Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,448 +1,197 @@
|
|
1 |
import gradio as gr
|
2 |
import plotly.graph_objects as go
|
3 |
import plotly.express as px
|
4 |
-
import pickle
|
5 |
-
import tropycal.tracks as tracks
|
6 |
import pandas as pd
|
7 |
import numpy as np
|
8 |
-
import
|
9 |
-
import functools
|
10 |
-
import hashlib
|
11 |
-
import os
|
12 |
-
import argparse
|
13 |
-
from datetime import datetime, timedelta
|
14 |
-
from datetime import date, datetime
|
15 |
from scipy import stats
|
16 |
-
from scipy.optimize import minimize, curve_fit
|
17 |
from sklearn.linear_model import LinearRegression
|
18 |
from sklearn.cluster import KMeans
|
19 |
from scipy.interpolate import interp1d
|
20 |
from fractions import Fraction
|
21 |
-
from concurrent.futures import ThreadPoolExecutor
|
22 |
-
from sklearn.metrics import mean_squared_error
|
23 |
import statsmodels.api as sm
|
24 |
-
import
|
25 |
-
import
|
26 |
-
import
|
27 |
import requests
|
28 |
-
from io import StringIO
|
29 |
import tempfile
|
30 |
-
import csv
|
31 |
-
from collections import defaultdict
|
32 |
import shutil
|
33 |
import filecmp
|
|
|
|
|
|
|
34 |
|
35 |
-
#
|
36 |
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
|
37 |
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
|
38 |
args = parser.parse_args()
|
39 |
-
|
40 |
-
# Use the command-line argument for data path
|
41 |
DATA_PATH = args.data_path
|
42 |
|
|
|
43 |
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
|
44 |
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
|
45 |
-
LOCAL_iBtrace_PATH =
|
46 |
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv'
|
47 |
-
|
48 |
CACHE_FILE = 'ibtracs_cache.pkl'
|
49 |
CACHE_EXPIRY_DAYS = 1
|
50 |
-
last_oni_update = None
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
return True
|
64 |
-
return False
|
65 |
|
66 |
-
|
67 |
-
'
|
68 |
-
'
|
69 |
-
'
|
70 |
-
'
|
71 |
-
'C1 Typhoon': 'rgb(255, 255, 0)', # Yellow
|
72 |
-
'Tropical Storm': 'rgb(0, 255, 255)', # Cyan
|
73 |
-
'Tropical Depression': 'rgb(173, 216, 230)' # Light Blue
|
74 |
}
|
75 |
|
|
|
76 |
def convert_typhoondata(input_file, output_file):
|
77 |
with open(input_file, 'r') as infile:
|
78 |
-
# Skip the title and the unit line.
|
79 |
next(infile)
|
80 |
next(infile)
|
81 |
-
|
82 |
reader = csv.reader(infile)
|
83 |
-
|
84 |
-
# Used for storing data for each SID
|
85 |
sid_data = defaultdict(list)
|
86 |
-
|
87 |
for row in reader:
|
88 |
-
if not row:
|
89 |
continue
|
90 |
-
|
91 |
sid = row[0]
|
92 |
iso_time = row[6]
|
93 |
sid_data[sid].append((row, iso_time))
|
94 |
-
|
95 |
with open(output_file, 'w', newline='') as outfile:
|
96 |
fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE']
|
97 |
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
|
98 |
-
|
99 |
writer.writeheader()
|
100 |
-
|
101 |
for sid, data in sid_data.items():
|
102 |
start_date = min(data, key=lambda x: x[1])[1]
|
103 |
end_date = max(data, key=lambda x: x[1])[1]
|
104 |
-
|
105 |
for row, iso_time in data:
|
106 |
writer.writerow({
|
107 |
-
'SID': row[0],
|
108 |
-
'
|
109 |
-
'
|
110 |
-
'
|
111 |
-
'SEASON': row[1],
|
112 |
-
'NAME': row[5],
|
113 |
-
'WMO_WIND': row[10].strip() or ' ',
|
114 |
-
'WMO_PRES': row[11].strip() or ' ',
|
115 |
-
'USA_WIND': row[23].strip() or ' ',
|
116 |
-
'USA_PRES': row[24].strip() or ' ',
|
117 |
-
'START_DATE': start_date,
|
118 |
-
'END_DATE': end_date
|
119 |
})
|
120 |
|
121 |
-
|
122 |
def download_oni_file(url, filename):
|
123 |
-
print(f"Downloading file from {url}...")
|
124 |
try:
|
125 |
response = requests.get(url)
|
126 |
-
response.raise_for_status()
|
127 |
with open(filename, 'wb') as f:
|
128 |
f.write(response.content)
|
129 |
-
print(f"File successfully downloaded and saved as {filename}")
|
130 |
return True
|
131 |
-
except requests.RequestException
|
132 |
-
print(f"Download failed. Error: {e}")
|
133 |
return False
|
134 |
|
135 |
-
|
136 |
def convert_oni_ascii_to_csv(input_file, output_file):
|
137 |
data = defaultdict(lambda: [''] * 12)
|
138 |
-
season_to_month = {
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
if len(parts) >= 4:
|
156 |
-
season, year = parts[0], parts[1]
|
157 |
-
anom = parts[-1]
|
158 |
-
|
159 |
-
if season in season_to_month:
|
160 |
-
month = season_to_month[season]
|
161 |
-
|
162 |
-
if season == 'DJF':
|
163 |
-
year = str(int(year) - 1)
|
164 |
-
|
165 |
-
data[year][month-1] = anom
|
166 |
-
else:
|
167 |
-
print(f"Warning: Unknown season: {season}")
|
168 |
-
else:
|
169 |
-
print(f"Warning: Skipping invalid line: {line.strip()}")
|
170 |
-
|
171 |
-
print(f"Processed data for {len(data)} years")
|
172 |
-
except Exception as e:
|
173 |
-
print(f"Error reading file: {e}")
|
174 |
-
return
|
175 |
-
|
176 |
-
print(f"Attempting to write file: {output_file}")
|
177 |
-
try:
|
178 |
-
with open(output_file, 'w', newline='') as f:
|
179 |
-
writer = csv.writer(f)
|
180 |
-
writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
|
181 |
-
|
182 |
-
for year in sorted(data.keys()):
|
183 |
-
row = [year] + data[year]
|
184 |
-
writer.writerow(row)
|
185 |
-
|
186 |
-
print(f"Successfully wrote {len(data)} rows of data")
|
187 |
-
except Exception as e:
|
188 |
-
print(f"Error writing file: {e}")
|
189 |
-
return
|
190 |
-
|
191 |
-
print(f"Conversion complete. Data saved to {output_file}")
|
192 |
|
193 |
def update_oni_data():
|
194 |
-
global last_oni_update
|
195 |
-
current_date = date.today()
|
196 |
-
|
197 |
-
# Check if already updated today
|
198 |
-
if last_oni_update == current_date:
|
199 |
-
print("ONI data already checked today. Skipping update.")
|
200 |
-
return
|
201 |
-
|
202 |
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
|
203 |
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
|
204 |
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
|
205 |
output_file = ONI_DATA_PATH
|
206 |
-
|
207 |
if download_oni_file(url, temp_file):
|
208 |
if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file, shallow=False):
|
209 |
-
# File doesn't exist or has been updated
|
210 |
os.replace(temp_file, input_file)
|
211 |
-
print("New ONI data detected. Converting to CSV.")
|
212 |
convert_oni_ascii_to_csv(input_file, output_file)
|
213 |
-
print("ONI data updated successfully.")
|
214 |
else:
|
215 |
-
|
216 |
-
os.remove(temp_file) # Remove temporary file
|
217 |
-
|
218 |
-
last_oni_update = current_date
|
219 |
-
else:
|
220 |
-
print("Failed to download ONI data.")
|
221 |
-
if os.path.exists(temp_file):
|
222 |
-
os.remove(temp_file) # Ensure cleanup of temporary file
|
223 |
|
224 |
def load_ibtracs_data():
|
225 |
-
if os.path.exists(CACHE_FILE):
|
226 |
-
|
227 |
-
|
228 |
-
print("Loading data from cache...")
|
229 |
-
with open(CACHE_FILE, 'rb') as f:
|
230 |
-
return pickle.load(f)
|
231 |
-
|
232 |
if os.path.exists(LOCAL_iBtrace_PATH):
|
233 |
-
print("Using local IBTrACS file...")
|
234 |
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
235 |
else:
|
236 |
-
print("Local IBTrACS file not found. Fetching data from remote server...")
|
237 |
-
try:
|
238 |
-
response = requests.get(iBtrace_uri)
|
239 |
-
response.raise_for_status()
|
240 |
-
|
241 |
-
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
|
242 |
-
temp_file.write(response.text)
|
243 |
-
temp_file_path = temp_file.name
|
244 |
-
|
245 |
-
# Save the downloaded data as the local file
|
246 |
-
shutil.move(temp_file_path, LOCAL_iBtrace_PATH)
|
247 |
-
print(f"Downloaded data saved to {LOCAL_iBtrace_PATH}")
|
248 |
-
|
249 |
-
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
250 |
-
except requests.RequestException as e:
|
251 |
-
print(f"Error downloading data: {e}")
|
252 |
-
print("No local file available and download failed. Unable to load IBTrACS data.")
|
253 |
-
return None
|
254 |
-
|
255 |
-
with open(CACHE_FILE, 'wb') as f:
|
256 |
-
pickle.dump(ibtracs, f)
|
257 |
-
|
258 |
-
return ibtracs
|
259 |
-
|
260 |
-
def update_ibtracs_data():
|
261 |
-
global ibtracs
|
262 |
-
print("Checking for IBTrACS data updates...")
|
263 |
-
|
264 |
-
try:
|
265 |
-
# Get the last-modified time of the remote file
|
266 |
-
response = requests.head(iBtrace_uri)
|
267 |
-
remote_last_modified = datetime.strptime(response.headers['Last-Modified'], '%a, %d %b %Y %H:%M:%S GMT')
|
268 |
-
|
269 |
-
# Get the last-modified time of the local file
|
270 |
-
if os.path.exists(LOCAL_iBtrace_PATH):
|
271 |
-
local_last_modified = datetime.fromtimestamp(os.path.getmtime(LOCAL_iBtrace_PATH))
|
272 |
-
else:
|
273 |
-
local_last_modified = datetime.min
|
274 |
-
|
275 |
-
# Compare the modification times
|
276 |
-
if remote_last_modified <= local_last_modified:
|
277 |
-
print("Local IBTrACS data is up to date. No update needed.")
|
278 |
-
if os.path.exists(CACHE_FILE):
|
279 |
-
# Update the cache file's timestamp to extend its validity
|
280 |
-
os.utime(CACHE_FILE, None)
|
281 |
-
print("Cache file timestamp updated.")
|
282 |
-
return
|
283 |
-
|
284 |
-
print("Remote data is newer. Updating IBTrACS data...")
|
285 |
-
|
286 |
-
# Download the new data
|
287 |
response = requests.get(iBtrace_uri)
|
288 |
response.raise_for_status()
|
289 |
-
|
290 |
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
|
291 |
temp_file.write(response.text)
|
292 |
temp_file_path = temp_file.name
|
293 |
-
|
294 |
-
# Save the downloaded data as the local file
|
295 |
shutil.move(temp_file_path, LOCAL_iBtrace_PATH)
|
296 |
-
print(f"Downloaded data saved to {LOCAL_iBtrace_PATH}")
|
297 |
-
|
298 |
-
# Update the last modified time of the local file to match the remote file
|
299 |
-
os.utime(LOCAL_iBtrace_PATH, (remote_last_modified.timestamp(), remote_last_modified.timestamp()))
|
300 |
-
|
301 |
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
print("IBTrACS data updated and cache refreshed.")
|
306 |
-
|
307 |
-
except requests.RequestException as e:
|
308 |
-
print(f"Error checking or downloading data: {e}")
|
309 |
-
if os.path.exists(LOCAL_iBtrace_PATH):
|
310 |
-
print("Using existing local file.")
|
311 |
-
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
312 |
-
if os.path.exists(CACHE_FILE):
|
313 |
-
# Update the cache file's timestamp even when using existing local file
|
314 |
-
os.utime(CACHE_FILE, None)
|
315 |
-
print("Cache file timestamp updated.")
|
316 |
-
else:
|
317 |
-
print("No local file available. Update failed.")
|
318 |
-
|
319 |
-
def run_schedule():
|
320 |
-
while True:
|
321 |
-
schedule.run_pending()
|
322 |
-
time.sleep(1)
|
323 |
-
|
324 |
-
def analyze_typhoon_generation(merged_data, start_date, end_date):
|
325 |
-
filtered_data = merged_data[
|
326 |
-
(merged_data['ISO_TIME'] >= start_date) &
|
327 |
-
(merged_data['ISO_TIME'] <= end_date)
|
328 |
-
]
|
329 |
-
|
330 |
-
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
|
331 |
-
|
332 |
-
typhoon_counts = filtered_data['ENSO_Phase'].value_counts().to_dict()
|
333 |
-
|
334 |
-
month_counts = filtered_data.groupby(['ENSO_Phase', filtered_data['ISO_TIME'].dt.month]).size().unstack(fill_value=0)
|
335 |
-
concentrated_months = month_counts.idxmax(axis=1).to_dict()
|
336 |
-
|
337 |
-
return typhoon_counts, concentrated_months
|
338 |
-
|
339 |
-
def cache_key_generator(*args, **kwargs):
|
340 |
-
key = hashlib.md5()
|
341 |
-
for arg in args:
|
342 |
-
key.update(str(arg).encode())
|
343 |
-
for k, v in sorted(kwargs.items()):
|
344 |
-
key.update(str(k).encode())
|
345 |
-
key.update(str(v).encode())
|
346 |
-
return key.hexdigest()
|
347 |
-
|
348 |
-
def categorize_typhoon(wind_speed):
|
349 |
-
wind_speed_kt = wind_speed / 2 # Convert kt to m/s
|
350 |
-
|
351 |
-
# Add category classification
|
352 |
-
if wind_speed_kt >= 137/2.35:
|
353 |
-
return 'C5 Super Typhoon'
|
354 |
-
elif wind_speed_kt >= 113/2.35:
|
355 |
-
return 'C4 Very Strong Typhoon'
|
356 |
-
elif wind_speed_kt >= 96/2.35:
|
357 |
-
return 'C3 Strong Typhoon'
|
358 |
-
elif wind_speed_kt >= 83/2.35:
|
359 |
-
return 'C2 Typhoon'
|
360 |
-
elif wind_speed_kt >= 64/2.35:
|
361 |
-
return 'C1 Typhoon'
|
362 |
-
elif wind_speed_kt >= 34/2.35:
|
363 |
-
return 'Tropical Storm'
|
364 |
-
else:
|
365 |
-
return 'Tropical Depression'
|
366 |
-
|
367 |
-
@functools.lru_cache(maxsize=None)
|
368 |
-
def process_oni_data_cached(oni_data_hash):
|
369 |
-
return process_oni_data(oni_data)
|
370 |
|
371 |
def process_oni_data(oni_data):
|
372 |
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
373 |
-
|
374 |
-
|
375 |
-
'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'
|
376 |
-
})
|
377 |
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
|
378 |
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
|
379 |
return oni_long
|
380 |
|
381 |
-
def process_oni_data_with_cache(oni_data):
|
382 |
-
oni_data_hash = cache_key_generator(oni_data.to_json())
|
383 |
-
return process_oni_data_cached(oni_data_hash)
|
384 |
-
|
385 |
-
@functools.lru_cache(maxsize=None)
|
386 |
-
def process_typhoon_data_cached(typhoon_data_hash):
|
387 |
-
return process_typhoon_data(typhoon_data)
|
388 |
-
|
389 |
def process_typhoon_data(typhoon_data):
|
390 |
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
391 |
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
|
392 |
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
|
393 |
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
|
394 |
-
|
395 |
typhoon_max = typhoon_data.groupby('SID').agg({
|
396 |
-
'USA_WIND': 'max',
|
397 |
-
'USA_PRES': 'min',
|
398 |
-
'ISO_TIME': 'first',
|
399 |
-
'SEASON': 'first',
|
400 |
-
'NAME': 'first',
|
401 |
-
'LAT': 'first',
|
402 |
-
'LON': 'first'
|
403 |
}).reset_index()
|
404 |
-
|
405 |
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
|
406 |
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
|
407 |
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
|
408 |
return typhoon_max
|
409 |
|
410 |
-
def process_typhoon_data_with_cache(typhoon_data):
|
411 |
-
typhoon_data_hash = cache_key_generator(typhoon_data.to_json())
|
412 |
-
return process_typhoon_data_cached(typhoon_data_hash)
|
413 |
-
|
414 |
def merge_data(oni_long, typhoon_max):
|
415 |
return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])
|
416 |
|
417 |
-
def
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
exp_beta_1 = np.exp(beta_1)
|
434 |
-
p_value = model.pvalues['el_nino']
|
435 |
-
|
436 |
-
return beta_1, exp_beta_1, p_value
|
437 |
-
|
438 |
-
@cachetools.cached(cache={})
|
439 |
-
def fetch_oni_data_from_csv(file_path):
|
440 |
-
df = pd.read_csv(file_path, sep=',', header=0, na_values='-99.90')
|
441 |
-
df.columns = ['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
442 |
-
df = df.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
443 |
-
df['Date'] = pd.to_datetime(df['Year'].astype(str) + df['Month'], format='%Y%b')
|
444 |
-
df = df.set_index('Date')
|
445 |
-
return df
|
446 |
|
447 |
def classify_enso_phases(oni_value):
|
448 |
if isinstance(oni_value, pd.Series):
|
@@ -454,118 +203,243 @@ def classify_enso_phases(oni_value):
|
|
454 |
else:
|
455 |
return 'Neutral'
|
456 |
|
457 |
-
def load_data(oni_data_path, typhoon_data_path):
|
458 |
-
oni_data = pd.read_csv(oni_data_path)
|
459 |
-
typhoon_data = pd.read_csv(typhoon_data_path, low_memory=False)
|
460 |
-
|
461 |
-
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
462 |
-
|
463 |
-
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
|
464 |
-
|
465 |
-
print(f"Typhoon data shape after cleaning: {typhoon_data.shape}")
|
466 |
-
print(f"Year range: {typhoon_data['ISO_TIME'].dt.year.min()} - {typhoon_data['ISO_TIME'].dt.year.max()}")
|
467 |
-
|
468 |
-
return oni_data, typhoon_data
|
469 |
-
|
470 |
-
def preprocess_data(oni_data, typhoon_data):
|
471 |
-
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
|
472 |
-
typhoon_data['WMO_PRES'] = pd.to_numeric(typhoon_data['WMO_PRES'], errors='coerce')
|
473 |
-
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
474 |
-
typhoon_data['Year'] = typhoon_data['ISO_TIME'].dt.year
|
475 |
-
typhoon_data['Month'] = typhoon_data['ISO_TIME'].dt.month
|
476 |
-
|
477 |
-
monthly_max_wind_speed = typhoon_data.groupby(['Year', 'Month'])['USA_WIND'].max().reset_index()
|
478 |
-
|
479 |
-
oni_data_long = pd.melt(oni_data, id_vars=['Year'], var_name='Month', value_name='ONI')
|
480 |
-
oni_data_long['Month'] = oni_data_long['Month'].apply(lambda x: pd.to_datetime(x, format='%b').month)
|
481 |
-
|
482 |
-
merged_data = pd.merge(monthly_max_wind_speed, oni_data_long, on=['Year', 'Month'])
|
483 |
-
|
484 |
-
return merged_data
|
485 |
-
|
486 |
-
def calculate_max_wind_min_pressure(typhoon_data):
|
487 |
-
max_wind_speed = typhoon_data['USA_WIND'].max()
|
488 |
-
min_pressure = typhoon_data['WMO_PRES'].min()
|
489 |
-
return max_wind_speed, min_pressure
|
490 |
-
|
491 |
-
@functools.lru_cache(maxsize=None)
|
492 |
-
def get_storm_data(storm_id):
|
493 |
-
return ibtracs.get_storm(storm_id)
|
494 |
-
|
495 |
def filter_west_pacific_coordinates(lons, lats):
|
496 |
mask = (100 <= lons) & (lons <= 180) & (0 <= lats) & (lats <= 40)
|
497 |
return lons[mask], lats[mask]
|
498 |
|
499 |
-
def
|
500 |
-
return
|
501 |
-
|
502 |
-
def exponential(x, a, b, c):
|
503 |
-
return a * np.exp(b * x) + c
|
504 |
-
|
505 |
-
def generate_cluster_equations(cluster_center):
|
506 |
-
X = cluster_center[:, 0] # Longitudes
|
507 |
-
y = cluster_center[:, 1] # Latitudes
|
508 |
-
|
509 |
-
x_min = X.min()
|
510 |
-
x_max = X.max()
|
511 |
-
|
512 |
-
equations = []
|
513 |
-
|
514 |
-
# Fourier Series (up to 4th order)
|
515 |
-
def fourier_series(x, a0, a1, b1, a2, b2, a3, b3, a4, b4):
|
516 |
-
return (a0 + a1*np.cos(x) + b1*np.sin(x) +
|
517 |
-
a2*np.cos(2*x) + b2*np.sin(2*x) +
|
518 |
-
a3*np.cos(3*x) + b3*np.sin(3*x) +
|
519 |
-
a4*np.cos(4*x) + b4*np.sin(4*x))
|
520 |
-
|
521 |
-
# Normalize X to the range [0, 2π]
|
522 |
-
X_normalized = 2 * np.pi * (X - x_min) / (x_max - x_min)
|
523 |
-
|
524 |
-
params, _ = curve_fit(fourier_series, X_normalized, y)
|
525 |
-
a0, a1, b1, a2, b2, a3, b3, a4, b4 = params
|
526 |
-
|
527 |
-
# Create the equation string
|
528 |
-
fourier_eq = (f"y = {a0:.4f} + {a1:.4f}*cos(x) + {b1:.4f}*sin(x) + "
|
529 |
-
f"{a2:.4f}*cos(2x) + {b2:.4f}*sin(2x) + "
|
530 |
-
f"{a3:.4f}*cos(3x) + {b3:.4f}*sin(3x) + "
|
531 |
-
f"{a4:.4f}*cos(4x) + {b4:.4f}*sin(4x)")
|
532 |
-
|
533 |
-
equations.append(("Fourier Series", fourier_eq))
|
534 |
-
equations.append(("X Range", f"x goes from 0 to {2*np.pi:.4f}"))
|
535 |
-
equations.append(("Longitude Range", f"Longitude goes from {x_min:.4f}°E to {x_max:.4f}°E"))
|
536 |
-
|
537 |
-
return equations, (x_min, x_max)
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
# Classification standards
|
543 |
-
atlantic_standard = {
|
544 |
-
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'rgb(255, 0, 0)'},
|
545 |
-
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'rgb(255, 63, 0)'},
|
546 |
-
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'rgb(255, 127, 0)'},
|
547 |
-
'C2 Typhoon': {'wind_speed': 83, 'color': 'rgb(255, 191, 0)'},
|
548 |
-
'C1 Typhoon': {'wind_speed': 64, 'color': 'rgb(255, 255, 0)'},
|
549 |
-
'Tropical Storm': {'wind_speed': 34, 'color': 'rgb(0, 255, 255)'},
|
550 |
-
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
|
551 |
-
}
|
552 |
-
|
553 |
-
taiwan_standard = {
|
554 |
-
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'rgb(255, 0, 0)'}, # >= 51.0 m/s
|
555 |
-
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'rgb(255, 127, 0)'}, # 33.7-50.9 m/s
|
556 |
-
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'rgb(255, 255, 0)'}, # 17.2-33.6 m/s
|
557 |
-
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'} # < 17.2 m/s
|
558 |
-
}
|
559 |
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
565 |
if standard == 'taiwan':
|
566 |
-
# Convert knots to m/s for Taiwan standard
|
567 |
wind_speed_ms = wind_speed * 0.514444
|
568 |
-
|
569 |
if wind_speed_ms >= 51.0:
|
570 |
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['color']
|
571 |
elif wind_speed_ms >= 33.7:
|
@@ -575,7 +449,6 @@ def categorize_typhoon_by_standard(wind_speed, standard='atlantic'):
|
|
575 |
else:
|
576 |
return 'Tropical Depression', taiwan_standard['Tropical Depression']['color']
|
577 |
else:
|
578 |
-
# Atlantic standard uses knots
|
579 |
if wind_speed >= 137:
|
580 |
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['color']
|
581 |
elif wind_speed >= 113:
|
@@ -591,830 +464,80 @@ def categorize_typhoon_by_standard(wind_speed, standard='atlantic'):
|
|
591 |
else:
|
592 |
return 'Tropical Depression', atlantic_standard['Tropical Depression']['color']
|
593 |
|
594 |
-
#
|
595 |
-
def
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
lat=storm.lat,
|
672 |
-
mode='lines',
|
673 |
-
line=dict(width=2, color='gray'),
|
674 |
-
name='Path',
|
675 |
-
showlegend=False,
|
676 |
-
)
|
677 |
-
)
|
678 |
-
|
679 |
-
# Add the starting point
|
680 |
-
fig.add_trace(
|
681 |
-
go.Scattergeo(
|
682 |
-
lon=[storm.lon[0]],
|
683 |
-
lat=[storm.lat[0]],
|
684 |
-
mode='markers',
|
685 |
-
marker=dict(size=10, color='green', symbol='star'),
|
686 |
-
name='Starting Point',
|
687 |
-
text=storm.time[0].strftime('%Y-%m-%d %H:%M'),
|
688 |
-
hoverinfo='text+name',
|
689 |
-
)
|
690 |
-
)
|
691 |
-
|
692 |
-
# Create frames for animation
|
693 |
-
frames = []
|
694 |
-
for i in range(len(storm.time)):
|
695 |
-
category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
|
696 |
-
|
697 |
-
# Get additional data if available
|
698 |
-
r34_ne = storm.dict['USA_R34_NE'][i] if 'USA_R34_NE' in storm.dict else None
|
699 |
-
r34_se = storm.dict['USA_R34_SE'][i] if 'USA_R34_SE' in storm.dict else None
|
700 |
-
r34_sw = storm.dict['USA_R34_SW'][i] if 'USA_R34_SW' in storm.dict else None
|
701 |
-
r34_nw = storm.dict['USA_R34_NW'][i] if 'USA_R34_NW' in storm.dict else None
|
702 |
-
rmw = storm.dict['USA_RMW'][i] if 'USA_RMW' in storm.dict else None
|
703 |
-
eye_diameter = storm.dict['USA_EYE'][i] if 'USA_EYE' in storm.dict else None
|
704 |
-
|
705 |
-
radius_info = f"R34: NE={r34_ne}, SE={r34_se}, SW={r34_sw}, NW={r34_nw}<br>"
|
706 |
-
radius_info += f"RMW: {rmw}<br>"
|
707 |
-
radius_info += f"Eye Diameter: {eye_diameter}"
|
708 |
-
|
709 |
-
frame_data = [
|
710 |
-
go.Scattergeo(
|
711 |
-
lon=storm.lon[:i+1],
|
712 |
-
lat=storm.lat[:i+1],
|
713 |
-
mode='lines',
|
714 |
-
line=dict(width=2, color='blue'),
|
715 |
-
name='Path Traveled',
|
716 |
-
showlegend=False,
|
717 |
-
),
|
718 |
-
go.Scattergeo(
|
719 |
-
lon=[storm.lon[i]],
|
720 |
-
lat=[storm.lat[i]],
|
721 |
-
mode='markers+text',
|
722 |
-
marker=dict(size=10, color=color, symbol='star'),
|
723 |
-
text=category,
|
724 |
-
textposition="top center",
|
725 |
-
textfont=dict(size=12, color=color),
|
726 |
-
name='Current Location',
|
727 |
-
hovertext=f"{storm.time[i].strftime('%Y-%m-%d %H:%M')}<br>"
|
728 |
-
f"Category: {category}<br>"
|
729 |
-
f"Wind Speed: {storm.vmax[i]:.1f} m/s<br>"
|
730 |
-
f"{radius_info}",
|
731 |
-
hoverinfo='text',
|
732 |
-
),
|
733 |
-
]
|
734 |
-
frames.append(go.Frame(data=frame_data, name=f"frame{i}"))
|
735 |
-
|
736 |
-
fig.frames = frames
|
737 |
-
|
738 |
-
# Update layout with animation controls
|
739 |
-
fig.update_layout(
|
740 |
-
title=f"{year} Year {storm.name} Typhoon Path",
|
741 |
-
showlegend=False,
|
742 |
-
geo=dict(
|
743 |
-
projection_type='natural earth',
|
744 |
-
showland=True,
|
745 |
-
landcolor='rgb(243, 243, 243)',
|
746 |
-
countrycolor='rgb(204, 204, 204)',
|
747 |
-
coastlinecolor='rgb(100, 100, 100)',
|
748 |
-
showocean=True,
|
749 |
-
oceancolor='rgb(230, 250, 255)',
|
750 |
-
),
|
751 |
-
updatemenus=[{
|
752 |
-
"buttons": [
|
753 |
-
{
|
754 |
-
"args": [None, {"frame": {"duration": 100, "redraw": True},
|
755 |
-
"fromcurrent": True,
|
756 |
-
"transition": {"duration": 0}}],
|
757 |
-
"label": "Play",
|
758 |
-
"method": "animate"
|
759 |
-
},
|
760 |
-
{
|
761 |
-
"args": [[None], {"frame": {"duration": 0, "redraw": True},
|
762 |
-
"mode": "immediate",
|
763 |
-
"transition": {"duration": 0}}],
|
764 |
-
"label": "Pause",
|
765 |
-
"method": "animate"
|
766 |
-
}
|
767 |
-
],
|
768 |
-
"direction": "left",
|
769 |
-
"pad": {"r": 10, "t": 87},
|
770 |
-
"showactive": False,
|
771 |
-
"type": "buttons",
|
772 |
-
"x": 0.1,
|
773 |
-
"xanchor": "right",
|
774 |
-
"y": 0,
|
775 |
-
"yanchor": "top"
|
776 |
-
}],
|
777 |
-
sliders=[{
|
778 |
-
"active": 0,
|
779 |
-
"yanchor": "top",
|
780 |
-
"xanchor": "left",
|
781 |
-
"currentvalue": {
|
782 |
-
"font": {"size": 20},
|
783 |
-
"prefix": "Time: ",
|
784 |
-
"visible": True,
|
785 |
-
"xanchor": "right"
|
786 |
-
},
|
787 |
-
"transition": {"duration": 100, "easing": "cubic-in-out"},
|
788 |
-
"pad": {"b": 10, "t": 50},
|
789 |
-
"len": 0.9,
|
790 |
-
"x": 0.1,
|
791 |
-
"y": 0,
|
792 |
-
"steps": [
|
793 |
-
{
|
794 |
-
"args": [[f"frame{k}"],
|
795 |
-
{"frame": {"duration": 100, "redraw": True},
|
796 |
-
"mode": "immediate",
|
797 |
-
"transition": {"duration": 0}}
|
798 |
-
],
|
799 |
-
"label": storm.time[k].strftime('%Y-%m-%d %H:%M'),
|
800 |
-
"method": "animate"
|
801 |
-
}
|
802 |
-
for k in range(len(storm.time))
|
803 |
-
]
|
804 |
-
}]
|
805 |
-
)
|
806 |
-
|
807 |
-
return fig
|
808 |
-
except Exception as e:
|
809 |
-
print(f"Error creating typhoon path animation: {str(e)}")
|
810 |
-
error_fig = go.Figure()
|
811 |
-
error_fig.add_annotation(text=f"Error: {str(e)}",
|
812 |
-
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
|
813 |
-
return error_fig
|
814 |
-
|
815 |
-
|
816 |
-
# Function to analyze typhoon tracks
|
817 |
-
# Function to analyze typhoon tracks
|
818 |
-
def analyze_typhoon_tracks(start_year, start_month, end_year, end_month, enso_selection, typhoon_search=""):
|
819 |
-
start_date = datetime(int(start_year), int(start_month), 1)
|
820 |
-
end_date = datetime(int(end_year), int(end_month), 28)
|
821 |
-
|
822 |
-
# Create typhoon tracks plot
|
823 |
-
fig_tracks = go.Figure()
|
824 |
-
|
825 |
-
# Map Gradio dropdown values to the values used in the original code
|
826 |
-
enso_map = {
|
827 |
-
"All Years": "all",
|
828 |
-
"El Niño Years": "el_nino",
|
829 |
-
"La Niña Years": "la_nina",
|
830 |
-
"Neutral Years": "neutral"
|
831 |
-
}
|
832 |
-
enso_value = enso_map[enso_selection]
|
833 |
-
|
834 |
-
try:
|
835 |
-
processed_storms = 0
|
836 |
-
for year in range(int(start_year), int(end_year) + 1):
|
837 |
-
if year not in ibtracs.data.keys():
|
838 |
-
continue
|
839 |
-
|
840 |
-
season = ibtracs.get_season(year)
|
841 |
-
for storm_id in season.summary()['id']:
|
842 |
-
try:
|
843 |
-
storm = get_storm_data(storm_id)
|
844 |
-
storm_dates = storm.time
|
845 |
-
|
846 |
-
if any(start_date <= date <= end_date for date in storm_dates):
|
847 |
-
storm_date_str = storm_dates[0].strftime('%Y-%b')
|
848 |
-
storm_oni = None
|
849 |
-
|
850 |
-
# Find the ONI value - handle case where date might not be in index
|
851 |
-
if storm_date_str in oni_df.index:
|
852 |
-
storm_oni = oni_df.loc[storm_date_str]['ONI']
|
853 |
-
if isinstance(storm_oni, pd.Series):
|
854 |
-
storm_oni = storm_oni.iloc[0]
|
855 |
-
else:
|
856 |
-
# Try to find closest date
|
857 |
-
closest_dates = oni_df.index[oni_df.index.year == storm_dates[0].year]
|
858 |
-
if len(closest_dates) > 0:
|
859 |
-
closest_date = min(closest_dates, key=lambda x: abs((x - storm_dates[0].to_pydatetime()).total_seconds()))
|
860 |
-
storm_oni = oni_df.loc[closest_date]['ONI']
|
861 |
-
if isinstance(storm_oni, pd.Series):
|
862 |
-
storm_oni = storm_oni.iloc[0]
|
863 |
-
|
864 |
-
if storm_oni is not None:
|
865 |
-
phase = classify_enso_phases(storm_oni)
|
866 |
-
|
867 |
-
if (enso_value == 'all' or
|
868 |
-
(enso_value == 'el_nino' and phase == 'El Nino') or
|
869 |
-
(enso_value == 'la_nina' and phase == 'La Nina') or
|
870 |
-
(enso_value == 'neutral' and phase == 'Neutral')):
|
871 |
-
|
872 |
-
color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[phase]
|
873 |
-
|
874 |
-
# Highlight searched typhoon
|
875 |
-
if typhoon_search and typhoon_search.lower() in storm.name.lower():
|
876 |
-
line_width = 5
|
877 |
-
line_color = 'yellow'
|
878 |
-
else:
|
879 |
-
line_width = 2
|
880 |
-
line_color = color
|
881 |
-
|
882 |
-
fig_tracks.add_trace(go.Scattergeo(
|
883 |
-
lon=storm.lon,
|
884 |
-
lat=storm.lat,
|
885 |
-
mode='lines',
|
886 |
-
name=storm.name,
|
887 |
-
text=f'{storm.name} ({year})',
|
888 |
-
hoverinfo='text',
|
889 |
-
line=dict(width=line_width, color=line_color)
|
890 |
-
))
|
891 |
-
processed_storms += 1
|
892 |
-
except Exception as e:
|
893 |
-
print(f"Error processing storm {storm_id}: {e}")
|
894 |
-
continue
|
895 |
-
|
896 |
-
print(f"Processed {processed_storms} storms for track display.")
|
897 |
-
|
898 |
-
fig_tracks.update_layout(
|
899 |
-
title=f'Typhoon Tracks from {start_year}-{start_month} to {end_year}-{end_month}',
|
900 |
-
geo=dict(
|
901 |
-
projection_type='natural earth',
|
902 |
-
showland=True,
|
903 |
-
coastlinecolor='rgb(100, 100, 100)',
|
904 |
-
countrycolor='rgb(204, 204, 204)',
|
905 |
-
showocean=True,
|
906 |
-
oceancolor='rgb(230, 250, 255)',
|
907 |
-
)
|
908 |
-
)
|
909 |
-
|
910 |
-
# Calculate statistics for this period
|
911 |
-
filtered_data = merged_data[
|
912 |
-
(merged_data['Year'] >= int(start_year)) &
|
913 |
-
(merged_data['Year'] <= int(end_year)) &
|
914 |
-
(merged_data['Month'].astype(int) >= int(start_month)) &
|
915 |
-
(merged_data['Month'].astype(int) <= int(end_month))
|
916 |
-
]
|
917 |
-
|
918 |
-
max_wind = filtered_data['USA_WIND'].max() if not filtered_data.empty else 0
|
919 |
-
min_press = filtered_data['USA_PRES'].min() if not filtered_data.empty else 0
|
920 |
-
|
921 |
-
stats_text = f"Maximum Wind Speed: {max_wind:.2f} knots\nMinimum Pressure: {min_press:.2f} hPa\nTotal Storms: {processed_storms}"
|
922 |
-
|
923 |
-
# Create wind scatter plot
|
924 |
-
wind_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category',
|
925 |
-
hover_data=['NAME', 'Year', 'Category'],
|
926 |
-
title='Wind Speed vs ONI',
|
927 |
-
labels={'ONI': 'ONI Value', 'USA_WIND': 'Maximum Wind Speed (knots)'},
|
928 |
-
color_discrete_map=color_map)
|
929 |
-
|
930 |
-
# Create pressure scatter plot
|
931 |
-
pressure_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category',
|
932 |
-
hover_data=['NAME', 'Year', 'Category'],
|
933 |
-
title='Pressure vs ONI',
|
934 |
-
labels={'ONI': 'ONI Value', 'USA_PRES': 'Minimum Pressure (hPa)'},
|
935 |
-
color_discrete_map=color_map)
|
936 |
-
|
937 |
-
return fig_tracks, wind_oni_scatter, pressure_oni_scatter, stats_text
|
938 |
-
except Exception as e:
|
939 |
-
error_fig = go.Figure()
|
940 |
-
error_fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
|
941 |
-
return error_fig, error_fig, error_fig, f"Error analyzing typhoon tracks: {str(e)}"
|
942 |
-
|
943 |
-
# Function to run cluster analysis
|
944 |
-
def run_cluster_analysis(start_year, start_month, end_year, end_month, n_clusters, enso_selection, analysis_type):
|
945 |
-
start_date = datetime(int(start_year), int(start_month), 1)
|
946 |
-
end_date = datetime(int(end_year), int(end_month), 28)
|
947 |
-
|
948 |
-
# Map Gradio dropdown values to the values used in the original code
|
949 |
-
enso_map = {
|
950 |
-
"All Years": "all",
|
951 |
-
"El Niño Years": "el_nino",
|
952 |
-
"La Niña Years": "la_nina",
|
953 |
-
"Neutral Years": "neutral"
|
954 |
-
}
|
955 |
-
enso_value = enso_map[enso_selection]
|
956 |
-
|
957 |
-
fig_routes = go.Figure()
|
958 |
-
|
959 |
-
try:
|
960 |
-
# Clustering analysis
|
961 |
-
west_pacific_storms = []
|
962 |
-
for year in range(int(start_year), int(end_year) + 1):
|
963 |
-
if year not in ibtracs.data.keys():
|
964 |
-
continue
|
965 |
-
|
966 |
-
season = ibtracs.get_season(year)
|
967 |
-
for storm_id in season.summary()['id']:
|
968 |
-
storm = get_storm_data(storm_id)
|
969 |
-
storm_date = storm.time[0]
|
970 |
-
|
971 |
-
# Try to find the ONI value for this storm date
|
972 |
-
date_str = storm_date.strftime('%Y-%b')
|
973 |
-
if date_str in oni_df.index:
|
974 |
-
storm_oni = oni_df.loc[date_str]['ONI']
|
975 |
-
if isinstance(storm_oni, pd.Series):
|
976 |
-
storm_oni = storm_oni.iloc[0]
|
977 |
-
storm_phase = classify_enso_phases(storm_oni)
|
978 |
-
|
979 |
-
if enso_value == 'all' or \
|
980 |
-
(enso_value == 'el_nino' and storm_phase == 'El Nino') or \
|
981 |
-
(enso_value == 'la_nina' and storm_phase == 'La Nina') or \
|
982 |
-
(enso_value == 'neutral' and storm_phase == 'Neutral'):
|
983 |
-
lons, lats = filter_west_pacific_coordinates(np.array(storm.lon), np.array(storm.lat))
|
984 |
-
if len(lons) > 1: # Ensure the storm has a valid path in West Pacific
|
985 |
-
west_pacific_storms.append((lons, lats))
|
986 |
-
|
987 |
-
if not west_pacific_storms:
|
988 |
-
return None, "No storms found matching the criteria"
|
989 |
-
|
990 |
-
max_length = max(len(storm[0]) for storm in west_pacific_storms)
|
991 |
-
standardized_routes = []
|
992 |
-
|
993 |
-
for lons, lats in west_pacific_storms:
|
994 |
-
if len(lons) < 2: # Skip if not enough points
|
995 |
-
continue
|
996 |
-
t = np.linspace(0, 1, len(lons))
|
997 |
-
t_new = np.linspace(0, 1, max_length)
|
998 |
-
lon_interp = interp1d(t, lons, kind='linear')(t_new)
|
999 |
-
lat_interp = interp1d(t, lats, kind='linear')(t_new)
|
1000 |
-
route_vector = np.column_stack((lon_interp, lat_interp)).flatten()
|
1001 |
-
standardized_routes.append(route_vector)
|
1002 |
-
|
1003 |
-
if not standardized_routes:
|
1004 |
-
return None, "Unable to create standardized routes"
|
1005 |
-
|
1006 |
-
kmeans = KMeans(n_clusters=int(n_clusters), random_state=42, n_init=10)
|
1007 |
-
clusters = kmeans.fit_predict(standardized_routes)
|
1008 |
-
|
1009 |
-
# Count the number of typhoons in each cluster
|
1010 |
-
cluster_counts = np.bincount(clusters)
|
1011 |
-
|
1012 |
-
# Draw all routes (with lighter color)
|
1013 |
-
if analysis_type == "Show Routes":
|
1014 |
-
for lons, lats in west_pacific_storms:
|
1015 |
-
fig_routes.add_trace(go.Scattergeo(
|
1016 |
-
lon=lons, lat=lats,
|
1017 |
-
mode='lines',
|
1018 |
-
line=dict(width=1, color='lightgray'),
|
1019 |
-
showlegend=False,
|
1020 |
-
hoverinfo='none'
|
1021 |
-
))
|
1022 |
-
|
1023 |
-
equations_output = ""
|
1024 |
-
# Draw cluster centroids
|
1025 |
-
if analysis_type == "Show Clusters" or analysis_type == "Fourier Series":
|
1026 |
-
for i in range(int(n_clusters)):
|
1027 |
-
cluster_center = kmeans.cluster_centers_[i].reshape(-1, 2)
|
1028 |
-
|
1029 |
-
fig_routes.add_trace(go.Scattergeo(
|
1030 |
-
lon=cluster_center[:, 0],
|
1031 |
-
lat=cluster_center[:, 1],
|
1032 |
-
mode='lines',
|
1033 |
-
name=f'Cluster {i+1} (n={cluster_counts[i]})',
|
1034 |
-
line=dict(width=3)
|
1035 |
-
))
|
1036 |
-
|
1037 |
-
if analysis_type == "Fourier Series":
|
1038 |
-
cluster_equations, (lon_min, lon_max) = generate_cluster_equations(cluster_center)
|
1039 |
-
|
1040 |
-
equations_output += f"\n--- Cluster {i+1} (Typhoons: {cluster_counts[i]}) ---\n"
|
1041 |
-
for name, eq in cluster_equations:
|
1042 |
-
equations_output += f"{name}: {eq}\n"
|
1043 |
-
|
1044 |
-
equations_output += "\nTo use in GeoGebra:\n"
|
1045 |
-
equations_output += f"1. Set x-axis from 0 to {2*np.pi:.4f}\n"
|
1046 |
-
equations_output += "2. Use the equation as is\n"
|
1047 |
-
equations_output += f"3. To convert x back to longitude: lon = {lon_min:.4f} + x * {(lon_max - lon_min) / (2*np.pi):.4f}\n\n"
|
1048 |
-
|
1049 |
-
enso_phase_text = {
|
1050 |
-
'all': 'All Years',
|
1051 |
-
'el_nino': 'El Niño Years',
|
1052 |
-
'la_nina': 'La Niña Years',
|
1053 |
-
'neutral': 'Neutral Years'
|
1054 |
-
}
|
1055 |
-
|
1056 |
-
fig_routes.update_layout(
|
1057 |
-
title=f'Typhoon Routes Clustering in West Pacific ({start_year}-{end_year}) - {enso_phase_text[enso_value]}',
|
1058 |
-
geo=dict(
|
1059 |
-
projection_type='mercator',
|
1060 |
-
showland=True,
|
1061 |
-
landcolor='rgb(243, 243, 243)',
|
1062 |
-
countrycolor='rgb(204, 204, 204)',
|
1063 |
-
coastlinecolor='rgb(100, 100, 100)',
|
1064 |
-
showocean=True,
|
1065 |
-
oceancolor='rgb(230, 250, 255)',
|
1066 |
-
lataxis={'range': [0, 40]},
|
1067 |
-
lonaxis={'range': [100, 180]},
|
1068 |
-
center={'lat': 20, 'lon': 140},
|
1069 |
-
),
|
1070 |
-
legend_title='Clusters'
|
1071 |
-
)
|
1072 |
-
|
1073 |
-
return fig_routes, equations_output
|
1074 |
-
except Exception as e:
|
1075 |
-
error_fig = go.Figure()
|
1076 |
-
error_fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
|
1077 |
-
return error_fig, f"Error in cluster analysis: {str(e)}"
|
1078 |
-
|
1079 |
-
# Function to perform logistic regression
|
1080 |
-
def perform_logistic_regression(start_year, start_month, end_year, end_month, regression_type):
|
1081 |
-
start_date = datetime(int(start_year), int(start_month), 1)
|
1082 |
-
end_date = datetime(int(end_year), int(end_month), 28)
|
1083 |
-
|
1084 |
-
try:
|
1085 |
-
filtered_data = merged_data[
|
1086 |
-
(merged_data['ISO_TIME'] >= start_date) &
|
1087 |
-
(merged_data['ISO_TIME'] <= end_date)
|
1088 |
-
]
|
1089 |
-
|
1090 |
-
if regression_type == "Wind Speed":
|
1091 |
-
filtered_data['severe_typhoon'] = (filtered_data['USA_WIND'] >= 64).astype(int) # 64 knots threshold for severe typhoons
|
1092 |
-
X = sm.add_constant(filtered_data['ONI'])
|
1093 |
-
y = filtered_data['severe_typhoon']
|
1094 |
-
model = sm.Logit(y, X).fit()
|
1095 |
-
|
1096 |
-
beta_1 = model.params['ONI']
|
1097 |
-
exp_beta_1 = np.exp(beta_1)
|
1098 |
-
p_value = model.pvalues['ONI']
|
1099 |
-
|
1100 |
-
el_nino_data = filtered_data[filtered_data['ONI'] >= 0.5]
|
1101 |
-
la_nina_data = filtered_data[filtered_data['ONI'] <= -0.5]
|
1102 |
-
neutral_data = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]
|
1103 |
-
|
1104 |
-
el_nino_severe = el_nino_data['severe_typhoon'].mean() if not el_nino_data.empty else 0
|
1105 |
-
la_nina_severe = la_nina_data['severe_typhoon'].mean() if not la_nina_data.empty else 0
|
1106 |
-
neutral_severe = neutral_data['severe_typhoon'].mean() if not neutral_data.empty else 0
|
1107 |
-
|
1108 |
-
result = f"""
|
1109 |
-
# Wind Speed Logistic Regression Results
|
1110 |
-
|
1111 |
-
β1 (ONI coefficient): {beta_1:.4f}
|
1112 |
-
exp(β1) (Odds Ratio): {exp_beta_1:.4f}
|
1113 |
-
P-value: {p_value:.4f}
|
1114 |
-
|
1115 |
-
Interpretation:
|
1116 |
-
- For each unit increase in ONI, the odds of a severe typhoon are {"increased" if exp_beta_1 > 1 else "decreased"} by a factor of {exp_beta_1:.2f}.
|
1117 |
-
- This effect is {"statistically significant" if p_value < 0.05 else "not statistically significant"} at the 0.05 level.
|
1118 |
-
|
1119 |
-
Proportion of severe typhoons:
|
1120 |
-
- El Niño conditions: {el_nino_severe:.2%}
|
1121 |
-
- La Niña conditions: {la_nina_severe:.2%}
|
1122 |
-
- Neutral conditions: {neutral_severe:.2%}
|
1123 |
-
"""
|
1124 |
-
|
1125 |
-
elif regression_type == "Pressure":
|
1126 |
-
filtered_data['intense_typhoon'] = (filtered_data['USA_PRES'] <= 950).astype(int) # 950 hPa threshold for intense typhoons
|
1127 |
-
X = sm.add_constant(filtered_data['ONI'])
|
1128 |
-
y = filtered_data['intense_typhoon']
|
1129 |
-
model = sm.Logit(y, X).fit()
|
1130 |
-
|
1131 |
-
beta_1 = model.params['ONI']
|
1132 |
-
exp_beta_1 = np.exp(beta_1)
|
1133 |
-
p_value = model.pvalues['ONI']
|
1134 |
-
|
1135 |
-
el_nino_data = filtered_data[filtered_data['ONI'] >= 0.5]
|
1136 |
-
la_nina_data = filtered_data[filtered_data['ONI'] <= -0.5]
|
1137 |
-
neutral_data = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]
|
1138 |
-
|
1139 |
-
el_nino_intense = el_nino_data['intense_typhoon'].mean() if not el_nino_data.empty else 0
|
1140 |
-
la_nina_intense = la_nina_data['intense_typhoon'].mean() if not la_nina_data.empty else 0
|
1141 |
-
neutral_intense = neutral_data['intense_typhoon'].mean() if not neutral_data.empty else 0
|
1142 |
-
|
1143 |
-
result = f"""
|
1144 |
-
# Pressure Logistic Regression Results
|
1145 |
-
|
1146 |
-
β1 (ONI coefficient): {beta_1:.4f}
|
1147 |
-
exp(β1) (Odds Ratio): {exp_beta_1:.4f}
|
1148 |
-
P-value: {p_value:.4f}
|
1149 |
-
|
1150 |
-
Interpretation:
|
1151 |
-
- For each unit increase in ONI, the odds of an intense typhoon (pressure <= 950 hPa) are {"increased" if exp_beta_1 > 1 else "decreased"} by a factor of {exp_beta_1:.2f}.
|
1152 |
-
- This effect is {"statistically significant" if p_value < 0.05 else "not statistically significant"} at the 0.05 level.
|
1153 |
-
|
1154 |
-
Proportion of intense typhoons:
|
1155 |
-
- El Niño conditions: {el_nino_intense:.2%}
|
1156 |
-
- La Niña conditions: {la_nina_intense:.2%}
|
1157 |
-
- Neutral conditions: {neutral_intense:.2%}
|
1158 |
-
"""
|
1159 |
-
|
1160 |
-
elif regression_type == "Longitude":
|
1161 |
-
filtered_data = filtered_data.dropna(subset=['LON'])
|
1162 |
-
|
1163 |
-
if len(filtered_data) == 0:
|
1164 |
-
return "Insufficient data for longitude analysis"
|
1165 |
-
|
1166 |
-
filtered_data['western_typhoon'] = (filtered_data['LON'] <= 140).astype(int) # 140°E as threshold for western typhoons
|
1167 |
-
X = sm.add_constant(filtered_data['ONI'])
|
1168 |
-
y = filtered_data['western_typhoon']
|
1169 |
-
model = sm.Logit(y, X).fit()
|
1170 |
-
|
1171 |
-
beta_1 = model.params['ONI']
|
1172 |
-
exp_beta_1 = np.exp(beta_1)
|
1173 |
-
p_value = model.pvalues['ONI']
|
1174 |
-
|
1175 |
-
el_nino_data = filtered_data[filtered_data['ONI'] >= 0.5]
|
1176 |
-
la_nina_data = filtered_data[filtered_data['ONI'] <= -0.5]
|
1177 |
-
neutral_data = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]
|
1178 |
-
|
1179 |
-
el_nino_western = el_nino_data['western_typhoon'].mean() if not el_nino_data.empty else 0
|
1180 |
-
la_nina_western = la_nina_data['western_typhoon'].mean() if not la_nina_data.empty else 0
|
1181 |
-
neutral_western = neutral_data['western_typhoon'].mean() if not neutral_data.empty else 0
|
1182 |
-
|
1183 |
-
result = f"""
|
1184 |
-
# Longitude Logistic Regression Results
|
1185 |
-
|
1186 |
-
β1 (ONI coefficient): {beta_1:.4f}
|
1187 |
-
exp(β1) (Odds Ratio): {exp_beta_1:.4f}
|
1188 |
-
P-value: {p_value:.4f}
|
1189 |
-
|
1190 |
-
Interpretation:
|
1191 |
-
- For each unit increase in ONI, the odds of a typhoon forming west of 140°E are {"increased" if exp_beta_1 > 1 else "decreased"} by a factor of {exp_beta_1:.2f}.
|
1192 |
-
- This effect is {"statistically significant" if p_value < 0.05 else "not statistically significant"} at the 0.05 level.
|
1193 |
-
|
1194 |
-
Proportion of typhoons forming west of 140°E:
|
1195 |
-
- El Niño conditions: {el_nino_western:.2%}
|
1196 |
-
- La Niña conditions: {la_nina_western:.2%}
|
1197 |
-
- Neutral conditions: {neutral_western:.2%}
|
1198 |
-
"""
|
1199 |
-
|
1200 |
-
return result
|
1201 |
-
except Exception as e:
|
1202 |
-
return f"Error performing logistic regression: {str(e)}"
|
1203 |
-
def get_typhoons_for_year(year):
|
1204 |
-
if not year or ibtracs is None:
|
1205 |
-
return []
|
1206 |
-
|
1207 |
-
try:
|
1208 |
-
year = int(year)
|
1209 |
-
if year not in ibtracs.data:
|
1210 |
-
return []
|
1211 |
-
|
1212 |
-
season = ibtracs.get_season(year)
|
1213 |
-
storm_summary = season.summary()
|
1214 |
-
|
1215 |
-
typhoon_options = []
|
1216 |
-
for i in range(storm_summary['season_storms']):
|
1217 |
-
try:
|
1218 |
-
storm_id = storm_summary['id'][i]
|
1219 |
-
storm_name = storm_summary['name'][i]
|
1220 |
-
# Use storm name as the display name, but return the ID as the value
|
1221 |
-
display_name = f"{storm_name} ({storm_id})"
|
1222 |
-
typhoon_options.append((display_name, storm_id))
|
1223 |
-
except Exception as e:
|
1224 |
-
print(f"Error retrieving typhoon info: {e}")
|
1225 |
-
continue
|
1226 |
-
|
1227 |
-
return typhoon_options
|
1228 |
-
except Exception as e:
|
1229 |
-
print(f"Error getting typhoons for year {year}: {e}")
|
1230 |
-
return []
|
1231 |
-
# Define Gradio interface
|
1232 |
-
def create_interface():
|
1233 |
-
# Initialize data first
|
1234 |
-
global oni_df, ibtracs, oni_data, typhoon_data, oni_long, typhoon_max, merged_data
|
1235 |
-
oni_df, ibtracs, typhoon_data = initialize_data()
|
1236 |
-
|
1237 |
-
# Define interface tabs
|
1238 |
-
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
1239 |
-
gr.Markdown("# Typhoon Analysis Dashboard")
|
1240 |
-
|
1241 |
-
with gr.Tab("Typhoon Tracks Analysis"):
|
1242 |
-
with gr.Row():
|
1243 |
-
with gr.Column():
|
1244 |
-
start_year = gr.Number(value=2000, label="Start Year", minimum=1950, maximum=2024, step=1)
|
1245 |
-
start_month = gr.Number(value=1, label="Start Month", minimum=1, maximum=12, step=1)
|
1246 |
-
with gr.Column():
|
1247 |
-
end_year = gr.Number(value=2024, label="End Year", minimum=1950, maximum=2024, step=1)
|
1248 |
-
end_month = gr.Number(value=6, label="End Month", minimum=1, maximum=12, step=1)
|
1249 |
-
|
1250 |
-
enso_dropdown = gr.Dropdown(
|
1251 |
-
choices=["All Years", "El Niño Years", "La Niña Years", "Neutral Years"],
|
1252 |
-
value="All Years",
|
1253 |
-
label="ENSO Phase"
|
1254 |
-
)
|
1255 |
-
|
1256 |
-
typhoon_search = gr.Textbox(label="Search Typhoon Name")
|
1257 |
-
|
1258 |
-
analyze_button = gr.Button("Analyze Tracks")
|
1259 |
-
|
1260 |
-
with gr.Row():
|
1261 |
-
tracks_plot = gr.Plot(label="Typhoon Tracks")
|
1262 |
-
stats_text = gr.Textbox(label="Statistics", lines=4)
|
1263 |
-
|
1264 |
-
with gr.Row():
|
1265 |
-
wind_plot = gr.Plot(label="Wind Speed vs ONI")
|
1266 |
-
pressure_plot = gr.Plot(label="Pressure vs ONI")
|
1267 |
-
|
1268 |
-
analyze_button.click(
|
1269 |
-
analyze_typhoon_tracks,
|
1270 |
-
inputs=[start_year, start_month, end_year, end_month, enso_dropdown, typhoon_search],
|
1271 |
-
outputs=[tracks_plot, wind_plot, pressure_plot, stats_text]
|
1272 |
-
)
|
1273 |
-
|
1274 |
-
with gr.Tab("Clustering Analysis"):
|
1275 |
-
with gr.Row():
|
1276 |
-
with gr.Column():
|
1277 |
-
cluster_start_year = gr.Number(value=2000, label="Start Year", minimum=1950, maximum=2024, step=1)
|
1278 |
-
cluster_start_month = gr.Number(value=1, label="Start Month", minimum=1, maximum=12, step=1)
|
1279 |
-
with gr.Column():
|
1280 |
-
cluster_end_year = gr.Number(value=2024, label="End Year", minimum=1950, maximum=2024, step=1)
|
1281 |
-
cluster_end_month = gr.Number(value=6, label="End Month", minimum=1, maximum=12, step=1)
|
1282 |
-
|
1283 |
-
with gr.Row():
|
1284 |
-
n_clusters = gr.Number(value=5, label="Number of Clusters", minimum=1, maximum=20, step=1)
|
1285 |
-
cluster_enso_dropdown = gr.Dropdown(
|
1286 |
-
choices=["All Years", "El Niño Years", "La Niña Years", "Neutral Years"],
|
1287 |
-
value="All Years",
|
1288 |
-
label="ENSO Phase"
|
1289 |
-
)
|
1290 |
-
|
1291 |
-
analysis_type = gr.Radio(
|
1292 |
-
choices=["Show Routes", "Show Clusters", "Fourier Series"],
|
1293 |
-
value="Show Clusters",
|
1294 |
-
label="Analysis Type"
|
1295 |
-
)
|
1296 |
-
|
1297 |
-
cluster_button = gr.Button("Run Cluster Analysis")
|
1298 |
-
|
1299 |
-
cluster_plot = gr.Plot(label="Typhoon Routes Clustering")
|
1300 |
-
equation_text = gr.Textbox(label="Cluster Equations", lines=15)
|
1301 |
-
|
1302 |
-
cluster_button.click(
|
1303 |
-
run_cluster_analysis,
|
1304 |
-
inputs=[
|
1305 |
-
cluster_start_year, cluster_start_month, cluster_end_year,
|
1306 |
-
cluster_end_month, n_clusters, cluster_enso_dropdown, analysis_type
|
1307 |
-
],
|
1308 |
-
outputs=[cluster_plot, equation_text]
|
1309 |
-
)
|
1310 |
-
|
1311 |
-
with gr.Tab("Regression Analysis"):
|
1312 |
-
with gr.Row():
|
1313 |
-
with gr.Column():
|
1314 |
-
reg_start_year = gr.Number(value=2000, label="Start Year", minimum=1950, maximum=2024, step=1)
|
1315 |
-
reg_start_month = gr.Number(value=1, label="Start Month", minimum=1, maximum=12, step=1)
|
1316 |
-
with gr.Column():
|
1317 |
-
reg_end_year = gr.Number(value=2024, label="End Year", minimum=1950, maximum=2024, step=1)
|
1318 |
-
reg_end_month = gr.Number(value=6, label="End Month", minimum=1, maximum=12, step=1)
|
1319 |
-
|
1320 |
-
regression_type = gr.Radio(
|
1321 |
-
choices=["Wind Speed", "Pressure", "Longitude"],
|
1322 |
-
value="Wind Speed",
|
1323 |
-
label="Regression Type"
|
1324 |
-
)
|
1325 |
-
|
1326 |
-
regression_button = gr.Button("Perform Logistic Regression")
|
1327 |
-
|
1328 |
-
regression_results = gr.Textbox(label="Regression Results", lines=15)
|
1329 |
-
|
1330 |
-
regression_button.click(
|
1331 |
-
perform_logistic_regression,
|
1332 |
-
inputs=[reg_start_year, reg_start_month, reg_end_year, reg_end_month, regression_type],
|
1333 |
-
outputs=regression_results
|
1334 |
-
)
|
1335 |
-
|
1336 |
-
|
1337 |
-
with gr.Tab("Typhoon Path Animation"):
|
1338 |
-
with gr.Row():
|
1339 |
-
# Use default values first, we'll populate after data loads
|
1340 |
-
year_dropdown = gr.Dropdown(
|
1341 |
-
choices=[2020, 2021, 2022, 2023, 2024],
|
1342 |
-
value=2023,
|
1343 |
-
label="Year"
|
1344 |
-
)
|
1345 |
-
|
1346 |
-
typhoon_dropdown = gr.Dropdown(
|
1347 |
-
choices=["Select a year first"],
|
1348 |
-
label="Typhoon"
|
1349 |
-
)
|
1350 |
-
|
1351 |
-
standard_dropdown = gr.Radio(
|
1352 |
-
choices=["atlantic", "taiwan"],
|
1353 |
-
value="atlantic",
|
1354 |
-
label="Classification Standard"
|
1355 |
-
)
|
1356 |
-
|
1357 |
-
# Function to populate year dropdown
|
1358 |
-
def populate_years():
|
1359 |
-
if ibtracs is None:
|
1360 |
-
return [2020, 2021, 2022, 2023, 2024]
|
1361 |
-
|
1362 |
-
available_years = []
|
1363 |
-
for year in range(1950, 2025):
|
1364 |
-
if year in ibtracs.data:
|
1365 |
-
available_years.append(year)
|
1366 |
-
|
1367 |
-
return sorted(available_years, reverse=True)
|
1368 |
-
|
1369 |
-
# Function to update typhoon dropdown when year changes
|
1370 |
-
def update_typhoons(year):
|
1371 |
-
if not year:
|
1372 |
-
return ["No typhoons available"]
|
1373 |
-
|
1374 |
-
typhoons = get_typhoons_for_year(int(year))
|
1375 |
-
if not typhoons:
|
1376 |
-
return ["No typhoons available for this year"]
|
1377 |
-
|
1378 |
-
return [name for name, _ in typhoons]
|
1379 |
-
|
1380 |
-
# Update typhoon dropdown when year changes
|
1381 |
-
year_dropdown.change(
|
1382 |
-
update_typhoons,
|
1383 |
-
inputs=year_dropdown,
|
1384 |
-
outputs=typhoon_dropdown
|
1385 |
-
)
|
1386 |
-
|
1387 |
-
# Add a "Generate" button
|
1388 |
-
generate_btn = gr.Button("Generate Typhoon Path")
|
1389 |
-
|
1390 |
-
# Display area for the typhoon animation
|
1391 |
-
path_plot = gr.Plot(label="Typhoon Path")
|
1392 |
-
|
1393 |
-
generate_btn.click(
|
1394 |
-
create_typhoon_path_animation,
|
1395 |
-
inputs=[year_dropdown, typhoon_dropdown, standard_dropdown],
|
1396 |
-
outputs=path_plot
|
1397 |
-
)
|
1398 |
-
|
1399 |
-
# Add a "Load Years" button
|
1400 |
-
gr.Button("Load Available Years").click(
|
1401 |
-
populate_years,
|
1402 |
-
inputs=None,
|
1403 |
-
outputs=year_dropdown
|
1404 |
-
)
|
1405 |
-
|
1406 |
-
# Run the app
|
1407 |
-
if __name__ == "__main__":
|
1408 |
-
# For Hugging Face, use a simpler version without threading
|
1409 |
-
DATA_PATH = os.path.dirname(os.path.abspath(__file__))
|
1410 |
-
|
1411 |
-
print(f"Using data path: {DATA_PATH}")
|
1412 |
-
|
1413 |
-
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
|
1414 |
-
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
|
1415 |
-
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
|
1416 |
-
CACHE_FILE = os.path.join(DATA_PATH, 'ibtracs_cache.pkl')
|
1417 |
-
|
1418 |
-
# Create and launch the Gradio interface
|
1419 |
-
demo = create_interface()
|
1420 |
-
demo.launch() # No parameters for Hugging Face Spaces
|
|
|
1 |
import gradio as gr
|
2 |
import plotly.graph_objects as go
|
3 |
import plotly.express as px
|
|
|
|
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
+
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from scipy import stats
|
|
|
8 |
from sklearn.linear_model import LinearRegression
|
9 |
from sklearn.cluster import KMeans
|
10 |
from scipy.interpolate import interp1d
|
11 |
from fractions import Fraction
|
|
|
|
|
12 |
import statsmodels.api as sm
|
13 |
+
import tropycal.tracks as tracks
|
14 |
+
import os
|
15 |
+
import pickle
|
16 |
import requests
|
|
|
17 |
import tempfile
|
|
|
|
|
18 |
import shutil
|
19 |
import filecmp
|
20 |
+
import csv
|
21 |
+
from collections import defaultdict
|
22 |
+
import argparse
|
23 |
|
24 |
+
# Command-line argument parsing
|
25 |
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
|
26 |
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
|
27 |
args = parser.parse_args()
|
|
|
|
|
28 |
DATA_PATH = args.data_path
|
29 |
|
30 |
+
# File paths
|
31 |
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
|
32 |
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
|
33 |
+
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
|
34 |
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv'
|
|
|
35 |
CACHE_FILE = 'ibtracs_cache.pkl'
|
36 |
CACHE_EXPIRY_DAYS = 1
|
|
|
37 |
|
38 |
+
# Color map for categories
|
39 |
+
color_map = {
|
40 |
+
'C5 Super Typhoon': 'rgb(255, 0, 0)',
|
41 |
+
'C4 Very Strong Typhoon': 'rgb(255, 63, 0)',
|
42 |
+
'C3 Strong Typhoon': 'rgb(255, 127, 0)',
|
43 |
+
'C2 Typhoon': 'rgb(255, 191, 0)',
|
44 |
+
'C1 Typhoon': 'rgb(255, 255, 0)',
|
45 |
+
'Tropical Storm': 'rgb(0, 255, 255)',
|
46 |
+
'Tropical Depression': 'rgb(173, 216, 230)'
|
47 |
+
}
|
48 |
|
49 |
+
# Classification standards
|
50 |
+
atlantic_standard = {
|
51 |
+
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'rgb(255, 0, 0)'},
|
52 |
+
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'rgb(255, 63, 0)'},
|
53 |
+
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'rgb(255, 127, 0)'},
|
54 |
+
'C2 Typhoon': {'wind_speed': 83, 'color': 'rgb(255, 191, 0)'},
|
55 |
+
'C1 Typhoon': {'wind_speed': 64, 'color': 'rgb(255, 255, 0)'},
|
56 |
+
'Tropical Storm': {'wind_speed': 34, 'color': 'rgb(0, 255, 255)'},
|
57 |
+
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
|
58 |
+
}
|
|
|
|
|
59 |
|
60 |
+
taiwan_standard = {
|
61 |
+
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'rgb(255, 0, 0)'},
|
62 |
+
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'rgb(255, 127, 0)'},
|
63 |
+
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'rgb(255, 255, 0)'},
|
64 |
+
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
|
|
|
|
|
|
|
65 |
}
|
66 |
|
67 |
+
# Data loading and processing functions (unchanged from Dash)
|
68 |
def convert_typhoondata(input_file, output_file):
|
69 |
with open(input_file, 'r') as infile:
|
|
|
70 |
next(infile)
|
71 |
next(infile)
|
|
|
72 |
reader = csv.reader(infile)
|
|
|
|
|
73 |
sid_data = defaultdict(list)
|
|
|
74 |
for row in reader:
|
75 |
+
if not row:
|
76 |
continue
|
|
|
77 |
sid = row[0]
|
78 |
iso_time = row[6]
|
79 |
sid_data[sid].append((row, iso_time))
|
|
|
80 |
with open(output_file, 'w', newline='') as outfile:
|
81 |
fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE']
|
82 |
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
|
|
|
83 |
writer.writeheader()
|
|
|
84 |
for sid, data in sid_data.items():
|
85 |
start_date = min(data, key=lambda x: x[1])[1]
|
86 |
end_date = max(data, key=lambda x: x[1])[1]
|
|
|
87 |
for row, iso_time in data:
|
88 |
writer.writerow({
|
89 |
+
'SID': row[0], 'ISO_TIME': iso_time, 'LAT': row[8], 'LON': row[9], 'SEASON': row[1], 'NAME': row[5],
|
90 |
+
'WMO_WIND': row[10].strip() or ' ', 'WMO_PRES': row[11].strip() or ' ',
|
91 |
+
'USA_WIND': row[23].strip() or ' ', 'USA_PRES': row[24].strip() or ' ',
|
92 |
+
'START_DATE': start_date, 'END_DATE': end_date
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
})
|
94 |
|
|
|
95 |
def download_oni_file(url, filename):
|
|
|
96 |
try:
|
97 |
response = requests.get(url)
|
98 |
+
response.raise_for_status()
|
99 |
with open(filename, 'wb') as f:
|
100 |
f.write(response.content)
|
|
|
101 |
return True
|
102 |
+
except requests.RequestException:
|
|
|
103 |
return False
|
104 |
|
|
|
105 |
def convert_oni_ascii_to_csv(input_file, output_file):
|
106 |
data = defaultdict(lambda: [''] * 12)
|
107 |
+
season_to_month = {'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5, 'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11}
|
108 |
+
with open(input_file, 'r') as f:
|
109 |
+
lines = f.readlines()[1:]
|
110 |
+
for line in lines:
|
111 |
+
parts = line.split()
|
112 |
+
if len(parts) >= 4:
|
113 |
+
season, year, anom = parts[0], parts[1], parts[-1]
|
114 |
+
if season in season_to_month:
|
115 |
+
month = season_to_month[season]
|
116 |
+
if season == 'DJF':
|
117 |
+
year = str(int(year) - 1)
|
118 |
+
data[year][month-1] = anom
|
119 |
+
with open(output_file, 'w', newline='') as f:
|
120 |
+
writer = csv.writer(f)
|
121 |
+
writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
|
122 |
+
for year in sorted(data.keys()):
|
123 |
+
writer.writerow([year] + data[year])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
def update_oni_data():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
|
127 |
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
|
128 |
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
|
129 |
output_file = ONI_DATA_PATH
|
|
|
130 |
if download_oni_file(url, temp_file):
|
131 |
if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file, shallow=False):
|
|
|
132 |
os.replace(temp_file, input_file)
|
|
|
133 |
convert_oni_ascii_to_csv(input_file, output_file)
|
|
|
134 |
else:
|
135 |
+
os.remove(temp_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
def load_ibtracs_data():
|
138 |
+
if os.path.exists(CACHE_FILE) and (datetime.now() - datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))).days < CACHE_EXPIRY_DAYS:
|
139 |
+
with open(CACHE_FILE, 'rb') as f:
|
140 |
+
return pickle.load(f)
|
|
|
|
|
|
|
|
|
141 |
if os.path.exists(LOCAL_iBtrace_PATH):
|
|
|
142 |
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
143 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
response = requests.get(iBtrace_uri)
|
145 |
response.raise_for_status()
|
|
|
146 |
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
|
147 |
temp_file.write(response.text)
|
148 |
temp_file_path = temp_file.name
|
|
|
|
|
149 |
shutil.move(temp_file_path, LOCAL_iBtrace_PATH)
|
|
|
|
|
|
|
|
|
|
|
150 |
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
151 |
+
with open(CACHE_FILE, 'wb') as f:
|
152 |
+
pickle.dump(ibtracs, f)
|
153 |
+
return ibtracs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
def process_oni_data(oni_data):
|
156 |
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
157 |
+
month_map = {'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06', 'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'}
|
158 |
+
oni_long['Month'] = oni_long['Month'].map(month_map)
|
|
|
|
|
159 |
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
|
160 |
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
|
161 |
return oni_long
|
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
def process_typhoon_data(typhoon_data):
|
164 |
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
165 |
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
|
166 |
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
|
167 |
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
|
|
|
168 |
typhoon_max = typhoon_data.groupby('SID').agg({
|
169 |
+
'USA_WIND': 'max', 'USA_PRES': 'min', 'ISO_TIME': 'first', 'SEASON': 'first', 'NAME': 'first', 'LAT': 'first', 'LON': 'first'
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
}).reset_index()
|
|
|
171 |
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
|
172 |
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
|
173 |
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
|
174 |
return typhoon_max
|
175 |
|
|
|
|
|
|
|
|
|
176 |
def merge_data(oni_long, typhoon_max):
|
177 |
return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])
|
178 |
|
179 |
+
def categorize_typhoon(wind_speed):
|
180 |
+
wind_speed_kt = wind_speed / 2
|
181 |
+
if wind_speed_kt >= 137/2.35:
|
182 |
+
return 'C5 Super Typhoon'
|
183 |
+
elif wind_speed_kt >= 113/2.35:
|
184 |
+
return 'C4 Very Strong Typhoon'
|
185 |
+
elif wind_speed_kt >= 96/2.35:
|
186 |
+
return 'C3 Strong Typhoon'
|
187 |
+
elif wind_speed_kt >= 83/2.35:
|
188 |
+
return 'C2 Typhoon'
|
189 |
+
elif wind_speed_kt >= 64/2.35:
|
190 |
+
return 'C1 Typhoon'
|
191 |
+
elif wind_speed_kt >= 34/2.35:
|
192 |
+
return 'Tropical Storm'
|
193 |
+
else:
|
194 |
+
return 'Tropical Depression'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
def classify_enso_phases(oni_value):
|
197 |
if isinstance(oni_value, pd.Series):
|
|
|
203 |
else:
|
204 |
return 'Neutral'
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
def filter_west_pacific_coordinates(lons, lats):
|
207 |
mask = (100 <= lons) & (lons <= 180) & (0 <= lats) & (lats <= 40)
|
208 |
return lons[mask], lats[mask]
|
209 |
|
210 |
+
def get_storm_data(storm_id):
|
211 |
+
return ibtracs.get_storm(storm_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
+
# Load data globally
|
214 |
+
update_oni_data()
|
215 |
+
ibtracs = load_ibtracs_data()
|
216 |
+
convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
|
217 |
+
oni_data = pd.read_csv(ONI_DATA_PATH)
|
218 |
+
typhoon_data = pd.read_csv(TYPHOON_DATA_PATH, low_memory=False)
|
219 |
+
oni_long = process_oni_data(oni_data)
|
220 |
+
typhoon_max = process_typhoon_data(typhoon_data)
|
221 |
+
merged_data = merge_data(oni_long, typhoon_max)
|
222 |
+
oni_df = pd.read_csv(ONI_DATA_PATH, index_col='Date', parse_dates=True)
|
223 |
+
|
224 |
+
# Main Analysis Function
|
225 |
+
def main_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search):
|
226 |
+
start_date = datetime(start_year, start_month, 1)
|
227 |
+
end_date = datetime(end_year, end_month, 28)
|
228 |
+
filtered_oni_df = oni_df[(oni_df.index >= start_date) & (oni_df.index <= end_date)]
|
229 |
+
filtered_data = merged_data[(merged_data['Year'] >= start_year) & (merged_data['Year'] <= end_year) &
|
230 |
+
(merged_data['Month'].astype(int) >= start_month) & (merged_data['Month'].astype(int) <= end_month)]
|
231 |
+
|
232 |
+
# Typhoon Tracks
|
233 |
+
fig_tracks = go.Figure()
|
234 |
+
regression_data = {'El Nino': {'longitudes': [], 'oni_values': [], 'names': []}, 'La Nina': {'longitudes': [], 'oni_values': [], 'names': []},
|
235 |
+
'Neutral': {'longitudes': [], 'oni_values': [], 'names': []}, 'All': {'longitudes': [], 'oni_values': [], 'names': []}}
|
236 |
+
for year in range(start_year, end_year + 1):
|
237 |
+
season = ibtracs.get_season(year)
|
238 |
+
for storm_id in season.summary()['id']:
|
239 |
+
storm = get_storm_data(storm_id)
|
240 |
+
storm_dates = storm.time
|
241 |
+
if any(start_date <= date <= end_date for date in storm_dates):
|
242 |
+
storm_oni = filtered_oni_df.loc[storm_dates[0].strftime('%Y-%b')]['ONI']
|
243 |
+
if isinstance(storm_oni, pd.Series):
|
244 |
+
storm_oni = storm_oni.iloc[0]
|
245 |
+
phase = classify_enso_phases(storm_oni)
|
246 |
+
regression_data[phase]['longitudes'].append(storm.lon[0])
|
247 |
+
regression_data[phase]['oni_values'].append(storm_oni)
|
248 |
+
regression_data[phase]['names'].append(f'{storm.name} ({year})')
|
249 |
+
regression_data['All']['longitudes'].append(storm.lon[0])
|
250 |
+
regression_data['All']['oni_values'].append(storm_oni)
|
251 |
+
regression_data['All']['names'].append(f'{storm.name} ({year})')
|
252 |
+
if (enso_phase == 'All Years' or (enso_phase == 'El Niño Years' and phase == 'El Nino') or
|
253 |
+
(enso_phase == 'La Niña Years' and phase == 'La Nina') or (enso_phase == 'Neutral Years' and phase == 'Neutral')):
|
254 |
+
color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[phase]
|
255 |
+
fig_tracks.add_trace(go.Scattergeo(lon=storm.lon, lat=storm.lat, mode='lines', name=storm.name,
|
256 |
+
text=f'{storm.name} ({year})', hoverinfo='text', line=dict(width=2, color=color)))
|
257 |
+
fig_tracks.update_layout(title=f'Typhoon Tracks from {start_year}-{start_month} to {end_year}-{end_month}', geo=dict(projection_type='natural earth', showland=True))
|
258 |
+
|
259 |
+
# All Years Regression
|
260 |
+
all_years_fig = go.Figure()
|
261 |
+
df_all = pd.DataFrame({'Longitude': regression_data['All']['longitudes'], 'ONI': regression_data['All']['oni_values'], 'Name': regression_data['All']['names']})
|
262 |
+
if not df_all.empty and len(df_all) > 1:
|
263 |
+
all_years_fig = px.scatter(df_all, x='Longitude', y='ONI', hover_data=['Name'], title='All Years Typhoon Generation vs. ONI')
|
264 |
+
X = np.array(df_all['Longitude']).reshape(-1, 1)
|
265 |
+
y = df_all['ONI']
|
266 |
+
model = LinearRegression().fit(X, y)
|
267 |
+
y_pred = model.predict(X)
|
268 |
+
all_years_fig.add_trace(go.Scatter(x=df_all['Longitude'], y=y_pred, mode='lines', name='Regression Line'))
|
269 |
+
|
270 |
+
# Regression Graphs by Phase
|
271 |
+
regression_html = ""
|
272 |
+
slopes_html = ""
|
273 |
+
for phase in ['El Nino', 'La Nina', 'Neutral']:
|
274 |
+
df = pd.DataFrame({'Longitude': regression_data[phase]['longitudes'], 'ONI': regression_data[phase]['oni_values'], 'Name': regression_data[phase]['names']})
|
275 |
+
if not df.empty and len(df) > 1:
|
276 |
+
fig = px.scatter(df, x='Longitude', y='ONI', hover_data=['Name'], title=f'{phase} Typhoon Generation vs. ONI')
|
277 |
+
X = np.array(df['Longitude']).reshape(-1, 1)
|
278 |
+
y = df['ONI']
|
279 |
+
model = LinearRegression().fit(X, y)
|
280 |
+
y_pred = model.predict(X)
|
281 |
+
slope = model.coef_[0]
|
282 |
+
correlation_coef = np.corrcoef(df['Longitude'], df['ONI'])[0, 1]
|
283 |
+
fig.add_trace(go.Scatter(x=df['Longitude'], y=y_pred, mode='lines', name='Regression Line'))
|
284 |
+
regression_html += fig.to_html(include_plotlyjs=False)
|
285 |
+
slopes_html += f"<p>{phase} Regression Slope: {slope:.4f}, Correlation Coefficient: {correlation_coef:.4f}</p>"
|
286 |
+
|
287 |
+
# Wind and Pressure Scatter Plots
|
288 |
+
wind_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME', 'Year', 'Category'],
|
289 |
+
title='Wind Speed vs ONI', labels={'USA_WIND': 'Maximum Wind Speed (knots)'}, color_discrete_map=color_map)
|
290 |
+
pressure_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME', 'Year', 'Category'],
|
291 |
+
title='Pressure vs ONI', labels={'USA_PRES': 'Minimum Pressure (hPa)'}, color_discrete_map=color_map)
|
292 |
+
if typhoon_search:
|
293 |
+
for fig in [wind_oni_scatter, pressure_oni_scatter]:
|
294 |
+
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
|
295 |
+
fig.add_trace(go.Scatter(x=filtered_data.loc[mask, 'ONI'], y=filtered_data.loc[mask, 'USA_WIND' if 'Wind' in fig.layout.title.text else 'USA_PRES'],
|
296 |
+
mode='markers', marker=dict(size=10, color='red', symbol='star'), name=f'Matched: {typhoon_search}'))
|
297 |
+
|
298 |
+
# Additional Metrics
|
299 |
+
max_wind_speed = filtered_data['USA_WIND'].max()
|
300 |
+
min_pressure = filtered_data['USA_PRES'].min()
|
301 |
+
typhoon_counts = filtered_data['ONI'].apply(classify_enso_phases).value_counts().to_dict()
|
302 |
+
month_counts = filtered_data.groupby([filtered_data['ONI'].apply(classify_enso_phases), filtered_data['ISO_TIME'].dt.month]).size().unstack(fill_value=0)
|
303 |
+
concentrated_months = month_counts.idxmax(axis=1).to_dict()
|
304 |
+
month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
305 |
+
count_analysis_html = "".join([f"<p>{phase}: {count} typhoons</p>" for phase, count in typhoon_counts.items()])
|
306 |
+
month_analysis_html = "".join([f"<p>{phase}: Most concentrated in {month_names[month-1]}</p>" for phase, month in concentrated_months.items()])
|
307 |
+
|
308 |
+
return (fig_tracks, all_years_fig, regression_html, slopes_html, wind_oni_scatter, pressure_oni_scatter,
|
309 |
+
"Logistic Regression Results: See Logistic Regression Tab", f"Maximum Wind Speed: {max_wind_speed:.2f} knots",
|
310 |
+
f"Minimum Pressure: {min_pressure:.2f} hPa", "Wind-ONI correlation: See Logistic Regression Tab",
|
311 |
+
"Pressure-ONI correlation: See Logistic Regression Tab", count_analysis_html, month_analysis_html)
|
312 |
+
|
313 |
+
# Cluster Analysis Function
|
314 |
+
def cluster_analysis(n_clusters, show_clusters, show_routes, fourier_series, start_year, start_month, end_year, end_month, enso_phase):
|
315 |
+
start_date = datetime(start_year, start_month, 1)
|
316 |
+
end_date = datetime(end_year, end_month, 28)
|
317 |
+
filtered_oni_df = oni_df[(oni_df.index >= start_date) & (oni_df.index <= end_date)]
|
318 |
+
fig_routes = go.Figure()
|
319 |
+
west_pacific_storms = []
|
320 |
+
for year in range(start_year, end_year + 1):
|
321 |
+
season = ibtracs.get_season(year)
|
322 |
+
for storm_id in season.summary()['id']:
|
323 |
+
storm = get_storm_data(storm_id)
|
324 |
+
storm_date = storm.time[0]
|
325 |
+
storm_oni = filtered_oni_df.loc[storm_date.strftime('%Y-%b')]['ONI']
|
326 |
+
if isinstance(storm_oni, pd.Series):
|
327 |
+
storm_oni = storm_oni.iloc[0]
|
328 |
+
storm_phase = classify_enso_phases(storm_oni)
|
329 |
+
if (enso_phase == 'All Years' or (enso_phase == 'El Niño Years' and storm_phase == 'El Nino') or
|
330 |
+
(enso_phase == 'La Niña Years' and storm_phase == 'La Nina') or (enso_phase == 'Neutral Years' and storm_phase == 'Neutral')):
|
331 |
+
lons, lats = filter_west_pacific_coordinates(np.array(storm.lon), np.array(storm.lat))
|
332 |
+
if len(lons) > 1:
|
333 |
+
west_pacific_storms.append((lons, lats))
|
334 |
+
|
335 |
+
max_length = max(len(storm[0]) for storm in west_pacific_storms)
|
336 |
+
standardized_routes = []
|
337 |
+
for lons, lats in west_pacific_storms:
|
338 |
+
if len(lons) < 2:
|
339 |
+
continue
|
340 |
+
t = np.linspace(0, 1, len(lons))
|
341 |
+
t_new = np.linspace(0, 1, max_length)
|
342 |
+
lon_interp = interp1d(t, lons, kind='linear')(t_new)
|
343 |
+
lat_interp = interp1d(t, lats, kind='linear')(t_new)
|
344 |
+
route_vector = np.column_stack((lon_interp, lat_interp)).flatten()
|
345 |
+
standardized_routes.append(route_vector)
|
346 |
+
|
347 |
+
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
|
348 |
+
clusters = kmeans.fit_predict(standardized_routes)
|
349 |
+
cluster_counts = np.bincount(clusters)
|
350 |
+
equations_html = ""
|
351 |
+
if show_routes:
|
352 |
+
for lons, lats in west_pacific_storms:
|
353 |
+
fig_routes.add_trace(go.Scattergeo(lon=lons, lat=lats, mode='lines', line=dict(width=1, color='lightgray'), showlegend=False, hoverinfo='none'))
|
354 |
+
if show_clusters:
|
355 |
+
for i in range(n_clusters):
|
356 |
+
cluster_center = kmeans.cluster_centers_[i].reshape(-1, 2)
|
357 |
+
fig_routes.add_trace(go.Scattergeo(lon=cluster_center[:, 0], lat=cluster_center[:, 1], mode='lines', name=f'Cluster {i+1} (n={cluster_counts[i]})', line=dict(width=3)))
|
358 |
+
if fourier_series:
|
359 |
+
X = cluster_center[:, 0]
|
360 |
+
y = cluster_center[:, 1]
|
361 |
+
x_min, x_max = X.min(), X.max()
|
362 |
+
X_normalized = 2 * np.pi * (X - x_min) / (x_max - x_min)
|
363 |
+
params, _ = curve_fit(lambda x, a0, a1, b1, a2, b2, a3, b3, a4, b4: a0 + a1*np.cos(x) + b1*np.sin(x) +
|
364 |
+
a2*np.cos(2*x) + b2*np.sin(2*x) + a3*np.cos(3*x) + b3*np.sin(3*x) + a4*np.cos(4*x) + b4*np.sin(4*x),
|
365 |
+
X_normalized, y)
|
366 |
+
a0, a1, b1, a2, b2, a3, b3, a4, b4 = params
|
367 |
+
equations_html += f"<h4>Cluster {i+1} (Typhoons: {cluster_counts[i]})</h4><p>Fourier Series: y = {a0:.4f} + {a1:.4f}*cos(x) + {b1:.4f}*sin(x) + " \
|
368 |
+
f"{a2:.4f}*cos(2x) + {b2:.4f}*sin(2x) + {a3:.4f}*cos(3x) + {b3:.4f}*sin(3x) + {a4:.4f}*cos(4x) + {b4:.4f}*sin(4x)</p>" \
|
369 |
+
f"<p>X Range: 0 to {2*np.pi:.4f}</p><p>Longitude Range: {x_min:.4f}°E to {x_max:.4f}°E</p><hr>"
|
370 |
+
|
371 |
+
fig_routes.update_layout(title=f'Typhoon Routes Clustering ({start_year}-{end_year}) - {enso_phase}', geo=dict(projection_type='mercator', showland=True,
|
372 |
+
lataxis={'range': [0, 40]}, lonaxis={'range': [100, 180]}))
|
373 |
+
return fig_routes, equations_html
|
374 |
+
|
375 |
+
# Logistic Regression Functions
|
376 |
+
def logistic_regression(regression_type, start_year, start_month, end_year, end_month):
|
377 |
+
start_date = datetime(start_year, start_month, 1)
|
378 |
+
end_date = datetime(end_year, end_month, 28)
|
379 |
+
filtered_data = merged_data[(merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date)]
|
380 |
+
if regression_type == 'Wind':
|
381 |
+
filtered_data['severe_typhoon'] = (filtered_data['USA_WIND'] >= 64).astype(int)
|
382 |
+
X = sm.add_constant(filtered_data['ONI'])
|
383 |
+
y = filtered_data['severe_typhoon']
|
384 |
+
model = sm.Logit(y, X).fit()
|
385 |
+
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
|
386 |
+
el_nino_severe = filtered_data[filtered_data['ONI'] >= 0.5]['severe_typhoon'].mean()
|
387 |
+
la_nina_severe = filtered_data[filtered_data['ONI'] <= -0.5]['severe_typhoon'].mean()
|
388 |
+
neutral_severe = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]['severe_typhoon'].mean()
|
389 |
+
return f"<h3>Wind Speed Logistic Regression</h3><p>β1: {beta_1:.4f}</p><p>Odds Ratio: {exp_beta_1:.4f}</p><p>P-value: {p_value:.4f}</p>" \
|
390 |
+
f"<p>El Niño: {el_nino_severe:.2%}</p><p>La Niña: {la_nina_severe:.2%}</p><p>Neutral: {neutral_severe:.2%}</p>"
|
391 |
+
elif regression_type == 'Pressure':
|
392 |
+
filtered_data['intense_typhoon'] = (filtered_data['USA_PRES'] <= 950).astype(int)
|
393 |
+
X = sm.add_constant(filtered_data['ONI'])
|
394 |
+
y = filtered_data['intense_typhoon']
|
395 |
+
model = sm.Logit(y, X).fit()
|
396 |
+
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
|
397 |
+
el_nino_intense = filtered_data[filtered_data['ONI'] >= 0.5]['intense_typhoon'].mean()
|
398 |
+
la_nina_intense = filtered_data[filtered_data['ONI'] <= -0.5]['intense_typhoon'].mean()
|
399 |
+
neutral_intense = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]['intense_typhoon'].mean()
|
400 |
+
return f"<h3>Pressure Logistic Regression</h3><p>β1: {beta_1:.4f}</p><p>Odds Ratio: {exp_beta_1:.4f}</p><p>P-value: {p_value:.4f}</p>" \
|
401 |
+
f"<p>El Niño: {el_nino_intense:.2%}</p><p>La Niña: {la_nina_intense:.2%}</p><p>Neutral: {neutral_intense:.2%}</p>"
|
402 |
+
elif regression_type == 'Longitude':
|
403 |
+
filtered_data = filtered_data.dropna(subset=['LON'])
|
404 |
+
filtered_data['western_typhoon'] = (filtered_data['LON'] <= 140).astype(int)
|
405 |
+
X = sm.add_constant(filtered_data['ONI'])
|
406 |
+
y = filtered_data['western_typhoon']
|
407 |
+
model = sm.Logit(y, X).fit()
|
408 |
+
beta_1, exp_beta_1, p_value = model.params['ONI'], np.exp(model.params['ONI']), model.pvalues['ONI']
|
409 |
+
el_nino_western = filtered_data[filtered_data['ONI'] >= 0.5]['western_typhoon'].mean()
|
410 |
+
la_nina_western = filtered_data[filtered_data['ONI'] <= -0.5]['western_typhoon'].mean()
|
411 |
+
neutral_western = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)]['western_typhoon'].mean()
|
412 |
+
return f"<h3>Longitude Logistic Regression</h3><p>β1: {beta_1:.4f}</p><p>Odds Ratio: {exp_beta_1:.4f}</p><p>P-value: {p_value:.4f}</p>" \
|
413 |
+
f"<p>El Niño: {el_nino_western:.2%}</p><p>La Niña: {la_nina_western:.2%}</p><p>Neutral: {neutral_western:.2%}</p>"
|
414 |
+
|
415 |
+
# Typhoon Path Animation Function
|
416 |
+
def typhoon_path_animation(year, typhoon, standard):
|
417 |
+
storm = ibtracs.get_storm(typhoon)
|
418 |
+
fig = go.Figure()
|
419 |
+
fig.add_trace(go.Scattergeo(lon=storm.lon, lat=storm.lat, mode='lines', line=dict(width=2, color='gray'), name='Path', showlegend=False))
|
420 |
+
fig.add_trace(go.Scattergeo(lon=[storm.lon[0]], lat=[storm.lat[0]], mode='markers', marker=dict(size=10, color='green', symbol='star'),
|
421 |
+
name='Starting Point', text=storm.time[0].strftime('%Y-%m-%d %H:%M'), hoverinfo='text+name'))
|
422 |
+
frames = []
|
423 |
+
for i in range(len(storm.time)):
|
424 |
+
category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
|
425 |
+
frame_data = [
|
426 |
+
go.Scattergeo(lon=storm.lon[:i+1], lat=storm.lat[:i+1], mode='lines', line=dict(width=2, color='blue'), name='Path Traveled', showlegend=False),
|
427 |
+
go.Scattergeo(lon=[storm.lon[i]], lat=[storm.lat[i]], mode='markers+text', marker=dict(size=10, color=color, symbol='star'),
|
428 |
+
text=category, textposition="top center", name='Current Location', hovertext=f"{storm.time[i].strftime('%Y-%m-%d %H:%M')}<br>Category: {category}<br>Wind Speed: {storm.vmax[i]:.1f} m/s")
|
429 |
+
]
|
430 |
+
frames.append(go.Frame(data=frame_data, name=f"frame{i}"))
|
431 |
+
fig.frames = frames
|
432 |
+
fig.update_layout(title=f"{year} {storm.name} Typhoon Path", geo=dict(projection_type='natural earth', showland=True),
|
433 |
+
updatemenus=[{"buttons": [{"args": [None, {"frame": {"duration": 100, "redraw": True}, "fromcurrent": True, "transition": {"duration": 0}}], "label": "Play", "method": "animate"},
|
434 |
+
{"args": [[None], {"frame": {"duration": 0, "redraw": True}, "mode": "immediate", "transition": {"duration": 0}}], "label": "Pause", "method": "animate"}],
|
435 |
+
"direction": "left", "pad": {"r": 10, "t": 87}, "showactive": False, "type": "buttons", "x": 0.1, "xanchor": "right", "y": 0, "yanchor": "top"}],
|
436 |
+
sliders=[{"steps": [{"args": [[f"frame{k}"], {"frame": {"duration": 100, "redraw": True}, "mode": "immediate", "transition": {"duration": 0}}],
|
437 |
+
"label": storm.time[k].strftime('%Y-%m-%d %H:%M'), "method": "animate"} for k in range(len(storm.time))]}])
|
438 |
+
return fig
|
439 |
+
|
440 |
+
def categorize_typhoon_by_standard(wind_speed, standard):
|
441 |
if standard == 'taiwan':
|
|
|
442 |
wind_speed_ms = wind_speed * 0.514444
|
|
|
443 |
if wind_speed_ms >= 51.0:
|
444 |
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['color']
|
445 |
elif wind_speed_ms >= 33.7:
|
|
|
449 |
else:
|
450 |
return 'Tropical Depression', taiwan_standard['Tropical Depression']['color']
|
451 |
else:
|
|
|
452 |
if wind_speed >= 137:
|
453 |
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['color']
|
454 |
elif wind_speed >= 113:
|
|
|
464 |
else:
|
465 |
return 'Tropical Depression', atlantic_standard['Tropical Depression']['color']
|
466 |
|
467 |
+
# Update Typhoon Dropdown
|
468 |
+
def update_typhoon_dropdown(selected_year):
|
469 |
+
season = ibtracs.get_season(selected_year)
|
470 |
+
storm_summary = season.summary()
|
471 |
+
options = [f"{storm_summary['name'][i]} ({storm_summary['id'][i]})" for i in range(storm_summary['season_storms'])]
|
472 |
+
values = [storm_summary['id'][i] for i in range(storm_summary['season_storms'])]
|
473 |
+
return gr.Dropdown.update(choices=options, value=values[0] if values else None)
|
474 |
+
|
475 |
+
# Gradio Interface
|
476 |
+
with gr.Blocks(title="Typhoon Analysis Dashboard") as demo:
|
477 |
+
gr.Markdown("# Typhoon Analysis Dashboard")
|
478 |
+
|
479 |
+
with gr.Tab("Main Analysis"):
|
480 |
+
with gr.Row():
|
481 |
+
start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
|
482 |
+
start_month = gr.Number(label="Start Month", value=1, minimum=1, maximum=12, step=1)
|
483 |
+
end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
|
484 |
+
end_month = gr.Number(label="End Month", value=6, minimum=1, maximum=12, step=1)
|
485 |
+
enso_dropdown = gr.Dropdown(label="ENSO Phase", choices=["All Years", "El Niño Years", "La Niña Years", "Neutral Years"], value="All Years")
|
486 |
+
typhoon_search = gr.Textbox(label="Search Typhoon Name")
|
487 |
+
analyze_button = gr.Button("Analyze")
|
488 |
+
typhoon_tracks = gr.Plot(label="Typhoon Tracks")
|
489 |
+
all_years_regression = gr.Plot(label="All Years Regression")
|
490 |
+
regression_graphs = gr.HTML(label="Regression Graphs by ENSO Phase")
|
491 |
+
slopes = gr.HTML(label="Slopes")
|
492 |
+
wind_oni_scatter = gr.Plot(label="Wind Speed vs ONI")
|
493 |
+
pressure_oni_scatter = gr.Plot(label="Pressure vs ONI")
|
494 |
+
correlation_text = gr.HTML(label="Correlation Coefficient")
|
495 |
+
max_wind_speed_text = gr.HTML(label="Max Wind Speed")
|
496 |
+
min_pressure_text = gr.HTML(label="Min Pressure")
|
497 |
+
wind_oni_correlation = gr.HTML(label="Wind-ONI Correlation")
|
498 |
+
pressure_oni_correlation = gr.HTML(label="Pressure-ONI Correlation")
|
499 |
+
count_analysis = gr.HTML(label="Typhoon Count Analysis")
|
500 |
+
month_analysis = gr.HTML(label="Concentrated Months Analysis")
|
501 |
+
analyze_button.click(main_analysis, inputs=[start_year, start_month, end_year, end_month, enso_dropdown, typhoon_search],
|
502 |
+
outputs=[typhoon_tracks, all_years_regression, regression_graphs, slopes, wind_oni_scatter, pressure_oni_scatter,
|
503 |
+
correlation_text, max_wind_speed_text, min_pressure_text, wind_oni_correlation, pressure_oni_correlation,
|
504 |
+
count_analysis, month_analysis])
|
505 |
+
|
506 |
+
with gr.Tab("Cluster Analysis"):
|
507 |
+
n_clusters = gr.Number(label="Number of Clusters", value=5, minimum=1, maximum=20, step=1)
|
508 |
+
show_clusters = gr.Checkbox(label="Show Clusters")
|
509 |
+
show_routes = gr.Checkbox(label="Show Typhoon Routes")
|
510 |
+
fourier_series = gr.Checkbox(label="Fourier Series")
|
511 |
+
with gr.Row():
|
512 |
+
cluster_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
|
513 |
+
cluster_start_month = gr.Number(label="Start Month", value=1, minimum=1, maximum=12, step=1)
|
514 |
+
cluster_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
|
515 |
+
cluster_end_month = gr.Number(label="End Month", value=6, minimum=1, maximum=12, step=1)
|
516 |
+
cluster_enso = gr.Dropdown(label="ENSO Phase", choices=["All Years", "El Niño Years", "La Niña Years", "Neutral Years"], value="All Years")
|
517 |
+
cluster_button = gr.Button("Generate Cluster Analysis")
|
518 |
+
cluster_figure = gr.Plot(label="Cluster Routes")
|
519 |
+
equations_output = gr.HTML(label="Cluster Equations")
|
520 |
+
cluster_button.click(cluster_analysis, inputs=[n_clusters, show_clusters, show_routes, fourier_series, cluster_start_year, cluster_start_month, cluster_end_year, cluster_end_month, cluster_enso],
|
521 |
+
outputs=[cluster_figure, equations_output])
|
522 |
+
|
523 |
+
with gr.Tab("Logistic Regression"):
|
524 |
+
regression_type = gr.Dropdown(label="Regression Type", choices=["Wind", "Pressure", "Longitude"], value="Wind")
|
525 |
+
with gr.Row():
|
526 |
+
reg_start_year = gr.Number(label="Start Year", value=2000, minimum=1900, maximum=2024, step=1)
|
527 |
+
reg_start_month = gr.Number(label="Start Month", value=1, minimum=1, maximum=12, step=1)
|
528 |
+
reg_end_year = gr.Number(label="End Year", value=2024, minimum=1900, maximum=2024, step=1)
|
529 |
+
reg_end_month = gr.Number(label="End Month", value=6, minimum=1, maximum=12, step=1)
|
530 |
+
regression_button = gr.Button("Run Regression")
|
531 |
+
regression_results = gr.HTML(label="Regression Results")
|
532 |
+
regression_button.click(logistic_regression, inputs=[regression_type, reg_start_year, reg_start_month, reg_end_year, reg_end_month], outputs=[regression_results])
|
533 |
+
|
534 |
+
with gr.Tab("Typhoon Path Animation"):
|
535 |
+
year_dropdown = gr.Dropdown(label="Year", choices=[str(year) for year in range(1950, 2025)], value="2024")
|
536 |
+
typhoon_dropdown = gr.Dropdown(label="Typhoon", choices=[])
|
537 |
+
standard_dropdown = gr.Dropdown(label="Classification Standard", choices=["Atlantic", "Taiwan"], value="Atlantic")
|
538 |
+
animation_button = gr.Button("Generate Animation")
|
539 |
+
animation_figure = gr.Plot(label="Typhoon Path Animation")
|
540 |
+
year_dropdown.change(update_typhoon_dropdown, inputs=[year_dropdown], outputs=[typhoon_dropdown])
|
541 |
+
animation_button.click(typhoon_path_animation, inputs=[year_dropdown, typhoon_dropdown, standard_dropdown], outputs=[animation_figure])
|
542 |
+
|
543 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|