import os import argparse import logging import pickle import threading import time import warnings from datetime import datetime, timedelta from collections import defaultdict import csv import json # Suppress warnings for cleaner output warnings.filterwarnings('ignore', category=FutureWarning) warnings.filterwarnings('ignore', category=UserWarning, module='umap') warnings.filterwarnings('ignore', category=UserWarning, module='sklearn') import gradio as gr import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas import cartopy.crs as ccrs import cartopy.feature as cfeature import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots from sklearn.manifold import TSNE from sklearn.cluster import DBSCAN, KMeans from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_absolute_error, r2_score from scipy.interpolate import interp1d, RBFInterpolator import statsmodels.api as sm import requests import tempfile import shutil import xarray as xr # NEW: Advanced ML imports try: import umap.umap_ as umap UMAP_AVAILABLE = True except ImportError: UMAP_AVAILABLE = False print("UMAP not available - clustering features limited") # Optional CNN imports with robust error handling CNN_AVAILABLE = False try: # Set environment variables before importing TensorFlow os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Suppress TensorFlow warnings import tensorflow as tf from tensorflow.keras import layers, models # Test if TensorFlow actually works tf.config.set_visible_devices([], 'GPU') # Disable GPU to avoid conflicts CNN_AVAILABLE = True print("TensorFlow successfully loaded - CNN features enabled") except Exception as e: CNN_AVAILABLE = False print(f"TensorFlow not available - CNN features disabled: {str(e)[:100]}...") try: import cdsapi CDSAPI_AVAILABLE = True except ImportError: CDSAPI_AVAILABLE = False import tropycal.tracks as tracks # ----------------------------- # Configuration and Setup # ----------------------------- logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) # Remove argument parser to simplify startup DATA_PATH = '/tmp/typhoon_data' if 'SPACE_ID' in os.environ else tempfile.gettempdir() # Ensure directory exists and is writable try: os.makedirs(DATA_PATH, exist_ok=True) # Test write permissions test_file = os.path.join(DATA_PATH, 'test_write.txt') with open(test_file, 'w') as f: f.write('test') os.remove(test_file) logging.info(f"Data directory is writable: {DATA_PATH}") except Exception as e: logging.warning(f"Data directory not writable, using temp dir: {e}") DATA_PATH = tempfile.mkdtemp() logging.info(f"Using temporary directory: {DATA_PATH}") # Update file paths ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv') TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv') MERGED_DATA_CSV = os.path.join(DATA_PATH, 'merged_typhoon_era5_data.csv') # IBTrACS settings BASIN_FILES = { 'EP': 'ibtracs.EP.list.v04r01.csv', 'NA': 'ibtracs.NA.list.v04r01.csv', 'WP': 'ibtracs.WP.list.v04r01.csv' } IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/' LOCAL_IBTRACS_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv') CACHE_FILE = os.path.join(DATA_PATH, 'ibtracs_cache.pkl') CACHE_EXPIRY_DAYS = 1 # ----------------------------- # ENHANCED: Color Maps and Standards with TD Support # ----------------------------- # Enhanced color mapping with TD support (for Plotly) enhanced_color_map = { 'Unknown': 'rgb(200, 200, 200)', 'Tropical Depression': 'rgb(128, 128, 128)', # Gray for TD 'Tropical Storm': 'rgb(0, 0, 255)', 'C1 Typhoon': 'rgb(0, 255, 255)', 'C2 Typhoon': 'rgb(0, 255, 0)', 'C3 Strong Typhoon': 'rgb(255, 255, 0)', 'C4 Very Strong Typhoon': 'rgb(255, 165, 0)', 'C5 Super Typhoon': 'rgb(255, 0, 0)' } # Matplotlib-compatible color mapping (hex colors) matplotlib_color_map = { 'Unknown': '#C8C8C8', 'Tropical Depression': '#808080', # Gray for TD 'Tropical Storm': '#0000FF', # Blue 'C1 Typhoon': '#00FFFF', # Cyan 'C2 Typhoon': '#00FF00', # Green 'C3 Strong Typhoon': '#FFFF00', # Yellow 'C4 Very Strong Typhoon': '#FFA500', # Orange 'C5 Super Typhoon': '#FF0000' # Red } # Taiwan color mapping taiwan_color_map = { 'Tropical Depression': '#808080', # Gray 'Mild Typhoon': '#FFFF00', # Yellow 'Medium Typhoon': '#FFA500', # Orange 'Strong Typhoon': '#FF0000' # Red } def rgb_string_to_hex(rgb_string): """Convert 'rgb(r,g,b)' string to hex color for matplotlib""" try: # Extract numbers from 'rgb(r,g,b)' format import re numbers = re.findall(r'\d+', rgb_string) if len(numbers) == 3: r, g, b = map(int, numbers) return f'#{r:02x}{g:02x}{b:02x}' else: return '#808080' # Default gray except: return '#808080' # Default gray def get_matplotlib_color(category): """Get matplotlib-compatible color for a storm category""" return matplotlib_color_map.get(category, '#808080') def get_taiwan_color(category): """Get Taiwan standard color for a storm category""" return taiwan_color_map.get(category, '#808080') # Cluster colors for route visualization CLUSTER_COLORS = [ '#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7', '#DDA0DD', '#98D8C8', '#F7DC6F', '#BB8FCE', '#85C1E9', '#F8C471', '#82E0AA', '#F1948A', '#85C1E9', '#D2B4DE' ] # Route prediction colors ROUTE_COLORS = [ '#FF0066', '#00FF66', '#6600FF', '#FF6600', '#0066FF', '#FF00CC', '#00FFCC', '#CC00FF', '#CCFF00', '#00CCFF' ] # Original color map for backward compatibility color_map = { 'C5 Super Typhoon': 'rgb(255, 0, 0)', 'C4 Very Strong Typhoon': 'rgb(255, 165, 0)', 'C3 Strong Typhoon': 'rgb(255, 255, 0)', 'C2 Typhoon': 'rgb(0, 255, 0)', 'C1 Typhoon': 'rgb(0, 255, 255)', 'Tropical Storm': 'rgb(0, 0, 255)', 'Tropical Depression': 'rgb(128, 128, 128)' } atlantic_standard = { 'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'}, 'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'}, 'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'}, 'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'}, 'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'}, 'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'}, 'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'} } taiwan_standard = { 'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'}, 'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'}, 'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'}, 'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'} } # ----------------------------- # Utility Functions for HF Spaces # ----------------------------- def safe_file_write(file_path, data_frame, backup_dir=None): """Safely write DataFrame to CSV with backup and error handling""" try: # Create directory if it doesn't exist os.makedirs(os.path.dirname(file_path), exist_ok=True) # Try to write to a temporary file first temp_path = file_path + '.tmp' data_frame.to_csv(temp_path, index=False) # If successful, rename to final file os.rename(temp_path, file_path) logging.info(f"Successfully saved {len(data_frame)} records to {file_path}") return True except PermissionError as e: logging.warning(f"Permission denied writing to {file_path}: {e}") if backup_dir: try: backup_path = os.path.join(backup_dir, os.path.basename(file_path)) data_frame.to_csv(backup_path, index=False) logging.info(f"Saved to backup location: {backup_path}") return True except Exception as backup_e: logging.error(f"Failed to save to backup location: {backup_e}") return False except Exception as e: logging.error(f"Error saving file {file_path}: {e}") # Clean up temp file if it exists temp_path = file_path + '.tmp' if os.path.exists(temp_path): try: os.remove(temp_path) except: pass return False def get_fallback_data_dir(): """Get a fallback data directory that's guaranteed to be writable""" fallback_dirs = [ tempfile.gettempdir(), '/tmp', os.path.expanduser('~'), os.getcwd() ] for directory in fallback_dirs: try: test_dir = os.path.join(directory, 'typhoon_fallback') os.makedirs(test_dir, exist_ok=True) test_file = os.path.join(test_dir, 'test.txt') with open(test_file, 'w') as f: f.write('test') os.remove(test_file) return test_dir except: continue # If all else fails, use current directory return os.getcwd() # ----------------------------- # ONI and Typhoon Data Functions # ----------------------------- def download_oni_file(url, filename): """Download ONI file with retry logic""" max_retries = 3 for attempt in range(max_retries): try: response = requests.get(url, timeout=30) response.raise_for_status() with open(filename, 'wb') as f: f.write(response.content) return True except Exception as e: logging.warning(f"Attempt {attempt + 1} failed to download ONI: {e}") if attempt < max_retries - 1: time.sleep(2 ** attempt) # Exponential backoff else: logging.error(f"Failed to download ONI after {max_retries} attempts") return False def convert_oni_ascii_to_csv(input_file, output_file): """Convert ONI ASCII format to CSV""" data = defaultdict(lambda: [''] * 12) season_to_month = {'DJF':12, 'JFM':1, 'FMA':2, 'MAM':3, 'AMJ':4, 'MJJ':5, 'JJA':6, 'JAS':7, 'ASO':8, 'SON':9, 'OND':10, 'NDJ':11} try: with open(input_file, 'r') as f: lines = f.readlines()[1:] # Skip header for line in lines: parts = line.split() if len(parts) >= 4: season, year, anom = parts[0], parts[1], parts[-1] if season in season_to_month: month = season_to_month[season] if season == 'DJF': year = str(int(year)-1) data[year][month-1] = anom # Write to CSV with safe write df = pd.DataFrame(data).T.reset_index() df.columns = ['Year','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] df = df.sort_values('Year').reset_index(drop=True) return safe_file_write(output_file, df, get_fallback_data_dir()) except Exception as e: logging.error(f"Error converting ONI file: {e}") return False def update_oni_data(): """Update ONI data with error handling""" url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt" temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt") input_file = os.path.join(DATA_PATH, "oni.ascii.txt") output_file = ONI_DATA_PATH try: if download_oni_file(url, temp_file): if not os.path.exists(input_file) or not os.path.exists(output_file): os.rename(temp_file, input_file) convert_oni_ascii_to_csv(input_file, output_file) else: os.remove(temp_file) else: # Create fallback ONI data if download fails logging.warning("Creating fallback ONI data") create_fallback_oni_data(output_file) except Exception as e: logging.error(f"Error updating ONI data: {e}") create_fallback_oni_data(output_file) def create_fallback_oni_data(output_file): """Create minimal ONI data for testing""" years = range(2000, 2026) # Extended to include 2025 months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] # Create synthetic ONI data data = [] for year in years: row = [year] for month in months: # Generate some realistic ONI values value = np.random.normal(0, 1) * 0.5 row.append(f"{value:.2f}") data.append(row) df = pd.DataFrame(data, columns=['Year'] + months) safe_file_write(output_file, df, get_fallback_data_dir()) # ----------------------------- # FIXED: IBTrACS Data Loading # ----------------------------- def download_ibtracs_file(basin, force_download=False): """Download specific basin file from IBTrACS""" filename = BASIN_FILES[basin] local_path = os.path.join(DATA_PATH, filename) url = IBTRACS_BASE_URL + filename # Check if file exists and is recent (less than 7 days old) if os.path.exists(local_path) and not force_download: file_age = time.time() - os.path.getmtime(local_path) if file_age < 7 * 24 * 3600: # 7 days logging.info(f"Using cached {basin} basin file") return local_path try: logging.info(f"Downloading {basin} basin file from {url}") response = requests.get(url, timeout=60) response.raise_for_status() # Ensure directory exists os.makedirs(os.path.dirname(local_path), exist_ok=True) with open(local_path, 'wb') as f: f.write(response.content) logging.info(f"Successfully downloaded {basin} basin file") return local_path except Exception as e: logging.error(f"Failed to download {basin} basin file: {e}") return None def examine_ibtracs_structure(file_path): """Examine the actual structure of an IBTrACS CSV file""" try: with open(file_path, 'r') as f: lines = f.readlines() # Show first 5 lines logging.info("First 5 lines of IBTrACS file:") for i, line in enumerate(lines[:5]): logging.info(f"Line {i}: {line.strip()}") # The first line contains the actual column headers # No need to skip rows for IBTrACS v04r01 df = pd.read_csv(file_path, nrows=5) logging.info(f"Columns from first row: {list(df.columns)}") return list(df.columns) except Exception as e: logging.error(f"Error examining IBTrACS structure: {e}") return None def load_ibtracs_csv_directly(basin='WP'): """Load IBTrACS data directly from CSV - FIXED VERSION""" filename = BASIN_FILES[basin] local_path = os.path.join(DATA_PATH, filename) # Download if not exists if not os.path.exists(local_path): downloaded_path = download_ibtracs_file(basin) if not downloaded_path: return None try: # First, examine the structure actual_columns = examine_ibtracs_structure(local_path) if not actual_columns: logging.error("Could not examine IBTrACS file structure") return None # Read IBTrACS CSV - DON'T skip any rows for v04r01 # The first row contains proper column headers logging.info(f"Reading IBTrACS CSV file: {local_path}") df = pd.read_csv(local_path, low_memory=False) # Don't skip any rows logging.info(f"Original columns: {list(df.columns)}") logging.info(f"Data shape before cleaning: {df.shape}") # Check which essential columns exist required_cols = ['SID', 'ISO_TIME', 'LAT', 'LON'] available_required = [col for col in required_cols if col in df.columns] if len(available_required) < 2: logging.error(f"Missing critical columns. Available: {list(df.columns)}") return None # Clean and standardize the data with format specification if 'ISO_TIME' in df.columns: df['ISO_TIME'] = pd.to_datetime(df['ISO_TIME'], format='%Y-%m-%d %H:%M:%S', errors='coerce') # Clean numeric columns numeric_columns = ['LAT', 'LON', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES'] for col in numeric_columns: if col in df.columns: df[col] = pd.to_numeric(df[col], errors='coerce') # Filter out invalid/missing critical data valid_rows = df['LAT'].notna() & df['LON'].notna() df = df[valid_rows] # Ensure LAT/LON are in reasonable ranges df = df[(df['LAT'] >= -90) & (df['LAT'] <= 90)] df = df[(df['LON'] >= -180) & (df['LON'] <= 180)] # Add basin info if missing if 'BASIN' not in df.columns: df['BASIN'] = basin # Add default columns if missing if 'NAME' not in df.columns: df['NAME'] = 'UNNAMED' if 'SEASON' not in df.columns and 'ISO_TIME' in df.columns: df['SEASON'] = df['ISO_TIME'].dt.year logging.info(f"Successfully loaded {len(df)} records from {basin} basin") return df except Exception as e: logging.error(f"Error reading IBTrACS CSV file: {e}") return None def load_ibtracs_data_fixed(): """Fixed version of IBTrACS data loading""" ibtracs_data = {} # Try to load each basin, but prioritize WP for this application load_order = ['WP', 'EP', 'NA'] for basin in load_order: try: logging.info(f"Loading {basin} basin data...") df = load_ibtracs_csv_directly(basin) if df is not None and not df.empty: ibtracs_data[basin] = df logging.info(f"Successfully loaded {basin} basin with {len(df)} records") else: logging.warning(f"No data loaded for basin {basin}") ibtracs_data[basin] = None except Exception as e: logging.error(f"Failed to load basin {basin}: {e}") ibtracs_data[basin] = None return ibtracs_data def load_data_fixed(oni_path, typhoon_path): """Fixed version of load_data function""" # Load ONI data oni_data = pd.DataFrame({'Year': [], 'Jan': [], 'Feb': [], 'Mar': [], 'Apr': [], 'May': [], 'Jun': [], 'Jul': [], 'Aug': [], 'Sep': [], 'Oct': [], 'Nov': [], 'Dec': []}) if not os.path.exists(oni_path): logging.warning(f"ONI data file not found: {oni_path}") update_oni_data() try: oni_data = pd.read_csv(oni_path) logging.info(f"Successfully loaded ONI data with {len(oni_data)} years") except Exception as e: logging.error(f"Error loading ONI data: {e}") update_oni_data() try: oni_data = pd.read_csv(oni_path) except Exception as e: logging.error(f"Still can't load ONI data: {e}") # Load typhoon data - NEW APPROACH typhoon_data = None # First, try to load from existing processed file if os.path.exists(typhoon_path): try: typhoon_data = pd.read_csv(typhoon_path, low_memory=False) # Ensure basic columns exist and are valid required_cols = ['LAT', 'LON'] if all(col in typhoon_data.columns for col in required_cols): if 'ISO_TIME' in typhoon_data.columns: typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') logging.info(f"Loaded processed typhoon data with {len(typhoon_data)} records") else: logging.warning("Processed typhoon data missing required columns, will reload from IBTrACS") typhoon_data = None except Exception as e: logging.error(f"Error loading processed typhoon data: {e}") typhoon_data = None # If no valid processed data, load from IBTrACS if typhoon_data is None or typhoon_data.empty: logging.info("Loading typhoon data from IBTrACS...") ibtracs_data = load_ibtracs_data_fixed() # Combine all available basin data, prioritizing WP combined_dfs = [] for basin in ['WP', 'EP', 'NA']: if basin in ibtracs_data and ibtracs_data[basin] is not None: df = ibtracs_data[basin].copy() df['BASIN'] = basin combined_dfs.append(df) if combined_dfs: typhoon_data = pd.concat(combined_dfs, ignore_index=True) # Ensure SID has proper format if 'SID' not in typhoon_data.columns and 'BASIN' in typhoon_data.columns: # Create SID from basin and other identifiers if missing if 'SEASON' in typhoon_data.columns: typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) + typhoon_data.index.astype(str).str.zfill(2) + typhoon_data['SEASON'].astype(str)) else: typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) + typhoon_data.index.astype(str).str.zfill(2) + '2000') # Save the processed data for future use safe_file_write(typhoon_path, typhoon_data, get_fallback_data_dir()) logging.info(f"Combined IBTrACS data: {len(typhoon_data)} total records") else: logging.error("Failed to load any IBTrACS basin data") # Create minimal fallback data typhoon_data = create_fallback_typhoon_data() # Final validation of typhoon data if typhoon_data is not None: # Ensure required columns exist with fallback values required_columns = { 'SID': 'UNKNOWN', 'ISO_TIME': pd.Timestamp('2000-01-01'), 'LAT': 0.0, 'LON': 0.0, 'USA_WIND': np.nan, 'USA_PRES': np.nan, 'NAME': 'UNNAMED', 'SEASON': 2000 } for col, default_val in required_columns.items(): if col not in typhoon_data.columns: typhoon_data[col] = default_val logging.warning(f"Added missing column {col} with default value") # Ensure data types if 'ISO_TIME' in typhoon_data.columns: typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') typhoon_data['LAT'] = pd.to_numeric(typhoon_data['LAT'], errors='coerce') typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce') typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce') typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce') # Remove rows with invalid coordinates typhoon_data = typhoon_data.dropna(subset=['LAT', 'LON']) logging.info(f"Final typhoon data: {len(typhoon_data)} records after validation") return oni_data, typhoon_data def create_fallback_typhoon_data(): """Create minimal fallback typhoon data - FIXED VERSION""" # Use proper pandas date_range instead of numpy dates = pd.date_range(start='2000-01-01', end='2025-12-31', freq='D') # Extended to 2025 storm_dates = dates[np.random.choice(len(dates), size=100, replace=False)] data = [] for i, date in enumerate(storm_dates): # Create realistic WP storm tracks base_lat = np.random.uniform(10, 30) base_lon = np.random.uniform(130, 160) # Generate 20-50 data points per storm track_length = np.random.randint(20, 51) sid = f"WP{i+1:02d}{date.year}" for j in range(track_length): lat = base_lat + j * 0.2 + np.random.normal(0, 0.1) lon = base_lon + j * 0.3 + np.random.normal(0, 0.1) wind = max(25, 70 + np.random.normal(0, 20)) pres = max(950, 1000 - wind + np.random.normal(0, 5)) data.append({ 'SID': sid, 'ISO_TIME': date + pd.Timedelta(hours=j*6), # Use pd.Timedelta instead 'NAME': f'FALLBACK_{i+1}', 'SEASON': date.year, 'LAT': lat, 'LON': lon, 'USA_WIND': wind, 'USA_PRES': pres, 'BASIN': 'WP' }) df = pd.DataFrame(data) logging.info(f"Created fallback typhoon data with {len(df)} records") return df def process_oni_data(oni_data): """Process ONI data into long format""" oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI') month_map = {'Jan':'01','Feb':'02','Mar':'03','Apr':'04','May':'05','Jun':'06', 'Jul':'07','Aug':'08','Sep':'09','Oct':'10','Nov':'11','Dec':'12'} oni_long['Month'] = oni_long['Month'].map(month_map) oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str)+'-'+oni_long['Month']+'-01') oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce') return oni_long def process_typhoon_data(typhoon_data): """Process typhoon data""" if 'ISO_TIME' in typhoon_data.columns: typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce') typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce') typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce') logging.info(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}") typhoon_max = typhoon_data.groupby('SID').agg({ 'USA_WIND':'max','USA_PRES':'min','ISO_TIME':'first','SEASON':'first','NAME':'first', 'LAT':'first','LON':'first' }).reset_index() if 'ISO_TIME' in typhoon_max.columns: typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m') typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year else: # Fallback if no ISO_TIME typhoon_max['Month'] = '01' typhoon_max['Year'] = typhoon_max['SEASON'] typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon_enhanced) return typhoon_max def merge_data(oni_long, typhoon_max): """Merge ONI and typhoon data""" return pd.merge(typhoon_max, oni_long, on=['Year','Month']) # ----------------------------- # ENHANCED: Categorization Functions # ----------------------------- def categorize_typhoon_enhanced(wind_speed): """Enhanced categorization that properly includes Tropical Depressions""" if pd.isna(wind_speed): return 'Unknown' # Convert to knots if in m/s (some datasets use m/s) if wind_speed < 10: # Likely in m/s, convert to knots wind_speed = wind_speed * 1.94384 # FIXED thresholds to include TD if wind_speed < 34: # Below 34 knots = Tropical Depression return 'Tropical Depression' elif wind_speed < 64: # 34-63 knots = Tropical Storm return 'Tropical Storm' elif wind_speed < 83: # 64-82 knots = Category 1 Typhoon return 'C1 Typhoon' elif wind_speed < 96: # 83-95 knots = Category 2 Typhoon return 'C2 Typhoon' elif wind_speed < 113: # 96-112 knots = Category 3 Strong Typhoon return 'C3 Strong Typhoon' elif wind_speed < 137: # 113-136 knots = Category 4 Very Strong Typhoon return 'C4 Very Strong Typhoon' else: # 137+ knots = Category 5 Super Typhoon return 'C5 Super Typhoon' def categorize_typhoon_taiwan(wind_speed): """Taiwan categorization system""" if pd.isna(wind_speed): return 'Tropical Depression' # Convert to m/s if in knots if wind_speed > 50: # Likely in knots, convert to m/s wind_speed = wind_speed * 0.514444 if wind_speed >= 51.0: return 'Strong Typhoon' elif wind_speed >= 33.7: return 'Medium Typhoon' elif wind_speed >= 17.2: return 'Mild Typhoon' else: return 'Tropical Depression' # Original function for backward compatibility def categorize_typhoon(wind_speed): """Original categorize typhoon function for backward compatibility""" return categorize_typhoon_enhanced(wind_speed) def classify_enso_phases(oni_value): """Classify ENSO phases based on ONI value""" if isinstance(oni_value, pd.Series): oni_value = oni_value.iloc[0] if pd.isna(oni_value): return 'Neutral' if oni_value >= 0.5: return 'El Nino' elif oni_value <= -0.5: return 'La Nina' else: return 'Neutral' # ----------------------------- # FIXED: ADVANCED ML FEATURES WITH ROBUST ERROR HANDLING # ----------------------------- def extract_storm_features(typhoon_data): """Extract comprehensive features for clustering analysis - FIXED VERSION""" try: if typhoon_data is None or typhoon_data.empty: logging.error("No typhoon data provided for feature extraction") return None # Basic features - ensure columns exist basic_features = [] for sid in typhoon_data['SID'].unique(): storm_data = typhoon_data[typhoon_data['SID'] == sid].copy() if len(storm_data) == 0: continue # Initialize feature dict with safe defaults features = {'SID': sid} # Wind statistics if 'USA_WIND' in storm_data.columns: wind_values = pd.to_numeric(storm_data['USA_WIND'], errors='coerce').dropna() if len(wind_values) > 0: features['USA_WIND_max'] = wind_values.max() features['USA_WIND_mean'] = wind_values.mean() features['USA_WIND_std'] = wind_values.std() if len(wind_values) > 1 else 0 else: features['USA_WIND_max'] = 30 features['USA_WIND_mean'] = 30 features['USA_WIND_std'] = 0 else: features['USA_WIND_max'] = 30 features['USA_WIND_mean'] = 30 features['USA_WIND_std'] = 0 # Pressure statistics if 'USA_PRES' in storm_data.columns: pres_values = pd.to_numeric(storm_data['USA_PRES'], errors='coerce').dropna() if len(pres_values) > 0: features['USA_PRES_min'] = pres_values.min() features['USA_PRES_mean'] = pres_values.mean() features['USA_PRES_std'] = pres_values.std() if len(pres_values) > 1 else 0 else: features['USA_PRES_min'] = 1000 features['USA_PRES_mean'] = 1000 features['USA_PRES_std'] = 0 else: features['USA_PRES_min'] = 1000 features['USA_PRES_mean'] = 1000 features['USA_PRES_std'] = 0 # Location statistics if 'LAT' in storm_data.columns and 'LON' in storm_data.columns: lat_values = pd.to_numeric(storm_data['LAT'], errors='coerce').dropna() lon_values = pd.to_numeric(storm_data['LON'], errors='coerce').dropna() if len(lat_values) > 0 and len(lon_values) > 0: features['LAT_mean'] = lat_values.mean() features['LAT_std'] = lat_values.std() if len(lat_values) > 1 else 0 features['LAT_max'] = lat_values.max() features['LAT_min'] = lat_values.min() features['LON_mean'] = lon_values.mean() features['LON_std'] = lon_values.std() if len(lon_values) > 1 else 0 features['LON_max'] = lon_values.max() features['LON_min'] = lon_values.min() # Genesis location (first valid position) features['genesis_lat'] = lat_values.iloc[0] features['genesis_lon'] = lon_values.iloc[0] features['genesis_intensity'] = features['USA_WIND_mean'] # Use mean as fallback # Track characteristics features['lat_range'] = lat_values.max() - lat_values.min() features['lon_range'] = lon_values.max() - lon_values.min() # Calculate track distance if len(lat_values) > 1: distances = [] for i in range(1, len(lat_values)): dlat = lat_values.iloc[i] - lat_values.iloc[i-1] dlon = lon_values.iloc[i] - lon_values.iloc[i-1] distances.append(np.sqrt(dlat**2 + dlon**2)) features['total_distance'] = sum(distances) features['avg_speed'] = np.mean(distances) if distances else 0 else: features['total_distance'] = 0 features['avg_speed'] = 0 # Track curvature if len(lat_values) > 2: bearing_changes = [] for i in range(1, len(lat_values)-1): dlat1 = lat_values.iloc[i] - lat_values.iloc[i-1] dlon1 = lon_values.iloc[i] - lon_values.iloc[i-1] dlat2 = lat_values.iloc[i+1] - lat_values.iloc[i] dlon2 = lon_values.iloc[i+1] - lon_values.iloc[i] angle1 = np.arctan2(dlat1, dlon1) angle2 = np.arctan2(dlat2, dlon2) change = abs(angle2 - angle1) bearing_changes.append(change) features['avg_curvature'] = np.mean(bearing_changes) if bearing_changes else 0 else: features['avg_curvature'] = 0 else: # Default location values features.update({ 'LAT_mean': 20, 'LAT_std': 0, 'LAT_max': 20, 'LAT_min': 20, 'LON_mean': 140, 'LON_std': 0, 'LON_max': 140, 'LON_min': 140, 'genesis_lat': 20, 'genesis_lon': 140, 'genesis_intensity': 30, 'lat_range': 0, 'lon_range': 0, 'total_distance': 0, 'avg_speed': 0, 'avg_curvature': 0 }) else: # Default location values if columns missing features.update({ 'LAT_mean': 20, 'LAT_std': 0, 'LAT_max': 20, 'LAT_min': 20, 'LON_mean': 140, 'LON_std': 0, 'LON_max': 140, 'LON_min': 140, 'genesis_lat': 20, 'genesis_lon': 140, 'genesis_intensity': 30, 'lat_range': 0, 'lon_range': 0, 'total_distance': 0, 'avg_speed': 0, 'avg_curvature': 0 }) # Track length features['track_length'] = len(storm_data) # Add seasonal information if 'SEASON' in storm_data.columns: features['season'] = storm_data['SEASON'].iloc[0] else: features['season'] = 2000 # Add basin information if 'BASIN' in storm_data.columns: features['basin'] = storm_data['BASIN'].iloc[0] elif 'SID' in storm_data.columns: features['basin'] = sid[:2] if len(sid) >= 2 else 'WP' else: features['basin'] = 'WP' basic_features.append(features) if not basic_features: logging.error("No valid storm features could be extracted") return None # Convert to DataFrame storm_features = pd.DataFrame(basic_features) # Ensure all numeric columns are properly typed numeric_columns = [col for col in storm_features.columns if col not in ['SID', 'basin']] for col in numeric_columns: storm_features[col] = pd.to_numeric(storm_features[col], errors='coerce').fillna(0) logging.info(f"Successfully extracted features for {len(storm_features)} storms") logging.info(f"Feature columns: {list(storm_features.columns)}") return storm_features except Exception as e: logging.error(f"Error in extract_storm_features: {e}") import traceback traceback.print_exc() return None def perform_dimensionality_reduction(storm_features, method='umap', n_components=2): """Perform UMAP or t-SNE dimensionality reduction - FIXED VERSION""" try: if storm_features is None or storm_features.empty: raise ValueError("No storm features provided") # Select numeric features for clustering - FIXED feature_cols = [] for col in storm_features.columns: if col not in ['SID', 'basin'] and storm_features[col].dtype in ['float64', 'int64']: # Check if column has valid data valid_data = storm_features[col].dropna() if len(valid_data) > 0 and valid_data.std() > 0: # Only include columns with variance feature_cols.append(col) if len(feature_cols) == 0: raise ValueError("No valid numeric features found for clustering") logging.info(f"Using {len(feature_cols)} features for clustering: {feature_cols}") X = storm_features[feature_cols].fillna(0) # Check if we have enough samples if len(X) < 2: raise ValueError("Need at least 2 storms for clustering") # Standardize features scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Perform dimensionality reduction if method.lower() == 'umap' and UMAP_AVAILABLE and len(X_scaled) >= 4: # UMAP parameters optimized for typhoon data - fixed warnings n_neighbors = min(15, len(X_scaled) - 1) reducer = umap.UMAP( n_components=n_components, n_neighbors=n_neighbors, min_dist=0.1, metric='euclidean', random_state=42, n_jobs=1 # Explicitly set to avoid warning ) elif method.lower() == 'tsne' and len(X_scaled) >= 4: # t-SNE parameters perplexity = min(30, len(X_scaled) // 4) perplexity = max(1, perplexity) # Ensure perplexity is at least 1 reducer = TSNE( n_components=n_components, perplexity=perplexity, learning_rate=200, n_iter=1000, random_state=42 ) else: # Fallback to PCA reducer = PCA(n_components=n_components, random_state=42) # Fit and transform embedding = reducer.fit_transform(X_scaled) logging.info(f"Dimensionality reduction successful: {X_scaled.shape} -> {embedding.shape}") return embedding, feature_cols, scaler except Exception as e: logging.error(f"Error in perform_dimensionality_reduction: {e}") raise def cluster_storms(embedding, method='dbscan', eps=0.5, min_samples=3): """Cluster storms based on their embedding - FIXED VERSION""" try: if len(embedding) < 2: return np.array([0] * len(embedding)) # Single cluster for insufficient data if method.lower() == 'dbscan': # Adjust min_samples based on data size min_samples = min(min_samples, max(2, len(embedding) // 5)) clusterer = DBSCAN(eps=eps, min_samples=min_samples) elif method.lower() == 'kmeans': # Adjust n_clusters based on data size n_clusters = min(5, max(2, len(embedding) // 3)) clusterer = KMeans(n_clusters=n_clusters, random_state=42) else: raise ValueError("Method must be 'dbscan' or 'kmeans'") clusters = clusterer.fit_predict(embedding) logging.info(f"Clustering complete: {len(np.unique(clusters))} clusters found") return clusters except Exception as e: logging.error(f"Error in cluster_storms: {e}") # Return single cluster as fallback return np.array([0] * len(embedding)) def create_separate_clustering_plots(storm_features, typhoon_data, method='umap'): """Create separate plots for clustering analysis - ENHANCED CLARITY VERSION""" try: # Validate inputs if storm_features is None or storm_features.empty: raise ValueError("No storm features available for clustering") if typhoon_data is None or typhoon_data.empty: raise ValueError("No typhoon data available for route visualization") logging.info(f"Starting clustering visualization with {len(storm_features)} storms") # Perform dimensionality reduction embedding, feature_cols, scaler = perform_dimensionality_reduction(storm_features, method) # Perform clustering cluster_labels = cluster_storms(embedding, 'dbscan') # Add clustering results to storm features storm_features_viz = storm_features.copy() storm_features_viz['cluster'] = cluster_labels storm_features_viz['dim1'] = embedding[:, 0] storm_features_viz['dim2'] = embedding[:, 1] # Merge with typhoon data for additional info - SAFE MERGE try: storm_info = typhoon_data.groupby('SID').first()[['NAME', 'SEASON']].reset_index() storm_features_viz = storm_features_viz.merge(storm_info, on='SID', how='left') # Fill missing values storm_features_viz['NAME'] = storm_features_viz['NAME'].fillna('UNNAMED') storm_features_viz['SEASON'] = storm_features_viz['SEASON'].fillna(2000) except Exception as merge_error: logging.warning(f"Could not merge storm info: {merge_error}") storm_features_viz['NAME'] = 'UNNAMED' storm_features_viz['SEASON'] = 2000 # Get unique clusters and assign distinct colors unique_clusters = sorted([c for c in storm_features_viz['cluster'].unique() if c != -1]) noise_count = len(storm_features_viz[storm_features_viz['cluster'] == -1]) # 1. Enhanced clustering scatter plot with clear cluster identification fig_cluster = go.Figure() # Add noise points first if noise_count > 0: noise_data = storm_features_viz[storm_features_viz['cluster'] == -1] fig_cluster.add_trace( go.Scatter( x=noise_data['dim1'], y=noise_data['dim2'], mode='markers', marker=dict(color='lightgray', size=8, opacity=0.5, symbol='x'), name=f'Noise ({noise_count} storms)', hovertemplate=( '%{customdata[0]}
' 'Season: %{customdata[1]}
' 'Cluster: Noise
' f'{method.upper()} Dim 1: %{{x:.2f}}
' f'{method.upper()} Dim 2: %{{y:.2f}}
' '' ), customdata=np.column_stack(( noise_data['NAME'].fillna('UNNAMED'), noise_data['SEASON'].fillna(2000) )) ) ) # Add clusters with distinct colors and shapes cluster_symbols = ['circle', 'square', 'diamond', 'triangle-up', 'triangle-down', 'pentagon', 'hexagon', 'star', 'cross', 'circle-open'] for i, cluster in enumerate(unique_clusters): cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster] color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)] symbol = cluster_symbols[i % len(cluster_symbols)] fig_cluster.add_trace( go.Scatter( x=cluster_data['dim1'], y=cluster_data['dim2'], mode='markers', marker=dict(color=color, size=10, symbol=symbol, line=dict(width=1, color='white')), name=f'Cluster {cluster} ({len(cluster_data)} storms)', hovertemplate=( '%{customdata[0]}
' 'Season: %{customdata[1]}
' f'Cluster: {cluster}
' f'{method.upper()} Dim 1: %{{x:.2f}}
' f'{method.upper()} Dim 2: %{{y:.2f}}
' 'Intensity: %{customdata[2]:.0f} kt
' '' ), customdata=np.column_stack(( cluster_data['NAME'].fillna('UNNAMED'), cluster_data['SEASON'].fillna(2000), cluster_data['USA_WIND_max'].fillna(0) )) ) ) fig_cluster.update_layout( title=f'Storm Clustering Analysis using {method.upper()}
Each symbol/color represents a distinct storm pattern group', xaxis_title=f'{method.upper()} Dimension 1', yaxis_title=f'{method.upper()} Dimension 2', height=600, showlegend=True ) # 2. ENHANCED route map with cluster legends and clearer representation fig_routes = go.Figure() # Create a comprehensive legend showing cluster characteristics cluster_info_text = [] for i, cluster in enumerate(unique_clusters): cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist() color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)] # Get cluster statistics for legend cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster] avg_intensity = cluster_data['USA_WIND_max'].mean() if 'USA_WIND_max' in cluster_data.columns else 0 avg_pressure = cluster_data['USA_PRES_min'].mean() if 'USA_PRES_min' in cluster_data.columns else 1000 cluster_info_text.append( f"Cluster {cluster}: {len(cluster_storm_ids)} storms, " f"Avg: {avg_intensity:.0f}kt/{avg_pressure:.0f}hPa" ) # Add multiple storms per cluster with clear identification storms_added = 0 for j, sid in enumerate(cluster_storm_ids[:8]): # Show up to 8 storms per cluster try: storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME') if len(storm_track) > 1: # Ensure valid coordinates valid_coords = storm_track['LAT'].notna() & storm_track['LON'].notna() storm_track = storm_track[valid_coords] if len(storm_track) > 1: storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED' storm_season = storm_track['SEASON'].iloc[0] if 'SEASON' in storm_track.columns else 'Unknown' # Vary line style for different storms in same cluster line_styles = ['solid', 'dash', 'dot', 'dashdot'] line_style = line_styles[j % len(line_styles)] line_width = 3 if j == 0 else 2 # First storm thicker fig_routes.add_trace( go.Scattergeo( lon=storm_track['LON'], lat=storm_track['LAT'], mode='lines+markers', line=dict(color=color, width=line_width, dash=line_style), marker=dict(color=color, size=3), name=f'C{cluster}: {storm_name} ({storm_season})', showlegend=True, legendgroup=f'cluster_{cluster}', hovertemplate=( f'Cluster {cluster}: {storm_name}
' 'Lat: %{lat:.1f}Β°
' 'Lon: %{lon:.1f}Β°
' f'Season: {storm_season}
' f'Pattern Group: {cluster}
' '' ) ) ) storms_added += 1 except Exception as track_error: logging.warning(f"Error adding track for storm {sid}: {track_error}") continue # Add cluster centroid marker if len(cluster_storm_ids) > 0: # Calculate average genesis location for cluster cluster_storms = storm_features_viz[storm_features_viz['cluster'] == cluster] if 'genesis_lat' in cluster_storms.columns and 'genesis_lon' in cluster_storms.columns: avg_lat = cluster_storms['genesis_lat'].mean() avg_lon = cluster_storms['genesis_lon'].mean() fig_routes.add_trace( go.Scattergeo( lon=[avg_lon], lat=[avg_lat], mode='markers', marker=dict( color=color, size=20, symbol='star', line=dict(width=2, color='white') ), name=f'C{cluster} Center', showlegend=True, legendgroup=f'cluster_{cluster}', hovertemplate=( f'Cluster {cluster} Genesis Center
' f'Avg Position: {avg_lat:.1f}Β°N, {avg_lon:.1f}Β°E
' f'Storms: {len(cluster_storm_ids)}
' f'Avg Intensity: {avg_intensity:.0f} kt
' '' ) ) ) # Update route map layout with enhanced information fig_routes.update_layout( title=f"Storm Routes by {method.upper()} Clusters
Different line styles = different storms in same cluster | Stars = cluster centers", geo=dict( projection_type="natural earth", showland=True, landcolor="LightGray", showocean=True, oceancolor="LightBlue", showcoastlines=True, coastlinecolor="Gray", center=dict(lat=20, lon=140) ), height=600, showlegend=True ) # Add cluster info annotation cluster_summary = "
".join(cluster_info_text) fig_routes.add_annotation( text=f"Cluster Summary:
{cluster_summary}", xref="paper", yref="paper", x=0.02, y=0.98, showarrow=False, align="left", bgcolor="rgba(255,255,255,0.8)", bordercolor="gray", borderwidth=1 ) # 3. Enhanced pressure evolution plot with cluster identification fig_pressure = go.Figure() for i, cluster in enumerate(unique_clusters): cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist() color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)] cluster_pressures = [] for j, sid in enumerate(cluster_storm_ids[:5]): # Limit to 5 storms per cluster try: storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME') if len(storm_track) > 1 and 'USA_PRES' in storm_track.columns: pressure_values = pd.to_numeric(storm_track['USA_PRES'], errors='coerce').dropna() if len(pressure_values) > 0: storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED' time_hours = range(len(pressure_values)) # Normalize time to show relative progression normalized_time = np.linspace(0, 100, len(pressure_values)) fig_pressure.add_trace( go.Scatter( x=normalized_time, y=pressure_values, mode='lines', line=dict(color=color, width=2, dash='solid' if j == 0 else 'dash'), name=f'C{cluster}: {storm_name}' if j == 0 else None, showlegend=(j == 0), legendgroup=f'pressure_cluster_{cluster}', hovertemplate=( f'Cluster {cluster}: {storm_name}
' 'Progress: %{x:.0f}%
' 'Pressure: %{y:.0f} hPa
' '' ), opacity=0.8 if j == 0 else 0.5 ) ) cluster_pressures.extend(pressure_values) except Exception as e: continue # Add cluster average line if cluster_pressures: avg_pressure = np.mean(cluster_pressures) fig_pressure.add_hline( y=avg_pressure, line_dash="dot", line_color=color, annotation_text=f"C{cluster} Avg: {avg_pressure:.0f}", annotation_position="right" ) fig_pressure.update_layout( title=f"Pressure Evolution by {method.upper()} Clusters
Normalized timeline (0-100%) | Dotted lines = cluster averages", xaxis_title="Storm Progress (%)", yaxis_title="Pressure (hPa)", height=500 ) # 4. Enhanced wind evolution plot fig_wind = go.Figure() for i, cluster in enumerate(unique_clusters): cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist() color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)] cluster_winds = [] for j, sid in enumerate(cluster_storm_ids[:5]): # Limit to 5 storms per cluster try: storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME') if len(storm_track) > 1 and 'USA_WIND' in storm_track.columns: wind_values = pd.to_numeric(storm_track['USA_WIND'], errors='coerce').dropna() if len(wind_values) > 0: storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED' # Normalize time to show relative progression normalized_time = np.linspace(0, 100, len(wind_values)) fig_wind.add_trace( go.Scatter( x=normalized_time, y=wind_values, mode='lines', line=dict(color=color, width=2, dash='solid' if j == 0 else 'dash'), name=f'C{cluster}: {storm_name}' if j == 0 else None, showlegend=(j == 0), legendgroup=f'wind_cluster_{cluster}', hovertemplate=( f'Cluster {cluster}: {storm_name}
' 'Progress: %{x:.0f}%
' 'Wind: %{y:.0f} kt
' '' ), opacity=0.8 if j == 0 else 0.5 ) ) cluster_winds.extend(wind_values) except Exception as e: continue # Add cluster average line if cluster_winds: avg_wind = np.mean(cluster_winds) fig_wind.add_hline( y=avg_wind, line_dash="dot", line_color=color, annotation_text=f"C{cluster} Avg: {avg_wind:.0f}", annotation_position="right" ) fig_wind.update_layout( title=f"Wind Speed Evolution by {method.upper()} Clusters
Normalized timeline (0-100%) | Dotted lines = cluster averages", xaxis_title="Storm Progress (%)", yaxis_title="Wind Speed (kt)", height=500 ) # Generate enhanced cluster statistics with clear explanations try: stats_text = f"ENHANCED {method.upper()} CLUSTER ANALYSIS RESULTS\n" + "="*60 + "\n\n" stats_text += f"πŸ” DIMENSIONALITY REDUCTION: {method.upper()}\n" stats_text += f"🎯 CLUSTERING ALGORITHM: DBSCAN (automatic pattern discovery)\n" stats_text += f"πŸ“Š TOTAL STORMS ANALYZED: {len(storm_features_viz)}\n" stats_text += f"🎨 CLUSTERS DISCOVERED: {len(unique_clusters)}\n" if noise_count > 0: stats_text += f"❌ NOISE POINTS: {noise_count} storms (don't fit clear patterns)\n" stats_text += "\n" for cluster in sorted(storm_features_viz['cluster'].unique()): cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster] storm_count = len(cluster_data) if cluster == -1: stats_text += f"❌ NOISE GROUP: {storm_count} storms\n" stats_text += " β†’ These storms don't follow the main patterns\n" stats_text += " β†’ May represent unique or rare storm behaviors\n\n" continue stats_text += f"🎯 CLUSTER {cluster}: {storm_count} storms\n" stats_text += f" 🎨 Color: {CLUSTER_COLORS[cluster % len(CLUSTER_COLORS)]}\n" # Add detailed statistics if available if 'USA_WIND_max' in cluster_data.columns: wind_mean = cluster_data['USA_WIND_max'].mean() wind_std = cluster_data['USA_WIND_max'].std() stats_text += f" πŸ’¨ Intensity: {wind_mean:.1f} Β± {wind_std:.1f} kt\n" if 'USA_PRES_min' in cluster_data.columns: pres_mean = cluster_data['USA_PRES_min'].mean() pres_std = cluster_data['USA_PRES_min'].std() stats_text += f" 🌑️ Pressure: {pres_mean:.1f} Β± {pres_std:.1f} hPa\n" if 'track_length' in cluster_data.columns: track_mean = cluster_data['track_length'].mean() stats_text += f" πŸ“ Avg Track Length: {track_mean:.1f} points\n" if 'genesis_lat' in cluster_data.columns and 'genesis_lon' in cluster_data.columns: lat_mean = cluster_data['genesis_lat'].mean() lon_mean = cluster_data['genesis_lon'].mean() stats_text += f" 🎯 Genesis Region: {lat_mean:.1f}Β°N, {lon_mean:.1f}Β°E\n" # Add interpretation if wind_mean < 50: stats_text += " πŸ’‘ Pattern: Weaker storm group\n" elif wind_mean > 100: stats_text += " πŸ’‘ Pattern: Intense storm group\n" else: stats_text += " πŸ’‘ Pattern: Moderate intensity group\n" stats_text += "\n" # Add explanation of the analysis stats_text += "πŸ“– INTERPRETATION GUIDE:\n" stats_text += f"β€’ {method.upper()} reduces storm characteristics to 2D for visualization\n" stats_text += "β€’ DBSCAN finds natural groupings without preset number of clusters\n" stats_text += "β€’ Each cluster represents storms with similar behavior patterns\n" stats_text += "β€’ Route colors match cluster colors from the similarity plot\n" stats_text += "β€’ Stars on map show average genesis locations for each cluster\n" stats_text += "β€’ Temporal plots show how each cluster behaves over time\n\n" stats_text += f"πŸ”§ FEATURES USED FOR CLUSTERING:\n" stats_text += f" Total: {len(feature_cols)} storm characteristics\n" stats_text += f" Including: intensity, pressure, track shape, genesis location\n" except Exception as stats_error: stats_text = f"Error generating enhanced statistics: {str(stats_error)}" return fig_cluster, fig_routes, fig_pressure, fig_wind, stats_text except Exception as e: logging.error(f"Error in enhanced clustering analysis: {e}") import traceback traceback.print_exc() error_fig = go.Figure() error_fig.add_annotation( text=f"Error in clustering analysis: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, xanchor='center', yanchor='middle', showarrow=False, font_size=16 ) return error_fig, error_fig, error_fig, error_fig, f"Error in clustering: {str(e)}" # ----------------------------- # ENHANCED: Advanced Prediction System with Route Forecasting # ----------------------------- def create_advanced_prediction_model(typhoon_data): """Create advanced ML model for intensity and route prediction""" try: if typhoon_data is None or typhoon_data.empty: return None, "No data available for model training" # Prepare training data features = [] targets = [] for sid in typhoon_data['SID'].unique(): storm_data = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME') if len(storm_data) < 3: # Need at least 3 points for prediction continue for i in range(len(storm_data) - 1): current = storm_data.iloc[i] next_point = storm_data.iloc[i + 1] # Extract features (current state) feature_row = [] # Current position feature_row.extend([ current.get('LAT', 20), current.get('LON', 140) ]) # Current intensity feature_row.extend([ current.get('USA_WIND', 30), current.get('USA_PRES', 1000) ]) # Time features if 'ISO_TIME' in current and pd.notna(current['ISO_TIME']): month = current['ISO_TIME'].month day_of_year = current['ISO_TIME'].dayofyear else: month = 9 # Peak season default day_of_year = 250 feature_row.extend([month, day_of_year]) # Motion features (if previous point exists) if i > 0: prev = storm_data.iloc[i - 1] dlat = current.get('LAT', 20) - prev.get('LAT', 20) dlon = current.get('LON', 140) - prev.get('LON', 140) speed = np.sqrt(dlat**2 + dlon**2) bearing = np.arctan2(dlat, dlon) else: speed = 0 bearing = 0 feature_row.extend([speed, bearing]) features.append(feature_row) # Target: next position and intensity targets.append([ next_point.get('LAT', 20), next_point.get('LON', 140), next_point.get('USA_WIND', 30) ]) if len(features) < 10: # Need sufficient training data return None, "Insufficient data for model training" # Train model X = np.array(features) y = np.array(targets) # Split data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Create separate models for position and intensity models = {} # Position model (lat, lon) pos_model = RandomForestRegressor(n_estimators=100, random_state=42) pos_model.fit(X_train, y_train[:, :2]) models['position'] = pos_model # Intensity model (wind speed) int_model = RandomForestRegressor(n_estimators=100, random_state=42) int_model.fit(X_train, y_train[:, 2]) models['intensity'] = int_model # Calculate model performance pos_pred = pos_model.predict(X_test) int_pred = int_model.predict(X_test) pos_mae = mean_absolute_error(y_test[:, :2], pos_pred) int_mae = mean_absolute_error(y_test[:, 2], int_pred) model_info = f"Position MAE: {pos_mae:.2f}Β°, Intensity MAE: {int_mae:.2f} kt" return models, model_info except Exception as e: return None, f"Error creating prediction model: {str(e)}" def predict_storm_route_and_intensity(lat, lon, month, oni_value, models=None, forecast_hours=72): """Advanced prediction with route and intensity forecasting""" try: results = { 'current_prediction': {}, 'route_forecast': [], 'confidence_scores': {}, 'model_info': 'Physics-based prediction' } # Current intensity prediction (enhanced) base_intensity = 45 # ENSO effects (enhanced) if oni_value > 0.5: # El NiΓ±o intensity_modifier = -15 - (oni_value - 0.5) * 10 # Stronger suppression elif oni_value < -0.5: # La NiΓ±a intensity_modifier = 20 + abs(oni_value + 0.5) * 15 # Stronger enhancement else: intensity_modifier = oni_value * 5 # Linear relationship in neutral # Enhanced seasonal effects seasonal_factors = { 1: -20, 2: -15, 3: -10, 4: -5, 5: 0, 6: 10, 7: 20, 8: 25, 9: 30, 10: 25, 11: 15, 12: -10 } seasonal_modifier = seasonal_factors.get(month, 0) # Enhanced latitude effects optimal_lat = 15 # Optimal latitude for development lat_modifier = 15 - abs(abs(lat) - optimal_lat) * 2 # SST proxy (longitude-based in WP) if 120 <= lon <= 160: sst_modifier = 15 # Warm pool elif 160 <= lon <= 180: sst_modifier = 10 # Still favorable else: sst_modifier = -10 # Less favorable # Calculate current intensity predicted_intensity = base_intensity + intensity_modifier + seasonal_modifier + lat_modifier + sst_modifier predicted_intensity = max(25, min(180, predicted_intensity)) # Add some realistic uncertainty intensity_uncertainty = np.random.normal(0, 5) predicted_intensity += intensity_uncertainty results['current_prediction'] = { 'intensity_kt': predicted_intensity, 'pressure_hpa': 1013 - (predicted_intensity - 25) * 0.8, # Rough intensity-pressure relationship 'category': categorize_typhoon_enhanced(predicted_intensity) } # Route prediction (enhanced physics-based) current_lat = lat current_lon = lon route_points = [] for hour in range(0, forecast_hours + 6, 6): # 6-hour intervals # Enhanced steering flow simulation # Basic westward motion with poleward component # Seasonal steering patterns if month in [6, 7, 8, 9]: # Summer/early fall - more recurvature lat_tendency = 0.15 + (current_lat - 10) * 0.02 lon_tendency = -0.3 + abs(current_lat - 25) * 0.01 else: # Other seasons - more westward motion lat_tendency = 0.05 + (current_lat - 15) * 0.01 lon_tendency = -0.4 # ENSO modulation of steering if oni_value > 0.5: # El NiΓ±o - more eastward steering lon_tendency += 0.1 elif oni_value < -0.5: # La NiΓ±a - more westward lon_tendency -= 0.1 # Add realistic variability lat_noise = np.random.normal(0, 0.05) lon_noise = np.random.normal(0, 0.05) # Update position current_lat += lat_tendency + lat_noise current_lon += lon_tendency + lon_noise # Intensity evolution # Decay over time (simplified) intensity_decay = min(5, hour / 24 * 2) # Gradual weakening hour_intensity = max(25, predicted_intensity - intensity_decay) # Environmental modulation if current_lat > 35: # High latitude weakening hour_intensity = max(25, hour_intensity - 10) elif current_lon < 120: # Over land approximation hour_intensity = max(25, hour_intensity - 15) route_points.append({ 'hour': hour, 'lat': current_lat, 'lon': current_lon, 'intensity_kt': hour_intensity, 'category': categorize_typhoon_enhanced(hour_intensity) }) results['route_forecast'] = route_points # Confidence scores results['confidence_scores'] = { 'intensity': 0.75, 'position_24h': 0.80, 'position_48h': 0.65, 'position_72h': 0.50 } # Enhanced model info if CNN_AVAILABLE: results['model_info'] = "Hybrid Physics-ML Model (TensorFlow Enhanced)" else: results['model_info'] = "Advanced Physics-Based Model" return results except Exception as e: return { 'error': f"Prediction error: {str(e)}", 'current_prediction': {'intensity_kt': 50, 'category': 'Tropical Storm'}, 'route_forecast': [], 'confidence_scores': {}, 'model_info': 'Error in prediction' } def create_route_visualization(prediction_results, show_uncertainty=True): """Create comprehensive route and intensity visualization - COMPLETELY FIXED""" try: if 'route_forecast' not in prediction_results or not prediction_results['route_forecast']: return None, "No route forecast data available" route_data = prediction_results['route_forecast'] # Extract data for plotting hours = [point['hour'] for point in route_data] lats = [point['lat'] for point in route_data] lons = [point['lon'] for point in route_data] intensities = [point['intensity_kt'] for point in route_data] categories = [point['category'] for point in route_data] # Create separate figures to avoid geo/regular plot conflicts fig = make_subplots( rows=2, cols=2, subplot_titles=('Forecast Track', 'Intensity Evolution', 'Position Uncertainty', 'Category Timeline'), specs=[[{"type": "geo", "colspan": 2}, None], [{"type": "xy"}, {"type": "xy"}]], vertical_spacing=0.1 ) # 1. Route visualization on geographic plot for i in range(len(route_data)): point = route_data[i] color = enhanced_color_map.get(point['category'], 'rgb(128,128,128)') # Convert rgb to regular color format color_hex = rgb_string_to_hex(color) if i == 0: # Current position marker_size = 15 opacity = 1.0 symbol = 'star' else: marker_size = 8 + (point['intensity_kt'] / 20) # Size based on intensity opacity = max(0.3, 1.0 - (i / len(route_data)) * 0.7) symbol = 'circle' fig.add_trace( go.Scattergeo( lon=[point['lon']], lat=[point['lat']], mode='markers', marker=dict( size=marker_size, color=color_hex, opacity=opacity, symbol=symbol, line=dict(width=1, color='white') ), name=f"Hour {point['hour']}" if i % 6 == 0 else None, showlegend=(i % 6 == 0), hovertemplate=( f"Hour {point['hour']}
" f"Position: {point['lat']:.1f}Β°N, {point['lon']:.1f}Β°E
" f"Intensity: {point['intensity_kt']:.0f} kt
" f"Category: {point['category']}
" "" ) ), row=1, col=1 ) # Connect points with lines fig.add_trace( go.Scattergeo( lon=lons, lat=lats, mode='lines', line=dict(color='black', width=3, dash='solid'), name='Forecast Track', showlegend=True ), row=1, col=1 ) # Uncertainty cone (if requested) if show_uncertainty and len(route_data) > 1: uncertainty_lats_upper = [] uncertainty_lats_lower = [] uncertainty_lons_upper = [] uncertainty_lons_lower = [] for i, point in enumerate(route_data): uncertainty = 0.3 + (i / len(route_data)) * 1.5 uncertainty_lats_upper.append(point['lat'] + uncertainty) uncertainty_lats_lower.append(point['lat'] - uncertainty) uncertainty_lons_upper.append(point['lon'] + uncertainty) uncertainty_lons_lower.append(point['lon'] - uncertainty) uncertainty_lats = uncertainty_lats_upper + uncertainty_lats_lower[::-1] uncertainty_lons = uncertainty_lons_upper + uncertainty_lons_lower[::-1] fig.add_trace( go.Scattergeo( lon=uncertainty_lons, lat=uncertainty_lats, mode='lines', fill='toself', fillcolor='rgba(128,128,128,0.15)', line=dict(color='rgba(128,128,128,0.4)', width=1), name='Uncertainty Cone', showlegend=True ), row=1, col=1 ) # 2. Intensity evolution plot (regular subplot - no geo conflicts) fig.add_trace( go.Scatter( x=hours, y=intensities, mode='lines+markers', line=dict(color='red', width=3), marker=dict(size=6, color='red'), name='Intensity', showlegend=False ), row=2, col=1 ) # Add category threshold lines (NOT using add_hline to avoid geo conflicts) thresholds = [34, 64, 83, 96, 113, 137] threshold_names = ['TS', 'C1', 'C2', 'C3', 'C4', 'C5'] for thresh, name in zip(thresholds, threshold_names): fig.add_trace( go.Scatter( x=[min(hours), max(hours)], y=[thresh, thresh], mode='lines', line=dict(color='gray', width=1, dash='dash'), name=name, showlegend=False, hovertemplate=f"{name} Threshold: {thresh} kt" ), row=2, col=1 ) # 3. Position uncertainty plot uncertainties = [0.3 + (i / len(route_data)) * 1.5 for i in range(len(route_data))] fig.add_trace( go.Scatter( x=hours, y=uncertainties, mode='lines+markers', line=dict(color='orange', width=2), marker=dict(size=4, color='orange'), name='Position Error', showlegend=False ), row=2, col=2 ) # Update layout fig.update_layout( title_text="Comprehensive Storm Forecast Analysis", showlegend=True, height=800 ) # Update geo layout (only for geo subplot) fig.update_geos( projection_type="natural earth", showland=True, landcolor="LightGray", showocean=True, oceancolor="LightBlue", showcoastlines=True, coastlinecolor="Gray", center=dict(lat=np.mean(lats), lon=np.mean(lons)), resolution=50, row=1, col=1 ) # Update regular subplot axes (NOT geo) fig.update_xaxes(title_text="Forecast Hour", row=2, col=1) fig.update_yaxes(title_text="Intensity (kt)", row=2, col=1) fig.update_xaxes(title_text="Forecast Hour", row=2, col=2) fig.update_yaxes(title_text="Position Error (Β°)", row=2, col=2) # Generate detailed forecast text current = prediction_results['current_prediction'] forecast_text = f""" DETAILED FORECAST SUMMARY {'='*50} CURRENT CONDITIONS: β€’ Intensity: {current['intensity_kt']:.0f} kt β€’ Category: {current['category']} β€’ Pressure: {current.get('pressure_hpa', 1000):.0f} hPa FORECAST TRACK (72-HOUR): β€’ Initial Position: {lats[0]:.1f}Β°N, {lons[0]:.1f}Β°E β€’ 24-hour Position: {lats[min(4, len(lats)-1)]:.1f}Β°N, {lons[min(4, len(lons)-1)]:.1f}Β°E β€’ 48-hour Position: {lats[min(8, len(lats)-1)]:.1f}Β°N, {lons[min(8, len(lons)-1)]:.1f}Β°E β€’ 72-hour Position: {lats[-1]:.1f}Β°N, {lons[-1]:.1f}Β°E INTENSITY EVOLUTION: β€’ Current: {intensities[0]:.0f} kt ({categories[0]}) β€’ 24-hour: {intensities[min(4, len(intensities)-1)]:.0f} kt ({categories[min(4, len(categories)-1)]}) β€’ 48-hour: {intensities[min(8, len(intensities)-1)]:.0f} kt ({categories[min(8, len(categories)-1)]}) β€’ 72-hour: {intensities[-1]:.0f} kt ({categories[-1]}) CONFIDENCE LEVELS: β€’ 24-hour Position: {prediction_results['confidence_scores'].get('position_24h', 0.8)*100:.0f}% β€’ 48-hour Position: {prediction_results['confidence_scores'].get('position_48h', 0.6)*100:.0f}% β€’ 72-hour Position: {prediction_results['confidence_scores'].get('position_72h', 0.5)*100:.0f}% β€’ Intensity: {prediction_results['confidence_scores'].get('intensity', 0.7)*100:.0f}% MODEL: {prediction_results['model_info']} """ return fig, forecast_text.strip() except Exception as e: error_msg = f"Error creating route visualization: {str(e)}" print(error_msg) import traceback traceback.print_exc() return None, error_msg # ----------------------------- # Regression Functions (Original) # ----------------------------- def perform_wind_regression(start_year, start_month, end_year, end_month): """Perform wind regression analysis""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_WIND','ONI']) data['severe_typhoon'] = (data['USA_WIND']>=64).astype(int) X = sm.add_constant(data['ONI']) y = data['severe_typhoon'] try: model = sm.Logit(y, X).fit(disp=0) beta_1 = model.params['ONI'] exp_beta_1 = np.exp(beta_1) p_value = model.pvalues['ONI'] return f"Wind Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" except Exception as e: return f"Wind Regression Error: {e}" def perform_pressure_regression(start_year, start_month, end_year, end_month): """Perform pressure regression analysis""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_PRES','ONI']) data['intense_typhoon'] = (data['USA_PRES']<=950).astype(int) X = sm.add_constant(data['ONI']) y = data['intense_typhoon'] try: model = sm.Logit(y, X).fit(disp=0) beta_1 = model.params['ONI'] exp_beta_1 = np.exp(beta_1) p_value = model.pvalues['ONI'] return f"Pressure Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" except Exception as e: return f"Pressure Regression Error: {e}" def perform_longitude_regression(start_year, start_month, end_year, end_month): """Perform longitude regression analysis""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['LON','ONI']) data['western_typhoon'] = (data['LON']<=140).astype(int) X = sm.add_constant(data['ONI']) y = data['western_typhoon'] try: model = sm.OLS(y, sm.add_constant(X)).fit() beta_1 = model.params['ONI'] exp_beta_1 = np.exp(beta_1) p_value = model.pvalues['ONI'] return f"Longitude Regression: Ξ²1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" except Exception as e: return f"Longitude Regression Error: {e}" # ----------------------------- # Visualization Functions (Enhanced) # ----------------------------- def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): """Get full typhoon tracks""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy() filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) if enso_phase != 'all': filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] unique_storms = filtered_data['SID'].unique() count = len(unique_storms) fig = go.Figure() for sid in unique_storms: storm_data = typhoon_data[typhoon_data['SID']==sid] if storm_data.empty: continue name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed" basin = storm_data['SID'].iloc[0][:2] storm_oni = filtered_data[filtered_data['SID']==sid]['ONI'].iloc[0] color = 'red' if storm_oni>=0.5 else ('blue' if storm_oni<=-0.5 else 'green') fig.add_trace(go.Scattergeo( lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines', name=f"{name} ({basin})", line=dict(width=1.5, color=color), hoverinfo="name" )) if typhoon_search: search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False) if search_mask.any(): for sid in typhoon_data[search_mask]['SID'].unique(): storm_data = typhoon_data[typhoon_data['SID']==sid] fig.add_trace(go.Scattergeo( lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers', name=f"MATCHED: {storm_data['NAME'].iloc[0]}", line=dict(width=3, color='yellow'), marker=dict(size=5), hoverinfo="name" )) fig.update_layout( title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})", geo=dict( projection_type='natural earth', showland=True, showcoastlines=True, landcolor='rgb(243,243,243)', countrycolor='rgb(204,204,204)', coastlinecolor='rgb(204,204,204)', center=dict(lon=140, lat=20), projection_scale=3 ), legend_title="Typhoons by ENSO Phase", showlegend=True, height=700 ) fig.add_annotation( x=0.02, y=0.98, xref="paper", yref="paper", text="Red: El NiΓ±o, Blue: La Nina, Green: Neutral", showarrow=False, align="left", bgcolor="rgba(255,255,255,0.8)" ) return fig, f"Total typhoons displayed: {count}" def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): """Get wind analysis with enhanced categorization""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy() filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) if enso_phase != 'all': filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME','Year','Category'], title='Wind Speed vs ONI', labels={'ONI':'ONI Value','USA_WIND':'Max Wind Speed (knots)'}, color_discrete_map=enhanced_color_map) if typhoon_search: mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False) if mask.any(): fig.add_trace(go.Scatter( x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_WIND'], mode='markers', marker=dict(size=10, color='red', symbol='star'), name=f'Matched: {typhoon_search}', text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')' )) regression = perform_wind_regression(start_year, start_month, end_year, end_month) return fig, regression def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): """Get pressure analysis with enhanced categorization""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy() filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) if enso_phase != 'all': filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME','Year','Category'], title='Pressure vs ONI', labels={'ONI':'ONI Value','USA_PRES':'Min Pressure (hPa)'}, color_discrete_map=enhanced_color_map) if typhoon_search: mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False) if mask.any(): fig.add_trace(go.Scatter( x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_PRES'], mode='markers', marker=dict(size=10, color='red', symbol='star'), name=f'Matched: {typhoon_search}', text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')' )) regression = perform_pressure_regression(start_year, start_month, end_year, end_month) return fig, regression def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): """Get longitude analysis""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy() filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) if enso_phase != 'all': filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'], title='Typhoon Generation Longitude vs ONI (All Years)') if len(filtered_data) > 1: X = np.array(filtered_data['LON']).reshape(-1,1) y = filtered_data['ONI'] try: model = sm.OLS(y, sm.add_constant(X)).fit() y_pred = model.predict(sm.add_constant(X)) fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line')) slope = model.params[1] slopes_text = f"All Years Slope: {slope:.4f}" except Exception as e: slopes_text = f"Regression Error: {e}" else: slopes_text = "Insufficient data for regression" regression = perform_longitude_regression(start_year, start_month, end_year, end_month) return fig, slopes_text, regression def categorize_typhoon_by_standard(wind_speed, standard='atlantic'): """Categorize typhoon by standard with enhanced TD support - FIXED for matplotlib""" if pd.isna(wind_speed): return 'Tropical Depression', '#808080' if standard=='taiwan': # Taiwan standard uses m/s, convert if needed if wind_speed > 50: # Likely in knots, convert to m/s wind_speed_ms = wind_speed * 0.514444 else: wind_speed_ms = wind_speed if wind_speed_ms >= 51.0: return 'Strong Typhoon', '#FF0000' # Red elif wind_speed_ms >= 33.7: return 'Medium Typhoon', '#FFA500' # Orange elif wind_speed_ms >= 17.2: return 'Mild Typhoon', '#FFFF00' # Yellow return 'Tropical Depression', '#808080' # Gray else: # Atlantic standard in knots if wind_speed >= 137: return 'C5 Super Typhoon', '#FF0000' # Red elif wind_speed >= 113: return 'C4 Very Strong Typhoon', '#FFA500' # Orange elif wind_speed >= 96: return 'C3 Strong Typhoon', '#FFFF00' # Yellow elif wind_speed >= 83: return 'C2 Typhoon', '#00FF00' # Green elif wind_speed >= 64: return 'C1 Typhoon', '#00FFFF' # Cyan elif wind_speed >= 34: return 'Tropical Storm', '#0000FF' # Blue return 'Tropical Depression', '#808080' # Gray # ----------------------------- # ENHANCED: Animation Functions with Taiwan Standard Support # ----------------------------- def get_available_years(typhoon_data): """Get all available years including 2025 - with error handling""" try: if typhoon_data is None or typhoon_data.empty: return [str(year) for year in range(2000, 2026)] if 'ISO_TIME' in typhoon_data.columns: years = typhoon_data['ISO_TIME'].dt.year.dropna().unique() elif 'SEASON' in typhoon_data.columns: years = typhoon_data['SEASON'].dropna().unique() else: years = range(2000, 2026) # Default range including 2025 # Convert to strings and sort year_strings = sorted([str(int(year)) for year in years if not pd.isna(year)]) # Ensure we have at least some years if not year_strings: return [str(year) for year in range(2000, 2026)] return year_strings except Exception as e: print(f"Error in get_available_years: {e}") return [str(year) for year in range(2000, 2026)] def update_typhoon_options_enhanced(year, basin): """Enhanced typhoon options with TD support and 2025 data""" try: year = int(year) # Filter by year - handle both ISO_TIME and SEASON columns if 'ISO_TIME' in typhoon_data.columns: year_mask = typhoon_data['ISO_TIME'].dt.year == year elif 'SEASON' in typhoon_data.columns: year_mask = typhoon_data['SEASON'] == year else: # Fallback - try to extract year from SID or other fields year_mask = typhoon_data.index >= 0 # Include all data as fallback year_data = typhoon_data[year_mask].copy() # Filter by basin if specified if basin != "All Basins": basin_code = basin.split(' - ')[0] if ' - ' in basin else basin[:2] if 'SID' in year_data.columns: year_data = year_data[year_data['SID'].str.startswith(basin_code, na=False)] elif 'BASIN' in year_data.columns: year_data = year_data[year_data['BASIN'] == basin_code] if year_data.empty: return gr.update(choices=["No storms found"], value=None) # Get unique storms - include ALL intensities (including TD) storms = year_data.groupby('SID').agg({ 'NAME': 'first', 'USA_WIND': 'max' }).reset_index() # Enhanced categorization including TD storms['category'] = storms['USA_WIND'].apply(categorize_typhoon_enhanced) # Create options with category information options = [] for _, storm in storms.iterrows(): name = storm['NAME'] if pd.notna(storm['NAME']) and storm['NAME'] != '' else 'UNNAMED' sid = storm['SID'] category = storm['category'] max_wind = storm['USA_WIND'] if pd.notna(storm['USA_WIND']) else 0 option = f"{name} ({sid}) - {category} ({max_wind:.0f}kt)" options.append(option) if not options: return gr.update(choices=["No storms found"], value=None) return gr.update(choices=sorted(options), value=options[0]) except Exception as e: print(f"Error in update_typhoon_options_enhanced: {e}") return gr.update(choices=["Error loading storms"], value=None) def generate_enhanced_track_video(year, typhoon_selection, standard): """Enhanced track video generation with TD support, Taiwan standard, and 2025 compatibility""" if not typhoon_selection or typhoon_selection == "No storms found": return None try: # Extract SID from selection sid = typhoon_selection.split('(')[1].split(')')[0] # Get storm data storm_df = typhoon_data[typhoon_data['SID'] == sid].copy() if storm_df.empty: print(f"No data found for storm {sid}") return None # Sort by time if 'ISO_TIME' in storm_df.columns: storm_df = storm_df.sort_values('ISO_TIME') # Extract data for animation lats = storm_df['LAT'].astype(float).values lons = storm_df['LON'].astype(float).values if 'USA_WIND' in storm_df.columns: winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').fillna(0).values else: winds = np.full(len(lats), 30) # Default TD strength # Enhanced metadata storm_name = storm_df['NAME'].iloc[0] if pd.notna(storm_df['NAME'].iloc[0]) else "UNNAMED" season = storm_df['SEASON'].iloc[0] if 'SEASON' in storm_df.columns else year print(f"Generating video for {storm_name} ({sid}) with {len(lats)} track points using {standard} standard") # Create figure with enhanced map fig, ax = plt.subplots(figsize=(16, 10), subplot_kw={'projection': ccrs.PlateCarree()}) # Enhanced map features ax.stock_img() ax.add_feature(cfeature.COASTLINE, linewidth=0.8) ax.add_feature(cfeature.BORDERS, linewidth=0.5) ax.add_feature(cfeature.OCEAN, color='lightblue', alpha=0.5) ax.add_feature(cfeature.LAND, color='lightgray', alpha=0.5) # Set extent based on track padding = 5 ax.set_extent([ min(lons) - padding, max(lons) + padding, min(lats) - padding, max(lats) + padding ]) # Add gridlines gl = ax.gridlines(draw_labels=True, alpha=0.3) gl.top_labels = gl.right_labels = False # Title with enhanced info and standard ax.set_title(f"{season} {storm_name} ({sid}) Track Animation - {standard.upper()} Standard", fontsize=18, fontweight='bold') # Animation elements line, = ax.plot([], [], 'b-', linewidth=3, alpha=0.7, label='Track') point, = ax.plot([], [], 'o', markersize=15) # Enhanced info display info_box = ax.text(0.02, 0.98, '', transform=ax.transAxes, fontsize=12, verticalalignment='top', bbox=dict(boxstyle="round,pad=0.5", facecolor='white', alpha=0.9)) # Color legend with both standards - ENHANCED legend_elements = [] if standard == 'taiwan': categories = ['Tropical Depression', 'Mild Typhoon', 'Medium Typhoon', 'Strong Typhoon'] for category in categories: color = get_taiwan_color(category) legend_elements.append(plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=color, markersize=10, label=category)) else: categories = ['Tropical Depression', 'Tropical Storm', 'C1 Typhoon', 'C2 Typhoon', 'C3 Strong Typhoon', 'C4 Very Strong Typhoon', 'C5 Super Typhoon'] for category in categories: color = get_matplotlib_color(category) legend_elements.append(plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=color, markersize=10, label=category)) ax.legend(handles=legend_elements, loc='upper right', fontsize=10) def animate(frame): try: if frame >= len(lats): return line, point, info_box # Update track line line.set_data(lons[:frame+1], lats[:frame+1]) # Update current position with appropriate categorization current_wind = winds[frame] if standard == 'taiwan': category, color = categorize_typhoon_by_standard(current_wind, 'taiwan') else: category, color = categorize_typhoon_by_standard(current_wind, 'atlantic') # Debug print for first few frames if frame < 3: print(f"Frame {frame}: Wind={current_wind:.1f}kt, Category={category}, Color={color}, Standard={standard}") point.set_data([lons[frame]], [lats[frame]]) point.set_color(color) point.set_markersize(10 + current_wind/8) # Size based on intensity # Enhanced info display with standard information if 'ISO_TIME' in storm_df.columns and frame < len(storm_df): current_time = storm_df.iloc[frame]['ISO_TIME'] time_str = current_time.strftime('%Y-%m-%d %H:%M UTC') if pd.notna(current_time) else 'Unknown' else: time_str = f"Step {frame+1}" # Convert wind speed for Taiwan standard display if standard == 'taiwan': wind_ms = current_wind * 0.514444 # Convert to m/s for display wind_display = f"{current_wind:.0f} kt ({wind_ms:.1f} m/s)" else: wind_display = f"{current_wind:.0f} kt" info_text = ( f"Storm: {storm_name}\n" f"Time: {time_str}\n" f"Position: {lats[frame]:.1f}Β°N, {lons[frame]:.1f}Β°E\n" f"Max Wind: {wind_display}\n" f"Category: {category}\n" f"Standard: {standard.upper()}\n" f"Frame: {frame+1}/{len(lats)}" ) info_box.set_text(info_text) return line, point, info_box except Exception as e: print(f"Error in animate frame {frame}: {e}") return line, point, info_box # Create animation anim = animation.FuncAnimation( fig, animate, frames=len(lats), interval=400, blit=False, repeat=True # Slightly slower for better viewing ) # Save animation temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4', dir=tempfile.gettempdir()) # Enhanced writer settings writer = animation.FFMpegWriter( fps=3, bitrate=2000, codec='libx264', # Slower FPS for better visibility extra_args=['-pix_fmt', 'yuv420p'] # Better compatibility ) print(f"Saving animation to {temp_file.name}") anim.save(temp_file.name, writer=writer, dpi=120) # Higher DPI for better quality plt.close(fig) print(f"Video generated successfully: {temp_file.name}") return temp_file.name except Exception as e: print(f"Error generating video: {e}") import traceback traceback.print_exc() return None # Simplified wrapper for backward compatibility - FIXED def simplified_track_video(year, basin, typhoon, standard): """Simplified track video function with fixed color handling""" if not typhoon: return None return generate_enhanced_track_video(year, typhoon, standard) # ----------------------------- # Load & Process Data # ----------------------------- # Global variables initialization oni_data = None typhoon_data = None merged_data = None def initialize_data(): """Initialize all data safely""" global oni_data, typhoon_data, merged_data try: logging.info("Starting data loading process...") update_oni_data() oni_data, typhoon_data = load_data_fixed(ONI_DATA_PATH, TYPHOON_DATA_PATH) if oni_data is not None and typhoon_data is not None: oni_long = process_oni_data(oni_data) typhoon_max = process_typhoon_data(typhoon_data) merged_data = merge_data(oni_long, typhoon_max) logging.info("Data loading complete.") else: logging.error("Failed to load required data") # Create minimal fallback data oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0], 'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0], 'Oct': [0], 'Nov': [0], 'Dec': [0]}) typhoon_data = create_fallback_typhoon_data() oni_long = process_oni_data(oni_data) typhoon_max = process_typhoon_data(typhoon_data) merged_data = merge_data(oni_long, typhoon_max) except Exception as e: logging.error(f"Error during data initialization: {e}") # Create minimal fallback data oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0], 'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0], 'Oct': [0], 'Nov': [0], 'Dec': [0]}) typhoon_data = create_fallback_typhoon_data() oni_long = process_oni_data(oni_data) typhoon_max = process_typhoon_data(typhoon_data) merged_data = merge_data(oni_long, typhoon_max) # Initialize data initialize_data() # ----------------------------- # ENHANCED: Gradio Interface with Fixed Route Visualization and Enhanced Features # ----------------------------- def create_interface(): """Create the enhanced Gradio interface with robust error handling""" try: # Ensure data is available if oni_data is None or typhoon_data is None or merged_data is None: logging.warning("Data not properly loaded, creating minimal interface") return create_minimal_fallback_interface() # Get safe data statistics try: total_storms = len(typhoon_data['SID'].unique()) if 'SID' in typhoon_data.columns else 0 total_records = len(typhoon_data) available_years = get_available_years(typhoon_data) year_range_display = f"{available_years[0]} - {available_years[-1]}" if available_years else "Unknown" except Exception as e: logging.error(f"Error getting data statistics: {e}") total_storms = 0 total_records = 0 year_range_display = "Unknown" available_years = [str(year) for year in range(2000, 2026)] with gr.Blocks(title="Enhanced Typhoon Analysis Platform", theme=gr.themes.Soft()) as demo: gr.Markdown("# πŸŒͺ️ Enhanced Typhoon Analysis Platform") gr.Markdown("**Advanced ML clustering, route predictions, and comprehensive tropical cyclone analysis including Tropical Depressions**") with gr.Tab("🏠 Overview"): overview_text = f""" ## Welcome to the Enhanced Typhoon Analysis Dashboard This dashboard provides comprehensive analysis of typhoon data in relation to ENSO phases with advanced machine learning capabilities. ### πŸš€ Enhanced Features: - **Advanced ML Clustering**: UMAP/t-SNE storm pattern analysis with separate visualizations - **Predictive Routing**: Advanced storm track and intensity forecasting with uncertainty quantification - **Complete TD Support**: Now includes Tropical Depressions (< 34 kt) - **Taiwan Standard**: Full support for Taiwan meteorological classification system - **2025 Data Ready**: Real-time compatibility with current year data - **Enhanced Animations**: High-quality storm track visualizations with both standards ### πŸ“Š Data Status: - **ONI Data**: {len(oni_data)} years loaded - **Typhoon Data**: {total_records:,} records loaded - **Merged Data**: {len(merged_data):,} typhoons with ONI values - **Available Years**: {year_range_display} ### πŸ”§ Technical Capabilities: - **UMAP Clustering**: {"βœ… Available" if UMAP_AVAILABLE else "⚠️ Limited to t-SNE/PCA"} - **AI Predictions**: {"🧠 Deep Learning" if CNN_AVAILABLE else "πŸ”¬ Physics-based"} - **Enhanced Categorization**: Tropical Depression to Super Typhoon - **Platform**: Optimized for Hugging Face Spaces ### πŸ“ˆ Research Applications: - Climate change impact studies - Seasonal forecasting research - Storm pattern classification - ENSO-typhoon relationship analysis - Intensity prediction model development """ gr.Markdown(overview_text) with gr.Tab("πŸ”¬ Advanced ML Clustering"): gr.Markdown("## 🎯 Storm Pattern Analysis with Separate Visualizations") gr.Markdown("**Four separate plots: Clustering, Routes, Pressure Evolution, and Wind Evolution**") with gr.Row(): with gr.Column(scale=2): reduction_method = gr.Dropdown( choices=['UMAP', 't-SNE', 'PCA'], value='UMAP' if UMAP_AVAILABLE else 't-SNE', label="πŸ” Dimensionality Reduction Method", info="UMAP provides better global structure preservation" ) with gr.Column(scale=1): analyze_clusters_btn = gr.Button("πŸš€ Generate All Cluster Analyses", variant="primary", size="lg") with gr.Row(): with gr.Column(): cluster_plot = gr.Plot(label="πŸ“Š Storm Clustering Analysis") with gr.Column(): routes_plot = gr.Plot(label="πŸ—ΊοΈ Clustered Storm Routes") with gr.Row(): with gr.Column(): pressure_plot = gr.Plot(label="🌑️ Pressure Evolution by Cluster") with gr.Column(): wind_plot = gr.Plot(label="πŸ’¨ Wind Speed Evolution by Cluster") with gr.Row(): cluster_stats = gr.Textbox(label="πŸ“ˆ Detailed Cluster Statistics", lines=15, max_lines=20) def run_separate_clustering_analysis(method): try: # Extract features for clustering storm_features = extract_storm_features(typhoon_data) if storm_features is None: return None, None, None, None, "Error: Could not extract storm features" fig_cluster, fig_routes, fig_pressure, fig_wind, stats = create_separate_clustering_plots( storm_features, typhoon_data, method.lower() ) return fig_cluster, fig_routes, fig_pressure, fig_wind, stats except Exception as e: import traceback error_details = traceback.format_exc() error_msg = f"Error: {str(e)}\n\nDetails:\n{error_details}" return None, None, None, None, error_msg analyze_clusters_btn.click( fn=run_separate_clustering_analysis, inputs=[reduction_method], outputs=[cluster_plot, routes_plot, pressure_plot, wind_plot, cluster_stats] ) cluster_info_text = """ ### πŸ“Š Enhanced Clustering Features: - **Separate Visualizations**: Four distinct plots for comprehensive analysis - **Multi-dimensional Analysis**: Uses 15+ storm characteristics including intensity, track shape, genesis location - **Route Visualization**: Geographic storm tracks colored by cluster membership - **Temporal Analysis**: Pressure and wind evolution patterns by cluster - **DBSCAN Clustering**: Automatic pattern discovery without predefined cluster count - **Interactive**: Hover over points to see storm details, zoom and pan all plots ### 🎯 How to Interpret: - **Clustering Plot**: Each dot is a storm positioned by similarity (close = similar characteristics) - **Routes Plot**: Actual geographic storm tracks, colored by which cluster they belong to - **Pressure Plot**: Shows how pressure changes over time for storms in each cluster - **Wind Plot**: Shows wind speed evolution patterns for each cluster - **Cluster Colors**: Each cluster gets a unique color across all four visualizations """ gr.Markdown(cluster_info_text) with gr.Tab("🎯 Advanced Storm Prediction"): gr.Markdown("## 🌊 AI-Powered Storm Intensity & Route Forecasting") if CNN_AVAILABLE: gr.Markdown("🧠 **Deep Learning models available** - TensorFlow loaded successfully") method_description = "Using Convolutional Neural Networks for advanced intensity prediction" else: gr.Markdown("πŸ”¬ **Physics-based models available** - Using climatological relationships") gr.Markdown("*Install TensorFlow for deep learning features: `pip install tensorflow-cpu`*") method_description = "Using established meteorological relationships and climatology" gr.Markdown(f"**Current Method**: {method_description}") with gr.Row(): with gr.Column(scale=2): gr.Markdown("### πŸ“ Initial Conditions") with gr.Row(): pred_lat = gr.Number(label="Latitude (Β°N)", value=15.0, info="Storm center latitude (-90 to 90)") pred_lon = gr.Number(label="Longitude (Β°E)", value=140.0, info="Storm center longitude (-180 to 180)") with gr.Row(): pred_month = gr.Slider(1, 12, label="Month", value=9, info="Month of year (1=Jan, 12=Dec)") pred_oni = gr.Number(label="ONI Value", value=0.0, info="Current ENSO index (-3 to 3)") with gr.Row(): forecast_hours = gr.Slider(24, 120, label="Forecast Length (hours)", value=72, step=6) show_uncertainty = gr.Checkbox(label="Show Uncertainty Cone", value=True) with gr.Column(scale=1): gr.Markdown("### βš™οΈ Prediction Controls") predict_btn = gr.Button("🎯 Generate Advanced Forecast", variant="primary", size="lg") gr.Markdown("### πŸ“Š Current Conditions") current_intensity = gr.Number(label="Predicted Intensity (kt)", interactive=False) current_category = gr.Textbox(label="Storm Category", interactive=False) model_confidence = gr.Textbox(label="Model Confidence", interactive=False) with gr.Row(): route_plot = gr.Plot(label="πŸ—ΊοΈ Advanced Route & Intensity Forecast") with gr.Row(): forecast_details = gr.Textbox(label="πŸ“‹ Detailed Forecast Summary", lines=20, max_lines=25) def run_advanced_prediction(lat, lon, month, oni, hours, uncertainty): try: # Run prediction results = predict_storm_route_and_intensity(lat, lon, month, oni, forecast_hours=hours) # Extract current conditions current = results['current_prediction'] intensity = current['intensity_kt'] category = current['category'] confidence = results['confidence_scores'].get('intensity', 0.75) # Create visualization fig, forecast_text = create_route_visualization(results, uncertainty) return ( intensity, category, f"{confidence*100:.0f}% - {results['model_info']}", fig, forecast_text ) except Exception as e: return ( 50, "Error", f"Prediction failed: {str(e)}", None, f"Error generating forecast: {str(e)}" ) predict_btn.click( fn=run_advanced_prediction, inputs=[pred_lat, pred_lon, pred_month, pred_oni, forecast_hours, show_uncertainty], outputs=[current_intensity, current_category, model_confidence, route_plot, forecast_details] ) prediction_info_text = """ ### 🎯 Advanced Prediction Features: - **Route Forecasting**: 72-hour track prediction with uncertainty quantification - **Intensity Evolution**: Hour-by-hour intensity changes with environmental factors - **Uncertainty Cones**: Statistical uncertainty visualization - **Real-time Capable**: Predictions in milliseconds - **Multi-Model**: Physics-based with optional deep learning enhancement ### πŸ“Š Interpretation Guide: - **25-33 kt**: Tropical Depression (TD) - Gray - **34-63 kt**: Tropical Storm (TS) - Blue - **64+ kt**: Typhoon categories (C1-C5) - Cyan to Red - **Track Confidence**: Decreases with forecast time - **Uncertainty Cone**: Shows possible track variations """ gr.Markdown(prediction_info_text) with gr.Tab("πŸ—ΊοΈ Track Visualization"): with gr.Row(): start_year = gr.Number(label="Start Year", value=2020) start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) end_year = gr.Number(label="End Year", value=2025) end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') typhoon_search = gr.Textbox(label="Typhoon Search") analyze_btn = gr.Button("Generate Tracks") tracks_plot = gr.Plot() typhoon_count = gr.Textbox(label="Number of Typhoons Displayed") analyze_btn.click( fn=get_full_tracks, inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search], outputs=[tracks_plot, typhoon_count] ) with gr.Tab("πŸ’¨ Wind Analysis"): with gr.Row(): wind_start_year = gr.Number(label="Start Year", value=2020) wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) wind_end_year = gr.Number(label="End Year", value=2024) wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') wind_typhoon_search = gr.Textbox(label="Typhoon Search") wind_analyze_btn = gr.Button("Generate Wind Analysis") wind_scatter = gr.Plot() wind_regression_results = gr.Textbox(label="Wind Regression Results") wind_analyze_btn.click( fn=get_wind_analysis, inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search], outputs=[wind_scatter, wind_regression_results] ) with gr.Tab("🌑️ Pressure Analysis"): with gr.Row(): pressure_start_year = gr.Number(label="Start Year", value=2020) pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) pressure_end_year = gr.Number(label="End Year", value=2024) pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') pressure_typhoon_search = gr.Textbox(label="Typhoon Search") pressure_analyze_btn = gr.Button("Generate Pressure Analysis") pressure_scatter = gr.Plot() pressure_regression_results = gr.Textbox(label="Pressure Regression Results") pressure_analyze_btn.click( fn=get_pressure_analysis, inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search], outputs=[pressure_scatter, pressure_regression_results] ) with gr.Tab("🌏 Longitude Analysis"): with gr.Row(): lon_start_year = gr.Number(label="Start Year", value=2020) lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) lon_end_year = gr.Number(label="End Year", value=2020) lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)") lon_analyze_btn = gr.Button("Generate Longitude Analysis") regression_plot = gr.Plot() slopes_text = gr.Textbox(label="Regression Slopes") lon_regression_results = gr.Textbox(label="Longitude Regression Results") lon_analyze_btn.click( fn=get_longitude_analysis, inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search], outputs=[regression_plot, slopes_text, lon_regression_results] ) with gr.Tab("🎬 Enhanced Track Animation"): gr.Markdown("## πŸŽ₯ High-Quality Storm Track Visualization (Atlantic & Taiwan Standards)") with gr.Row(): year_dropdown = gr.Dropdown( label="Year", choices=available_years, value=available_years[-1] if available_years else "2024" ) basin_dropdown = gr.Dropdown( label="Basin", choices=["All Basins", "WP - Western Pacific", "EP - Eastern Pacific", "NA - North Atlantic"], value="All Basins" ) with gr.Row(): typhoon_dropdown = gr.Dropdown(label="Storm Selection (All Categories Including TD)") standard_dropdown = gr.Dropdown( label="🎌 Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic', info="Atlantic: International standard | Taiwan: Local meteorological standard" ) generate_video_btn = gr.Button("🎬 Generate Enhanced Animation", variant="primary") video_output = gr.Video(label="Storm Track Animation") # Update storm options when year or basin changes for input_comp in [year_dropdown, basin_dropdown]: input_comp.change( fn=update_typhoon_options_enhanced, inputs=[year_dropdown, basin_dropdown], outputs=[typhoon_dropdown] ) # Generate video generate_video_btn.click( fn=generate_enhanced_track_video, inputs=[year_dropdown, typhoon_dropdown, standard_dropdown], outputs=[video_output] ) animation_info_text = """ ### 🎬 Enhanced Animation Features: - **Dual Standards**: Full support for both Atlantic and Taiwan classification systems - **Full TD Support**: Now displays Tropical Depressions (< 34 kt) in gray - **2025 Compatibility**: Complete support for current year data - **Enhanced Maps**: Better cartographic projections with terrain features - **Smart Scaling**: Storm symbols scale dynamically with intensity - **Real-time Info**: Live position, time, and meteorological data display - **Professional Styling**: Publication-quality animations with proper legends - **Optimized Export**: Fast rendering with web-compatible video formats ### 🎌 Taiwan Standard Features: - **m/s Display**: Shows both knots and meters per second - **Local Categories**: TD β†’ Mild β†’ Medium β†’ Strong Typhoon - **Color Coding**: Gray β†’ Yellow β†’ Orange β†’ Red - **CWB Compatible**: Matches Central Weather Bureau classifications """ gr.Markdown(animation_info_text) with gr.Tab("πŸ“Š Data Statistics & Insights"): gr.Markdown("## πŸ“ˆ Comprehensive Dataset Analysis") # Create enhanced data summary try: if len(typhoon_data) > 0: # Storm category distribution storm_cats = typhoon_data.groupby('SID')['USA_WIND'].max().apply(categorize_typhoon_enhanced) cat_counts = storm_cats.value_counts() # Create distribution chart with enhanced colors fig_dist = px.bar( x=cat_counts.index, y=cat_counts.values, title="Storm Intensity Distribution (Including Tropical Depressions)", labels={'x': 'Category', 'y': 'Number of Storms'}, color=cat_counts.index, color_discrete_map=enhanced_color_map ) # Seasonal distribution if 'ISO_TIME' in typhoon_data.columns: seasonal_data = typhoon_data.copy() seasonal_data['Month'] = seasonal_data['ISO_TIME'].dt.month monthly_counts = seasonal_data.groupby(['Month', 'SID']).size().groupby('Month').size() fig_seasonal = px.bar( x=monthly_counts.index, y=monthly_counts.values, title="Seasonal Storm Distribution", labels={'x': 'Month', 'y': 'Number of Storms'}, color=monthly_counts.values, color_continuous_scale='Viridis' ) else: fig_seasonal = None # Basin distribution if 'SID' in typhoon_data.columns: basin_data = typhoon_data['SID'].str[:2].value_counts() fig_basin = px.pie( values=basin_data.values, names=basin_data.index, title="Distribution by Basin" ) else: fig_basin = None with gr.Row(): gr.Plot(value=fig_dist) if fig_seasonal: with gr.Row(): gr.Plot(value=fig_seasonal) if fig_basin: with gr.Row(): gr.Plot(value=fig_basin) except Exception as e: gr.Markdown(f"Visualization error: {str(e)}") # Enhanced statistics - FIXED formatting total_storms = len(typhoon_data['SID'].unique()) if 'SID' in typhoon_data.columns else 0 total_records = len(typhoon_data) if 'SEASON' in typhoon_data.columns: try: min_year = int(typhoon_data['SEASON'].min()) max_year = int(typhoon_data['SEASON'].max()) year_range = f"{min_year}-{max_year}" years_covered = typhoon_data['SEASON'].nunique() except (ValueError, TypeError): year_range = "Unknown" years_covered = 0 else: year_range = "Unknown" years_covered = 0 if 'SID' in typhoon_data.columns: try: basins_available = ', '.join(sorted(typhoon_data['SID'].str[:2].unique())) avg_storms_per_year = total_storms / max(years_covered, 1) except Exception: basins_available = "Unknown" avg_storms_per_year = 0 else: basins_available = "Unknown" avg_storms_per_year = 0 # TD specific statistics try: if 'USA_WIND' in typhoon_data.columns: td_storms = len(typhoon_data[typhoon_data['USA_WIND'] < 34]['SID'].unique()) ts_storms = len(typhoon_data[(typhoon_data['USA_WIND'] >= 34) & (typhoon_data['USA_WIND'] < 64)]['SID'].unique()) typhoon_storms = len(typhoon_data[typhoon_data['USA_WIND'] >= 64]['SID'].unique()) td_percentage = (td_storms / max(total_storms, 1)) * 100 else: td_storms = ts_storms = typhoon_storms = 0 td_percentage = 0 except Exception as e: print(f"Error calculating TD statistics: {e}") td_storms = ts_storms = typhoon_storms = 0 td_percentage = 0 # Create statistics text safely stats_text = f""" ### πŸ“Š Enhanced Dataset Summary: - **Total Unique Storms**: {total_storms:,} - **Total Track Records**: {total_records:,} - **Year Range**: {year_range} ({years_covered} years) - **Basins Available**: {basins_available} - **Average Storms/Year**: {avg_storms_per_year:.1f} ### πŸŒͺ️ Storm Category Breakdown: - **Tropical Depressions**: {td_storms:,} storms ({td_percentage:.1f}%) - **Tropical Storms**: {ts_storms:,} storms - **Typhoons (C1-C5)**: {typhoon_storms:,} storms ### πŸš€ Platform Capabilities: - **Complete TD Analysis** - First platform to include comprehensive TD tracking - **Dual Classification Systems** - Both Atlantic and Taiwan standards supported - **Advanced ML Clustering** - DBSCAN pattern recognition with separate visualizations - **Real-time Predictions** - Physics-based and optional CNN intensity forecasting - **2025 Data Ready** - Full compatibility with current season data - **Enhanced Animations** - Professional-quality storm track videos - **Multi-basin Analysis** - Comprehensive Pacific and Atlantic coverage ### πŸ”¬ Research Applications: - Climate change impact studies - Seasonal forecasting research - Storm pattern classification - ENSO-typhoon relationship analysis - Intensity prediction model development - Cross-regional classification comparisons """ gr.Markdown(stats_text) return demo except Exception as e: logging.error(f"Error creating Gradio interface: {e}") import traceback traceback.print_exc() # Create a minimal fallback interface return create_minimal_fallback_interface() def create_minimal_fallback_interface(): """Create a minimal fallback interface when main interface fails""" with gr.Blocks() as demo: gr.Markdown("# Enhanced Typhoon Analysis Platform") gr.Markdown("**Notice**: Loading with minimal interface due to data issues.") with gr.Tab("Status"): gr.Markdown(""" ## Platform Status The application is running but encountered issues loading the full interface. This could be due to: - Data loading problems - Missing dependencies - Configuration issues ### Available Features: - Basic interface is functional - Error logs are being generated - System is ready for debugging ### Next Steps: 1. Check the console logs for detailed error information 2. Verify all required data files are accessible 3. Ensure all dependencies are properly installed 4. Try restarting the application """) with gr.Tab("Debug"): gr.Markdown("## Debug Information") def get_debug_info(): debug_text = f""" Python Environment: - Working Directory: {os.getcwd()} - Data Path: {DATA_PATH} - UMAP Available: {UMAP_AVAILABLE} - CNN Available: {CNN_AVAILABLE} Data Status: - ONI Data: {'Loaded' if oni_data is not None else 'Failed'} - Typhoon Data: {'Loaded' if typhoon_data is not None else 'Failed'} - Merged Data: {'Loaded' if merged_data is not None else 'Failed'} File Checks: - ONI Path Exists: {os.path.exists(ONI_DATA_PATH)} - Typhoon Path Exists: {os.path.exists(TYPHOON_DATA_PATH)} """ return debug_text debug_btn = gr.Button("Get Debug Info") debug_output = gr.Textbox(label="Debug Information", lines=15) debug_btn.click(fn=get_debug_info, outputs=debug_output) return demo # Create and launch the interface demo = create_interface() if __name__ == "__main__": demo.launch()