |
-
(enso_value == 'la_nina' and storm_phase == 'La Nina') or \
|
929 |
-
(enso_value == 'neutral' and storm_phase == 'Neutral'):
|
930 |
-
lons, lats = filter_west_pacific_coordinates(np.array(storm.lon), np.array(storm.lat))
|
931 |
-
if len(lons) > 1: # Ensure the storm has a valid path in West Pacific
|
932 |
-
west_pacific_storms.append((lons, lats))
|
933 |
-
|
934 |
-
max_length = max(len(storm[0]) for storm in west_pacific_storms)
|
935 |
-
standardized_routes = []
|
936 |
-
|
937 |
-
for lons, lats in west_pacific_storms:
|
938 |
-
if len(lons) < 2: # Skip if not enough points
|
939 |
-
continue
|
940 |
-
t = np.linspace(0, 1, len(lons))
|
941 |
-
t_new = np.linspace(0, 1, max_length)
|
942 |
-
lon_interp = interp1d(t, lons, kind='linear')(t_new)
|
943 |
-
lat_interp = interp1d(t, lats, kind='linear')(t_new)
|
944 |
-
route_vector = np.column_stack((lon_interp, lat_interp)).flatten()
|
945 |
-
standardized_routes.append(route_vector)
|
946 |
-
|
947 |
-
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
|
948 |
-
clusters = kmeans.fit_predict(standardized_routes)
|
949 |
-
|
950 |
-
# Count the number of typhoons in each cluster
|
951 |
-
cluster_counts = np.bincount(clusters)
|
952 |
-
|
953 |
-
for lons, lats in west_pacific_storms:
|
954 |
-
fig_routes.add_trace(go.Scattergeo(
|
955 |
-
lon=lons, lat=lats,
|
956 |
-
mode='lines',
|
957 |
-
line=dict(width=1, color='lightgray'),
|
958 |
-
showlegend=False,
|
959 |
-
hoverinfo='none',
|
960 |
-
visible=(button_id == 'show-routes-button')
|
961 |
-
))
|
962 |
-
|
963 |
-
equations_output = []
|
964 |
-
for i in range(n_clusters):
|
965 |
-
cluster_center = kmeans.cluster_centers_[i].reshape(-1, 2)
|
966 |
-
cluster_equations, (lon_min, lon_max) = generate_cluster_equations(cluster_center)
|
967 |
|
968 |
-
#
|
969 |
-
|
970 |
-
|
971 |
-
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
|
|
|
|
|
|
|
|
|
|
|
976 |
|
977 |
-
|
978 |
-
|
979 |
-
|
980 |
-
|
981 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
982 |
|
983 |
-
|
984 |
-
|
985 |
-
lat=cluster_center[:, 1],
|
986 |
-
mode='lines',
|
987 |
-
name=f'Cluster {i+1} (n={cluster_counts[i]})',
|
988 |
-
line=dict(width=3),
|
989 |
-
visible=(button_id == 'show-clusters-button')
|
990 |
-
))
|
991 |
-
|
992 |
-
enso_phase_text = {
|
993 |
-
'all': 'All Years',
|
994 |
-
'el_nino': 'El Niño Years',
|
995 |
-
'la_nina': 'La Niña Years',
|
996 |
-
'neutral': 'Neutral Years'
|
997 |
-
}
|
998 |
-
fig_routes.update_layout(
|
999 |
-
title=f'Typhoon Routes Clustering in West Pacific ({start_year}-{end_year}) - {enso_phase_text[enso_value]}',
|
1000 |
-
geo=dict(
|
1001 |
-
projection_type='mercator',
|
1002 |
-
showland=True,
|
1003 |
-
landcolor='rgb(243, 243, 243)',
|
1004 |
-
countrycolor='rgb(204, 204, 204)',
|
1005 |
-
coastlinecolor='rgb(100, 100, 100)',
|
1006 |
-
showocean=True,
|
1007 |
-
oceancolor='rgb(230, 250, 255)',
|
1008 |
-
lataxis={'range': [0, 40]},
|
1009 |
-
lonaxis={'range': [100, 180]},
|
1010 |
-
center={'lat': 20, 'lon': 140},
|
1011 |
-
),
|
1012 |
-
legend_title='Clusters'
|
1013 |
-
)
|
1014 |
-
|
1015 |
-
return fig_routes, html.Div(equations_output)
|
1016 |
-
|
1017 |
-
@app.callback(
|
1018 |
-
[Output('typhoon-tracks-graph', 'figure'),
|
1019 |
-
Output('all-years-regression-graph', 'figure'),
|
1020 |
-
Output('regression-graphs', 'children'),
|
1021 |
-
Output('slopes', 'children'),
|
1022 |
-
Output('wind-oni-scatter-plot', 'figure'),
|
1023 |
-
Output('pressure-oni-scatter', 'figure'),
|
1024 |
-
Output('correlation-coefficient', 'children'),
|
1025 |
-
Output('max-wind-speed', 'children'),
|
1026 |
-
Output('min-pressure', 'children'),
|
1027 |
-
Output('wind-oni-correlation', 'children'),
|
1028 |
-
Output('pressure-oni-correlation', 'children'),
|
1029 |
-
Output('typhoon-count-analysis', 'children'),
|
1030 |
-
Output('concentrated-months-analysis', 'children')],
|
1031 |
-
[Input('analyze-button', 'n_clicks'),
|
1032 |
-
Input('find-typhoon-button', 'n_clicks')],
|
1033 |
-
[State('start-year', 'value'),
|
1034 |
-
State('start-month', 'value'),
|
1035 |
-
State('end-year', 'value'),
|
1036 |
-
State('end-month', 'value'),
|
1037 |
-
State('enso-dropdown', 'value'),
|
1038 |
-
State('typhoon-search', 'value')]
|
1039 |
-
)
|
1040 |
-
|
1041 |
-
def update_graphs(analyze_clicks, find_typhoon_clicks,
|
1042 |
-
start_year, start_month, end_year, end_month,
|
1043 |
-
enso_value, typhoon_search):
|
1044 |
-
ctx = dash.callback_context
|
1045 |
-
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
|
1046 |
-
|
1047 |
-
start_date = datetime(start_year, start_month, 1)
|
1048 |
-
end_date = datetime(end_year, end_month, 28)
|
1049 |
-
|
1050 |
-
filtered_oni_df = oni_df[(oni_df.index >= start_date) & (oni_df.index <= end_date)]
|
1051 |
-
|
1052 |
|
1053 |
-
|
1054 |
-
|
1055 |
-
|
1056 |
-
|
|
|
1057 |
|
1058 |
-
|
1059 |
-
|
1060 |
-
def process_storm(year, storm_id):
|
1061 |
-
storm = get_storm_data(storm_id)
|
1062 |
-
storm_dates = storm.time
|
1063 |
-
if any(start_date <= date <= end_date for date in storm_dates):
|
1064 |
-
storm_oni = filtered_oni_df.loc[storm_dates[0].strftime('%Y-%b')]['ONI']
|
1065 |
-
if isinstance(storm_oni, pd.Series):
|
1066 |
-
storm_oni = storm_oni.iloc[0]
|
1067 |
-
phase = classify_enso_phases(storm_oni)
|
1068 |
-
|
1069 |
-
regression_data[phase]['longitudes'].append(storm.lon[0])
|
1070 |
-
regression_data[phase]['oni_values'].append(storm_oni)
|
1071 |
-
regression_data[phase]['names'].append(f'{storm.name} ({year})')
|
1072 |
-
regression_data['All']['longitudes'].append(storm.lon[0])
|
1073 |
-
regression_data['All']['oni_values'].append(storm_oni)
|
1074 |
-
regression_data['All']['names'].append(f'{storm.name} ({year})')
|
1075 |
-
|
1076 |
-
if (enso_value == 'all' or
|
1077 |
-
(enso_value == 'el_nino' and phase == 'El Nino') or
|
1078 |
-
(enso_value == 'la_nina' and phase == 'La Nina') or
|
1079 |
-
(enso_value == 'neutral' and phase == 'Neutral')):
|
1080 |
-
color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[phase]
|
1081 |
-
return go.Scattergeo(
|
1082 |
-
lon=storm.lon,
|
1083 |
-
lat=storm.lat,
|
1084 |
-
mode='lines',
|
1085 |
-
name=storm.name,
|
1086 |
-
text=f'{storm.name} ({year})',
|
1087 |
-
hoverinfo='text',
|
1088 |
-
line=dict(width=2, color=color)
|
1089 |
-
)
|
1090 |
-
return None
|
1091 |
-
|
1092 |
-
with ThreadPoolExecutor() as executor:
|
1093 |
-
futures = []
|
1094 |
-
for year in range(start_year, end_year + 1):
|
1095 |
-
season = ibtracs.get_season(year)
|
1096 |
-
for storm_id in season.summary()['id']:
|
1097 |
-
futures.append(executor.submit(process_storm, year, storm_id))
|
1098 |
|
1099 |
-
|
1100 |
-
|
1101 |
-
|
1102 |
-
|
1103 |
-
|
1104 |
-
|
1105 |
-
|
1106 |
-
|
1107 |
-
|
1108 |
-
showland=True,
|
1109 |
-
)
|
1110 |
-
)
|
1111 |
|
1112 |
-
|
1113 |
-
|
1114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1115 |
|
1116 |
-
|
1117 |
-
|
1118 |
-
|
1119 |
-
|
1120 |
-
|
1121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1122 |
|
1123 |
-
|
1124 |
-
|
1125 |
-
|
1126 |
-
|
1127 |
-
|
|
|
|
|
|
|
|
|
|
|
1128 |
|
1129 |
-
|
1130 |
-
|
1131 |
-
|
1132 |
-
|
1133 |
-
|
1134 |
-
slope = model.coef_[0]
|
1135 |
-
intercept = model.intercept_
|
1136 |
-
fraction_slope = Fraction(slope).limit_denominator()
|
1137 |
-
equation = f'ONI = {fraction_slope} * Longitude + {Fraction(intercept).limit_denominator()}'
|
1138 |
|
1139 |
-
|
1140 |
-
fig.add_annotation(x=df['Longitude'].mean(), y=y_pred.mean(),
|
1141 |
-
text=equation, showarrow=False, yshift=10)
|
1142 |
|
1143 |
-
|
1144 |
-
|
1145 |
-
|
1146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1147 |
|
1148 |
-
|
1149 |
-
|
1150 |
-
|
1151 |
-
|
1152 |
-
|
1153 |
-
|
1154 |
-
|
1155 |
-
|
1156 |
-
|
1157 |
-
|
1158 |
-
|
1159 |
-
|
1160 |
-
|
1161 |
-
|
1162 |
-
|
1163 |
-
|
1164 |
-
|
|
|
|
|
1165 |
|
1166 |
-
|
1167 |
-
|
1168 |
-
|
1169 |
-
|
1170 |
-
|
1171 |
|
1172 |
-
|
1173 |
-
|
1174 |
-
|
1175 |
-
(merged_data['Month'].astype(int) >= start_month) &
|
1176 |
-
(merged_data['Month'].astype(int) <= end_month)
|
1177 |
-
]
|
1178 |
-
|
1179 |
-
wind_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category',
|
1180 |
-
hover_data=['NAME', 'Year','Category'],
|
1181 |
-
title='Wind Speed vs ONI',
|
1182 |
-
labels={'ONI': 'ONI Value', 'USA_WIND': 'Maximum Wind Speed (knots)'},
|
1183 |
-
color_discrete_map=color_map)
|
1184 |
-
wind_oni_scatter.update_traces(hovertemplate='<b>%{customdata[0]} (%{customdata[1]})</b><br>Category: %{customdata[2]}<br>ONI: %{x}<br>Wind Speed: %{y} knots')
|
1185 |
-
|
1186 |
-
pressure_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_PRES',color='Category',
|
1187 |
-
hover_data=['NAME', 'Year','Category'],
|
1188 |
-
title='Pressure vs ONI',
|
1189 |
-
labels={'ONI': 'ONI Value', 'USA_PRES': 'Minimum Pressure (hPa)'},
|
1190 |
-
color_discrete_map=color_map)
|
1191 |
-
pressure_oni_scatter.update_traces(hovertemplate='<b>%{customdata[0]} (%{customdata[1]})</b><br>Category: %{customdata[2]}<br>ONI: %{x}<br>Pressure: %{y} hPa')
|
1192 |
-
|
1193 |
-
if typhoon_search:
|
1194 |
-
for fig in [wind_oni_scatter, pressure_oni_scatter]:
|
1195 |
-
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
|
1196 |
-
fig.add_trace(go.Scatter(
|
1197 |
-
x=filtered_data.loc[mask, 'ONI'],
|
1198 |
-
y=filtered_data.loc[mask, 'USA_WIND' if 'Wind' in fig.layout.title.text else 'USA_PRES'],
|
1199 |
-
mode='markers',
|
1200 |
-
marker=dict(size=10, color='red', symbol='star'),
|
1201 |
-
name=f'Matched: {typhoon_search}',
|
1202 |
-
hovertemplate='<b>%{text}</b><br>Category: %{customdata}<br>ONI: %{x}<br>Value: %{y}',
|
1203 |
-
text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')',
|
1204 |
-
customdata=filtered_data.loc[mask, 'Category']
|
1205 |
-
))
|
1206 |
-
|
1207 |
|
1208 |
-
|
1209 |
-
|
1210 |
-
|
1211 |
-
|
1212 |
-
|
1213 |
-
|
1214 |
-
|
1215 |
-
|
1216 |
-
|
1217 |
-
|
1218 |
-
|
1219 |
-
|
1220 |
-
|
1221 |
-
|
1222 |
-
|
1223 |
-
|
1224 |
-
|
1225 |
-
return (fig_tracks, all_years_fig, regression_figs, slopes,
|
1226 |
-
wind_oni_scatter, pressure_oni_scatter,
|
1227 |
-
correlation_text, max_wind_speed_text, min_pressure_text,
|
1228 |
-
"Wind-ONI correlation: See logistic regression results",
|
1229 |
-
"Pressure-ONI correlation: See logistic regression results",
|
1230 |
-
count_analysis, month_analysis)
|
1231 |
-
|
1232 |
-
@app.callback(
|
1233 |
-
Output('logistic-regression-results', 'children'),
|
1234 |
-
[Input('wind-regression-button', 'n_clicks'),
|
1235 |
-
Input('pressure-regression-button', 'n_clicks'),
|
1236 |
-
Input('longitude-regression-button', 'n_clicks')],
|
1237 |
-
[State('start-year', 'value'),
|
1238 |
-
State('start-month', 'value'),
|
1239 |
-
State('end-year', 'value'),
|
1240 |
-
State('end-month', 'value')]
|
1241 |
-
)
|
1242 |
-
def update_logistic_regression(wind_clicks, pressure_clicks, longitude_clicks,
|
1243 |
-
start_year, start_month, end_year, end_month):
|
1244 |
-
ctx = dash.callback_context
|
1245 |
-
if not ctx.triggered:
|
1246 |
-
return "Click a button to see logistic regression results."
|
1247 |
-
|
1248 |
-
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
|
1249 |
-
|
1250 |
-
start_date = datetime(start_year, start_month, 1)
|
1251 |
-
end_date = datetime(end_year, end_month, 28)
|
1252 |
-
|
1253 |
-
filtered_data = merged_data[
|
1254 |
-
(merged_data['ISO_TIME'] >= start_date) &
|
1255 |
-
(merged_data['ISO_TIME'] <= end_date)
|
1256 |
-
]
|
1257 |
-
|
1258 |
-
if button_id == 'wind-regression-button':
|
1259 |
-
return calculate_wind_logistic_regression(filtered_data)
|
1260 |
-
elif button_id == 'pressure-regression-button':
|
1261 |
-
return calculate_pressure_logistic_regression(filtered_data)
|
1262 |
-
elif button_id == 'longitude-regression-button':
|
1263 |
-
return calculate_longitude_logistic_regression(filtered_data)
|
1264 |
-
|
1265 |
-
def calculate_wind_logistic_regression(data):
|
1266 |
-
data['severe_typhoon'] = (data['USA_WIND'] >= 64).astype(int) # 64 knots threshold for severe typhoons
|
1267 |
-
X = sm.add_constant(data['ONI'])
|
1268 |
-
y = data['severe_typhoon']
|
1269 |
-
model = sm.Logit(y, X).fit()
|
1270 |
-
|
1271 |
-
beta_1 = model.params['ONI']
|
1272 |
-
exp_beta_1 = np.exp(beta_1)
|
1273 |
-
p_value = model.pvalues['ONI']
|
1274 |
-
|
1275 |
-
el_nino_data = data[data['ONI'] >= 0.5]
|
1276 |
-
la_nina_data = data[data['ONI'] <= -0.5]
|
1277 |
-
neutral_data = data[(data['ONI'] > -0.5) & (data['ONI'] < 0.5)]
|
1278 |
-
|
1279 |
-
el_nino_severe = el_nino_data['severe_typhoon'].mean()
|
1280 |
-
la_nina_severe = la_nina_data['severe_typhoon'].mean()
|
1281 |
-
neutral_severe = neutral_data['severe_typhoon'].mean()
|
1282 |
-
|
1283 |
-
return html.Div([
|
1284 |
-
html.H3("Wind Speed Logistic Regression Results"),
|
1285 |
-
html.P(f"β1 (ONI coefficient): {beta_1:.4f}"),
|
1286 |
-
html.P(f"exp(β1) (Odds Ratio): {exp_beta_1:.4f}"),
|
1287 |
-
html.P(f"P-value: {p_value:.4f}"),
|
1288 |
-
html.P("Interpretation:"),
|
1289 |
-
html.Ul([
|
1290 |
-
html.Li(f"For each unit increase in ONI, the odds of a severe typhoon are "
|
1291 |
-
f"{'increased' if exp_beta_1 > 1 else 'decreased'} by a factor of {exp_beta_1:.2f}."),
|
1292 |
-
html.Li(f"This effect is {'statistically significant' if p_value < 0.05 else 'not statistically significant'} "
|
1293 |
-
f"at the 0.05 level.")
|
1294 |
-
]),
|
1295 |
-
html.P("Proportion of severe typhoons:"),
|
1296 |
-
html.Ul([
|
1297 |
-
html.Li(f"El Niño conditions: {el_nino_severe:.2%}"),
|
1298 |
-
html.Li(f"La Niña conditions: {la_nina_severe:.2%}"),
|
1299 |
-
html.Li(f"Neutral conditions: {neutral_severe:.2%}")
|
1300 |
-
])
|
1301 |
-
])
|
1302 |
-
|
1303 |
-
def calculate_pressure_logistic_regression(data):
|
1304 |
-
data['intense_typhoon'] = (data['USA_PRES'] <= 950).astype(int) # 950 hPa threshold for intense typhoons
|
1305 |
-
X = sm.add_constant(data['ONI'])
|
1306 |
-
y = data['intense_typhoon']
|
1307 |
-
model = sm.Logit(y, X).fit()
|
1308 |
-
|
1309 |
-
beta_1 = model.params['ONI']
|
1310 |
-
exp_beta_1 = np.exp(beta_1)
|
1311 |
-
p_value = model.pvalues['ONI']
|
1312 |
-
|
1313 |
-
el_nino_data = data[data['ONI'] >= 0.5]
|
1314 |
-
la_nina_data = data[data['ONI'] <= -0.5]
|
1315 |
-
neutral_data = data[(data['ONI'] > -0.5) & (data['ONI'] < 0.5)]
|
1316 |
-
|
1317 |
-
el_nino_intense = el_nino_data['intense_typhoon'].mean()
|
1318 |
-
la_nina_intense = la_nina_data['intense_typhoon'].mean()
|
1319 |
-
neutral_intense = neutral_data['intense_typhoon'].mean()
|
1320 |
-
|
1321 |
-
return html.Div([
|
1322 |
-
html.H3("Pressure Logistic Regression Results"),
|
1323 |
-
html.P(f"β1 (ONI coefficient): {beta_1:.4f}"),
|
1324 |
-
html.P(f"exp(β1) (Odds Ratio): {exp_beta_1:.4f}"),
|
1325 |
-
html.P(f"P-value: {p_value:.4f}"),
|
1326 |
-
html.P("Interpretation:"),
|
1327 |
-
html.Ul([
|
1328 |
-
html.Li(f"For each unit increase in ONI, the odds of an intense typhoon (pressure <= 950 hPa) are "
|
1329 |
-
f"{'increased' if exp_beta_1 > 1 else 'decreased'} by a factor of {exp_beta_1:.2f}."),
|
1330 |
-
html.Li(f"This effect is {'statistically significant' if p_value < 0.05 else 'not statistically significant'} "
|
1331 |
-
f"at the 0.05 level.")
|
1332 |
-
]),
|
1333 |
-
html.P("Proportion of intense typhoons:"),
|
1334 |
-
html.Ul([
|
1335 |
-
html.Li(f"El Niño conditions: {el_nino_intense:.2%}"),
|
1336 |
-
html.Li(f"La Niña conditions: {la_nina_intense:.2%}"),
|
1337 |
-
html.Li(f"Neutral conditions: {neutral_intense:.2%}")
|
1338 |
-
])
|
1339 |
-
])
|
1340 |
|
1341 |
-
|
1342 |
-
|
1343 |
-
|
1344 |
-
|
1345 |
-
|
1346 |
-
return html.Div("Insufficient data for longitude analysis")
|
1347 |
-
|
1348 |
-
data['western_typhoon'] = (data['LON'] <= 140).astype(int) # 140°E as threshold for western typhoons
|
1349 |
-
X = sm.add_constant(data['ONI'])
|
1350 |
-
y = data['western_typhoon']
|
1351 |
-
model = sm.Logit(y, X).fit()
|
1352 |
-
|
1353 |
-
beta_1 = model.params['ONI']
|
1354 |
-
exp_beta_1 = np.exp(beta_1)
|
1355 |
-
p_value = model.pvalues['ONI']
|
1356 |
-
|
1357 |
-
el_nino_data = data[data['ONI'] >= 0.5]
|
1358 |
-
la_nina_data = data[data['ONI'] <= -0.5]
|
1359 |
-
neutral_data = data[(data['ONI'] > -0.5) & (data['ONI'] < 0.5)]
|
1360 |
-
|
1361 |
-
el_nino_western = el_nino_data['western_typhoon'].mean()
|
1362 |
-
la_nina_western = la_nina_data['western_typhoon'].mean()
|
1363 |
-
neutral_western = neutral_data['western_typhoon'].mean()
|
1364 |
-
|
1365 |
-
return html.Div([
|
1366 |
-
html.H3("Longitude Logistic Regression Results"),
|
1367 |
-
html.P(f"β1 (ONI coefficient): {beta_1:.4f}"),
|
1368 |
-
html.P(f"exp(β1) (Odds Ratio): {exp_beta_1:.4f}"),
|
1369 |
-
html.P(f"P-value: {p_value:.4f}"),
|
1370 |
-
html.P("Interpretation:"),
|
1371 |
-
html.Ul([
|
1372 |
-
html.Li(f"For each unit increase in ONI, the odds of a typhoon forming west of 140°E are "
|
1373 |
-
f"{'increased' if exp_beta_1 > 1 else 'decreased'} by a factor of {exp_beta_1:.2f}."),
|
1374 |
-
html.Li(f"This effect is {'statistically significant' if p_value < 0.05 else 'not statistically significant'} "
|
1375 |
-
f"at the 0.05 level.")
|
1376 |
-
]),
|
1377 |
-
html.P("Proportion of typhoons forming west of 140°E:"),
|
1378 |
-
html.Ul([
|
1379 |
-
html.Li(f"El Niño conditions: {el_nino_western:.2%}"),
|
1380 |
-
html.Li(f"La Niña conditions: {la_nina_western:.2%}"),
|
1381 |
-
html.Li(f"Neutral conditions: {neutral_western:.2%}")
|
1382 |
-
])
|
1383 |
-
])
|
1384 |
|
1385 |
-
|
1386 |
-
"""
|
1387 |
-
Categorize typhoon based on wind speed and chosen standard
|
1388 |
-
wind_speed is in knots
|
1389 |
-
"""
|
1390 |
-
if standard == 'taiwan':
|
1391 |
-
# Convert knots to m/s for Taiwan standard
|
1392 |
-
wind_speed_ms = wind_speed * 0.514444
|
1393 |
-
|
1394 |
-
if wind_speed_ms >= 51.0:
|
1395 |
-
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['color']
|
1396 |
-
elif wind_speed_ms >= 33.7:
|
1397 |
-
return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['color']
|
1398 |
-
elif wind_speed_ms >= 17.2:
|
1399 |
-
return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['color']
|
1400 |
-
else:
|
1401 |
-
return 'Tropical Depression', taiwan_standard['Tropical Depression']['color']
|
1402 |
-
else:
|
1403 |
-
# Atlantic standard uses knots
|
1404 |
-
if wind_speed >= 137:
|
1405 |
-
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['color']
|
1406 |
-
elif wind_speed >= 113:
|
1407 |
-
return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['color']
|
1408 |
-
elif wind_speed >= 96:
|
1409 |
-
return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['color']
|
1410 |
-
elif wind_speed >= 83:
|
1411 |
-
return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['color']
|
1412 |
-
elif wind_speed >= 64:
|
1413 |
-
return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['color']
|
1414 |
-
elif wind_speed >= 34:
|
1415 |
-
return 'Tropical Storm', atlantic_standard['Tropical Storm']['color']
|
1416 |
-
else:
|
1417 |
-
return 'Tropical Depression', atlantic_standard['Tropical Depression']['color']
|
1418 |
|
1419 |
if __name__ == "__main__":
|
1420 |
-
|
1421 |
-
|
1422 |
-
|
1423 |
-
|
1424 |
-
|
1425 |
-
convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
|
1426 |
-
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
|
1427 |
-
oni_long = process_oni_data_with_cache(oni_data)
|
1428 |
-
typhoon_max = process_typhoon_data_with_cache(typhoon_data)
|
1429 |
-
merged_data = merge_data(oni_long, typhoon_max)
|
1430 |
-
data = preprocess_data(oni_data, typhoon_data)
|
1431 |
-
max_wind_speed, min_pressure = calculate_max_wind_min_pressure(typhoon_data)
|
1432 |
-
|
1433 |
-
# Schedule updates
|
1434 |
-
scheduler_thread = threading.Thread(target=run_schedule)
|
1435 |
-
scheduler_thread.daemon = True # Make the thread daemon so it doesn't block shutdown
|
1436 |
-
scheduler_thread.start()
|
1437 |
-
|
1438 |
-
# Run the server
|
1439 |
-
app.run_server(
|
1440 |
-
debug=False, # Set debug to False in production
|
1441 |
-
host='0.0.0.0', # Bind to all interfaces
|
1442 |
-
port=7860,
|
1443 |
-
use_reloader=False # Disable reloader to prevent duplicate processes
|
1444 |
)
|
|
|
1 |
+
import gradio as gr
|
2 |
import plotly.graph_objects as go
|
3 |
import plotly.express as px
|
4 |
+
from plotly.subplots import make_subplots
|
5 |
import pickle
|
6 |
import tropycal.tracks as tracks
|
7 |
import pandas as pd
|
|
|
10 |
import functools
|
11 |
import hashlib
|
12 |
import os
|
|
|
|
|
|
|
|
|
|
|
13 |
from datetime import datetime, timedelta
|
14 |
+
from datetime import date
|
15 |
from scipy import stats
|
16 |
from scipy.optimize import minimize, curve_fit
|
17 |
from sklearn.linear_model import LinearRegression
|
18 |
from sklearn.cluster import KMeans
|
19 |
from scipy.interpolate import interp1d
|
20 |
from fractions import Fraction
|
|
|
|
|
21 |
import statsmodels.api as sm
|
|
|
22 |
import time
|
23 |
import threading
|
24 |
import requests
|
|
|
28 |
from collections import defaultdict
|
29 |
import shutil
|
30 |
import filecmp
|
31 |
+
import warnings
|
32 |
+
warnings.filterwarnings('ignore')
|
33 |
|
34 |
+
# Constants
|
35 |
+
DATA_PATH = os.getcwd()
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
|
37 |
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
|
38 |
+
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r00.csv')
|
39 |
+
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r00/access/csv/ibtracs.WP.list.v04r00.csv'
|
|
|
40 |
CACHE_FILE = 'ibtracs_cache.pkl'
|
41 |
CACHE_EXPIRY_DAYS = 1
|
|
|
|
|
42 |
|
43 |
+
# Color mappings
|
44 |
+
COLOR_MAP = {
|
45 |
+
'C5 Super Typhoon': 'rgb(255, 0, 0)',
|
46 |
+
'C4 Very Strong Typhoon': 'rgb(255, 63, 0)',
|
47 |
+
'C3 Strong Typhoon': 'rgb(255, 127, 0)',
|
48 |
+
'C2 Typhoon': 'rgb(255, 191, 0)',
|
49 |
+
'C1 Typhoon': 'rgb(255, 255, 0)',
|
50 |
+
'Tropical Storm': 'rgb(0, 255, 255)',
|
51 |
+
'Tropical Depression': 'rgb(173, 216, 230)'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
}
|
53 |
|
54 |
+
class TyphoonAnalyzer:
|
55 |
+
def __init__(self):
|
56 |
+
self.last_oni_update = None
|
57 |
+
self.load_initial_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
def load_initial_data(self):
|
60 |
+
print("Loading initial data...")
|
61 |
+
self.update_oni_data()
|
62 |
+
self.oni_df = self.fetch_oni_data_from_csv()
|
63 |
+
self.ibtracs = self.load_ibtracs_data()
|
64 |
+
self.update_typhoon_data()
|
65 |
+
self.oni_data, self.typhoon_data = self.load_data()
|
66 |
+
self.oni_long = self.process_oni_data(self.oni_data)
|
67 |
+
self.typhoon_max = self.process_typhoon_data(self.typhoon_data)
|
68 |
+
self.merged_data = self.merge_data()
|
69 |
+
print("Initial data loading complete")
|
70 |
+
|
71 |
+
def fetch_oni_data_from_csv(self):
|
72 |
+
df = pd.read_csv(ONI_DATA_PATH)
|
73 |
+
df = df.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
74 |
+
df['Date'] = pd.to_datetime(df['Year'].astype(str) + df['Month'], format='%Y%b')
|
75 |
+
return df.set_index('Date')
|
76 |
+
|
77 |
+
def should_update_oni(self):
|
78 |
+
today = datetime.now()
|
79 |
+
return (today.day == 1 or today.day == 15 or
|
80 |
+
today.day == (today.replace(day=1, month=today.month%12+1) - timedelta(days=1)).day)
|
81 |
+
|
82 |
+
def update_oni_data(self):
|
83 |
+
if not self.should_update_oni():
|
84 |
+
return
|
85 |
|
86 |
+
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
|
87 |
+
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
|
|
|
88 |
|
89 |
+
try:
|
90 |
+
response = requests.get(url)
|
91 |
+
response.raise_for_status()
|
92 |
+
with open(temp_file, 'wb') as f:
|
93 |
+
f.write(response.content)
|
94 |
+
self.convert_oni_ascii_to_csv(temp_file, ONI_DATA_PATH)
|
95 |
+
self.last_oni_update = date.today()
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Error updating ONI data: {e}")
|
98 |
+
finally:
|
99 |
+
if os.path.exists(temp_file):
|
100 |
+
os.remove(temp_file)
|
101 |
+
|
102 |
+
def convert_oni_ascii_to_csv(self, input_file, output_file):
|
103 |
+
data = defaultdict(lambda: [''] * 12)
|
104 |
+
season_to_month = {
|
105 |
+
'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
|
106 |
+
'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11
|
107 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
with open(input_file, 'r') as f:
|
110 |
+
next(f) # Skip header
|
111 |
+
for line in f:
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
parts = line.split()
|
113 |
if len(parts) >= 4:
|
114 |
+
season, year, anom = parts[0], parts[1], parts[-1]
|
|
|
|
|
115 |
if season in season_to_month:
|
116 |
month = season_to_month[season]
|
|
|
117 |
if season == 'DJF':
|
118 |
year = str(int(year) - 1)
|
|
|
119 |
data[year][month-1] = anom
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
|
|
|
|
121 |
with open(output_file, 'w', newline='') as f:
|
122 |
writer = csv.writer(f)
|
123 |
+
writer.writerow(['Year'] + [f"{m:02d}" for m in range(1, 13)])
|
|
|
124 |
for year in sorted(data.keys()):
|
125 |
+
writer.writerow([year] + data[year])
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
def load_ibtracs_data(self):
|
128 |
+
if os.path.exists(CACHE_FILE):
|
129 |
+
cache_time = datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))
|
130 |
+
if datetime.now() - cache_time < timedelta(days=CACHE_EXPIRY_DAYS):
|
131 |
+
with open(CACHE_FILE, 'rb') as f:
|
132 |
+
return pickle.load(f)
|
133 |
|
134 |
+
if os.path.exists(LOCAL_iBtrace_PATH):
|
135 |
+
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs',
|
136 |
+
ibtracs_url=LOCAL_iBtrace_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
response = requests.get(iBtrace_uri)
|
139 |
response.raise_for_status()
|
140 |
+
with open(LOCAL_iBtrace_PATH, 'w') as f:
|
141 |
+
f.write(response.text)
|
142 |
+
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs',
|
143 |
+
ibtracs_url=LOCAL_iBtrace_PATH)
|
144 |
+
|
145 |
+
with open(CACHE_FILE, 'wb') as f:
|
146 |
+
pickle.dump(ibtracs, f)
|
147 |
+
return ibtracs
|
148 |
+
|
149 |
+
def update_typhoon_data(self):
|
150 |
+
try:
|
151 |
+
response = requests.head(iBtrace_uri)
|
152 |
+
remote_modified = datetime.strptime(response.headers['Last-Modified'],
|
153 |
+
'%a, %d %b %Y %H:%M:%S GMT')
|
154 |
+
local_modified = (datetime.fromtimestamp(os.path.getmtime(LOCAL_iBtrace_PATH))
|
155 |
+
if os.path.exists(LOCAL_iBtrace_PATH) else datetime.min)
|
156 |
|
157 |
+
if remote_modified > local_modified:
|
158 |
+
response = requests.get(iBtrace_uri)
|
159 |
+
response.raise_for_status()
|
160 |
+
with open(LOCAL_iBtrace_PATH, 'w') as f:
|
161 |
+
f.write(response.text)
|
162 |
+
except Exception as e:
|
163 |
+
print(f"Error updating typhoon data: {e}")
|
164 |
+
|
165 |
+
def load_data(self):
|
166 |
+
oni_data = pd.read_csv(ONI_DATA_PATH)
|
167 |
+
typhoon_data = pd.read_csv(TYPHOON_DATA_PATH, low_memory=False)
|
168 |
+
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'])
|
169 |
+
return oni_data, typhoon_data
|
170 |
+
|
171 |
+
def process_oni_data(self, oni_data):
|
172 |
+
oni_long = pd.melt(oni_data, id_vars=['Year'], var_name='Month', value_name='ONI')
|
173 |
+
oni_long['Month'] = oni_long['Month'].map(lambda x: pd.to_datetime(x, format='%b').month)
|
174 |
+
return oni_long
|
175 |
+
|
176 |
+
def process_typhoon_data(self, typhoon_data):
|
177 |
+
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
|
178 |
+
typhoon_data['WMO_PRES'] = pd.to_numeric(typhoon_data['WMO_PRES'], errors='coerce')
|
179 |
+
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'])
|
180 |
+
typhoon_data['Year'] = typhoon_data['ISO_TIME'].dt.year
|
181 |
+
typhoon_data['Month'] = typhoon_data['ISO_TIME'].dt.month
|
182 |
+
|
183 |
+
typhoon_max = typhoon_data.groupby(['SID', 'Year', 'Month']).agg({
|
184 |
+
'USA_WIND': 'max',
|
185 |
+
'WMO_PRES': 'min',
|
186 |
+
'NAME': 'first',
|
187 |
+
'LAT': 'first',
|
188 |
+
'LON': 'first',
|
189 |
+
'ISO_TIME': 'first'
|
190 |
+
}).reset_index()
|
191 |
+
|
192 |
+
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(self.categorize_typhoon)
|
193 |
+
return typhoon_max
|
194 |
|
195 |
+
def merge_data(self):
|
196 |
+
return pd.merge(self.typhoon_max, self.oni_long, on=['Year', 'Month'])
|
|
|
|
|
197 |
|
198 |
+
def categorize_typhoon(self, wind_speed):
|
199 |
+
if wind_speed >= 137:
|
200 |
+
return 'C5 Super Typhoon'
|
201 |
+
elif wind_speed >= 113:
|
202 |
+
return 'C4 Very Strong Typhoon'
|
203 |
+
elif wind_speed >= 96:
|
204 |
+
return 'C3 Strong Typhoon'
|
205 |
+
elif wind_speed >= 83:
|
206 |
+
return 'C2 Typhoon'
|
207 |
+
elif wind_speed >= 64:
|
208 |
+
return 'C1 Typhoon'
|
209 |
+
elif wind_speed >= 34:
|
210 |
+
return 'Tropical Storm'
|
211 |
else:
|
212 |
+
return 'Tropical Depression'
|
213 |
|
214 |
+
def analyze_typhoon(self, start_year, start_month, end_year, end_month, enso_value='all'):
|
215 |
+
start_date = datetime(start_year, start_month, 1)
|
216 |
+
end_date = datetime(end_year, end_month, 28)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
+
filtered_data = self.merged_data[
|
219 |
+
(self.merged_data['ISO_TIME'] >= start_date) &
|
220 |
+
(self.merged_data['ISO_TIME'] <= end_date)
|
221 |
+
]
|
222 |
|
223 |
+
if enso_value != 'all':
|
224 |
+
filtered_data = filtered_data[
|
225 |
+
(filtered_data['ONI'] >= 0.5 if enso_value == 'el_nino' else
|
226 |
+
filtered_data['ONI'] <= -0.5 if enso_value == 'la_nina' else
|
227 |
+
(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5))
|
228 |
+
]
|
229 |
|
230 |
+
return {
|
231 |
+
'tracks': self.create_tracks_plot(filtered_data),
|
232 |
+
'wind': self.create_wind_analysis(filtered_data),
|
233 |
+
'pressure': self.create_pressure_analysis(filtered_data),
|
234 |
+
'clusters': self.create_cluster_analysis(filtered_data, 5),
|
235 |
+
'stats': self.generate_statistics(filtered_data)
|
236 |
+
}
|
237 |
+
|
238 |
+
def create_tracks_plot(self, data):
|
239 |
+
fig = go.Figure()
|
240 |
|
241 |
+
for _, storm in data.groupby('SID'):
|
242 |
+
fig.add_trace(go.Scattergeo(
|
243 |
+
lon=storm['LON'],
|
244 |
+
lat=storm['LAT'],
|
245 |
+
mode='lines',
|
246 |
+
name=storm['NAME'].iloc[0],
|
247 |
+
line=dict(
|
248 |
+
width=2,
|
249 |
+
color=COLOR_MAP[storm['Category'].iloc[0]]
|
250 |
+
),
|
251 |
+
hovertemplate=(
|
252 |
+
f"Name: {storm['NAME'].iloc[0]}<br>"
|
253 |
+
f"Category: {storm['Category'].iloc[0]}<br>"
|
254 |
+
f"Wind Speed: {storm['USA_WIND'].iloc[0]:.1f} kt<br>"
|
255 |
+
f"Pressure: {storm['WMO_PRES'].iloc[0]:.1f} hPa<br>"
|
256 |
+
f"Date: {storm['ISO_TIME'].iloc[0]:%Y-%m-%d}"
|
257 |
+
)
|
258 |
+
))
|
259 |
|
260 |
+
fig.update_layout(
|
261 |
+
title='Typhoon Tracks',
|
262 |
+
showlegend=True,
|
263 |
+
geo=dict(
|
264 |
+
projection_type='mercator',
|
265 |
+
showland=True,
|
266 |
+
showcoastlines=True,
|
267 |
+
landcolor='rgb(243, 243, 243)',
|
268 |
+
countrycolor='rgb(204, 204, 204)',
|
269 |
+
coastlinecolor='rgb(214, 214, 214)',
|
270 |
+
lataxis=dict(range=[0, 50]),
|
271 |
+
lonaxis=dict(range=[100, 180]),
|
272 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
+
return fig
|
276 |
+
|
277 |
+
def create_wind_analysis(self, data):
|
278 |
+
fig = px.scatter(data,
|
279 |
+
x='ONI',
|
280 |
+
y='USA_WIND',
|
281 |
+
color='Category',
|
282 |
+
color_discrete_map=COLOR_MAP,
|
283 |
+
title='Wind Speed vs ONI Index',
|
284 |
+
labels={
|
285 |
+
'ONI': 'Oceanic Niño Index',
|
286 |
+
'USA_WIND': 'Maximum Wind Speed (kt)'
|
287 |
+
},
|
288 |
+
hover_data=['NAME', 'ISO_TIME']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
)
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
+
# Add regression line
|
292 |
+
x = data['ONI']
|
293 |
+
y = data['USA_WIND']
|
294 |
+
slope, intercept = np.polyfit(x, y, 1)
|
295 |
+
fig.add_trace(
|
296 |
+
go.Scatter(
|
297 |
+
x=x,
|
298 |
+
y=slope * x + intercept,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
mode='lines',
|
300 |
+
name=f'Regression (slope={slope:.2f})',
|
301 |
+
line=dict(color='black', dash='dash')
|
302 |
+
)
|
303 |
+
)
|
304 |
+
|
305 |
+
return fig
|
306 |
+
|
307 |
+
def create_pressure_analysis(self, data):
|
308 |
+
fig = px.scatter(data,
|
309 |
+
x='ONI',
|
310 |
+
y='WMO_PRES',
|
311 |
+
color='Category',
|
312 |
+
color_discrete_map=COLOR_MAP,
|
313 |
+
title='Pressure vs ONI Index',
|
314 |
+
labels={
|
315 |
+
'ONI': 'Oceanic Niño Index',
|
316 |
+
'WMO_PRES': 'Minimum Pressure (hPa)'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
},
|
318 |
+
hover_data=['NAME', 'ISO_TIME']
|
319 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
|
321 |
+
# Add regression line
|
322 |
+
x = data['ONI']
|
323 |
+
y = data['WMO_PRES']
|
324 |
+
slope, intercept = np.polyfit(x, y, 1)
|
325 |
+
fig.add_trace(
|
326 |
+
go.Scatter(
|
327 |
+
x=x,
|
328 |
+
y=slope * x + intercept,
|
329 |
+
mode='lines',
|
330 |
+
name=f'Regression (slope={slope:.2f})',
|
331 |
+
line=dict(color='black', dash='dash')
|
332 |
+
)
|
333 |
+
)
|
334 |
|
335 |
+
return fig
|
336 |
+
|
337 |
+
def create_cluster_analysis(self, data, n_clusters=5):
|
338 |
+
# Prepare data for clustering
|
339 |
+
routes = []
|
340 |
+
for _, storm in data.groupby('SID'):
|
341 |
+
if len(storm) > 1:
|
342 |
+
# Standardize route length
|
343 |
+
t = np.linspace(0, 1, len(storm))
|
344 |
+
t_new = np.linspace(0, 1, 100)
|
345 |
+
lon_interp = interp1d(t, storm['LON'], kind='linear')(t_new)
|
346 |
+
lat_interp = interp1d(t, storm['LAT'], kind='linear')(t_new)
|
347 |
+
routes.append(np.column_stack((lon_interp, lat_interp)))
|
348 |
|
349 |
+
if not routes:
|
350 |
+
return go.Figure()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
|
352 |
+
# Perform clustering
|
353 |
+
routes_array = np.array(routes)
|
354 |
+
routes_reshaped = routes_array.reshape(routes_array.shape[0], -1)
|
355 |
+
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
|
356 |
+
clusters = kmeans.fit_predict(routes_reshaped)
|
357 |
|
358 |
+
# Create visualization
|
359 |
+
fig = go.Figure()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
|
361 |
+
# Plot original routes colored by cluster
|
362 |
+
for route, cluster_id in zip(routes, clusters):
|
363 |
+
fig.add_trace(go.Scattergeo(
|
364 |
+
lon=route[:, 0],
|
365 |
+
lat=route[:, 1],
|
366 |
+
mode='lines',
|
367 |
+
line=dict(width=1, color=f'hsl({cluster_id * 360/n_clusters}, 50%, 50%)'),
|
368 |
+
showlegend=False
|
369 |
+
))
|
|
|
|
|
|
|
370 |
|
371 |
+
# Plot cluster centers
|
372 |
+
for i in range(n_clusters):
|
373 |
+
center = kmeans.cluster_centers_[i].reshape(-1, 2)
|
374 |
+
fig.add_trace(go.Scattergeo(
|
375 |
+
lon=center[:, 0],
|
376 |
+
lat=center[:, 1],
|
377 |
+
mode='lines',
|
378 |
+
name=f'Cluster {i+1} Center',
|
379 |
+
line=dict(width=3, color=f'hsl({i * 360/n_clusters}, 100%, 50%)')
|
380 |
+
))
|
381 |
|
382 |
+
fig.update_layout(
|
383 |
+
title='Typhoon Route Clusters',
|
384 |
+
showlegend=True,
|
385 |
+
geo=dict(
|
386 |
+
projection_type='mercator',
|
387 |
+
showland=True,
|
388 |
+
showcoastlines=True,
|
389 |
+
landcolor='rgb(243, 243, 243)',
|
390 |
+
countrycolor='rgb(204, 204, 204)',
|
391 |
+
coastlinecolor='rgb(214, 214, 214)',
|
392 |
+
lataxis=dict(range=[0, 50]),
|
393 |
+
lonaxis=dict(range=[100, 180]),
|
394 |
+
)
|
395 |
+
)
|
396 |
+
|
397 |
+
return fig
|
398 |
+
|
399 |
+
def generate_statistics(self, data):
|
400 |
+
stats = {
|
401 |
+
'total_typhoons': len(data['SID'].unique()),
|
402 |
+
'avg_wind': data['USA_WIND'].mean(),
|
403 |
+
'max_wind': data['USA_WIND'].max(),
|
404 |
+
'avg_pressure': data['WMO_PRES'].mean(),
|
405 |
+
'min_pressure': data['WMO_PRES'].min(),
|
406 |
+
'oni_correlation_wind': data['ONI'].corr(data['USA_WIND']),
|
407 |
+
'oni_correlation_pressure': data['ONI'].corr(data['WMO_PRES']),
|
408 |
+
'category_counts': data['Category'].value_counts().to_dict()
|
409 |
+
}
|
410 |
+
|
411 |
+
return f"""
|
412 |
+
### Statistical Summary
|
413 |
+
|
414 |
+
- Total Typhoons: {stats['total_typhoons']}
|
415 |
+
- Average Wind Speed: {stats['avg_wind']:.2f} kt
|
416 |
+
- Maximum Wind Speed: {stats['max_wind']:.2f} kt
|
417 |
+
- Average Pressure: {stats['avg_pressure']:.2f} hPa
|
418 |
+
- Minimum Pressure: {stats['min_pressure']:.2f} hPa
|
419 |
+
- ONI-Wind Speed Correlation: {stats['oni_correlation_wind']:.3f}
|
420 |
+
- ONI-Pressure Correlation: {stats['oni_correlation_pressure']:.3f}
|
421 |
+
|
422 |
+
### Category Distribution
|
423 |
+
{chr(10).join(f'- {cat}: {count}' for cat, count in stats['category_counts'].items())}
|
424 |
+
"""
|
425 |
+
|
426 |
+
def create_interface():
|
427 |
+
analyzer = TyphoonAnalyzer()
|
428 |
+
|
429 |
+
with gr.Blocks(title="Typhoon Analysis Dashboard", theme=gr.themes.Base()) as demo:
|
430 |
+
gr.Markdown("# Typhoon Analysis Dashboard")
|
431 |
|
432 |
+
with gr.Tabs():
|
433 |
+
# Main Analysis Tab
|
434 |
+
with gr.Tab("Main Analysis"):
|
435 |
+
with gr.Row():
|
436 |
+
with gr.Column():
|
437 |
+
start_year = gr.Slider(1900, 2024, 2000, label="Start Year")
|
438 |
+
start_month = gr.Slider(1, 12, 1, label="Start Month")
|
439 |
+
with gr.Column():
|
440 |
+
end_year = gr.Slider(1900, 2024, 2024, label="End Year")
|
441 |
+
end_month = gr.Slider(1, 12, 12, label="End Month")
|
442 |
|
443 |
+
enso_dropdown = gr.Dropdown(
|
444 |
+
choices=["all", "el_nino", "la_nina", "neutral"],
|
445 |
+
value="all",
|
446 |
+
label="ENSO Phase"
|
447 |
+
)
|
|
|
|
|
|
|
|
|
448 |
|
449 |
+
analyze_btn = gr.Button("Analyze")
|
|
|
|
|
450 |
|
451 |
+
plots_tabs = gr.Tabs()
|
452 |
+
with plots_tabs:
|
453 |
+
with gr.Tab("Tracks"):
|
454 |
+
tracks_plot = gr.Plot()
|
455 |
+
with gr.Tab("Wind Analysis"):
|
456 |
+
wind_plot = gr.Plot()
|
457 |
+
with gr.Tab("Pressure Analysis"):
|
458 |
+
pressure_plot = gr.Plot()
|
459 |
+
with gr.Tab("Clusters"):
|
460 |
+
cluster_plot = gr.Plot()
|
461 |
|
462 |
+
stats_text = gr.Markdown()
|
463 |
+
|
464 |
+
# Search Tab
|
465 |
+
with gr.Tab("Typhoon Search"):
|
466 |
+
with gr.Row():
|
467 |
+
search_input = gr.Textbox(label="Search Typhoon Name")
|
468 |
+
search_btn = gr.Button("Search")
|
469 |
+
search_results = gr.Plot()
|
470 |
+
typhoon_info = gr.Markdown()
|
471 |
+
|
472 |
+
def analyze_callback(start_y, start_m, end_y, end_m, enso):
|
473 |
+
results = analyzer.analyze_typhoon(start_y, start_m, end_y, end_m, enso)
|
474 |
+
return [
|
475 |
+
results['tracks'],
|
476 |
+
results['wind'],
|
477 |
+
results['pressure'],
|
478 |
+
results['clusters'],
|
479 |
+
results['stats']
|
480 |
+
]
|
481 |
|
482 |
+
analyze_btn.click(
|
483 |
+
analyze_callback,
|
484 |
+
inputs=[start_year, start_month, end_year, end_month, enso_dropdown],
|
485 |
+
outputs=[tracks_plot, wind_plot, pressure_plot, cluster_plot, stats_text]
|
486 |
+
)
|
487 |
|
488 |
+
def search_callback(query):
|
489 |
+
if not query:
|
490 |
+
return None, "Please enter a typhoon name to search."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
|
492 |
+
matches = analyzer.merged_data[
|
493 |
+
analyzer.merged_data['NAME'].str.contains(query, case=False, na=False)
|
494 |
+
]
|
495 |
+
|
496 |
+
if matches.empty:
|
497 |
+
return None, "No typhoons found matching your search."
|
498 |
+
|
499 |
+
fig = analyzer.create_tracks_plot(matches)
|
500 |
+
|
501 |
+
info = f"### Found {len(matches['SID'].unique())} matching typhoons:\n\n"
|
502 |
+
for _, storm in matches.groupby('SID'):
|
503 |
+
info += (f"- {storm['NAME'].iloc[0]} ({storm['ISO_TIME'].iloc[0]:%Y-%m-%d})\n"
|
504 |
+
f" - Category: {storm['Category'].iloc[0]}\n"
|
505 |
+
f" - Max Wind: {storm['USA_WIND'].iloc[0]:.1f} kt\n"
|
506 |
+
f" - Min Pressure: {storm['WMO_PRES'].iloc[0]:.1f} hPa\n")
|
507 |
+
|
508 |
+
return fig, info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
509 |
|
510 |
+
search_btn.click(
|
511 |
+
search_callback,
|
512 |
+
inputs=[search_input],
|
513 |
+
outputs=[search_results, typhoon_info]
|
514 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
515 |
|
516 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
517 |
|
518 |
if __name__ == "__main__":
|
519 |
+
demo = create_interface()
|
520 |
+
demo.launch(
|
521 |
+
server_name="0.0.0.0",
|
522 |
+
server_port=7860,
|
523 |
+
share=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
524 |
)
|