import os import argparse import logging import pickle import threading import time import warnings from datetime import datetime, timedelta from collections import defaultdict import csv import json # Suppress warnings for cleaner output warnings.filterwarnings('ignore', category=FutureWarning) warnings.filterwarnings('ignore', category=UserWarning, module='umap') warnings.filterwarnings('ignore', category=UserWarning, module='sklearn') import gradio as gr import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas import cartopy.crs as ccrs import cartopy.feature as cfeature import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots from sklearn.manifold import TSNE from sklearn.cluster import DBSCAN, KMeans from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_absolute_error, r2_score from scipy.interpolate import interp1d, RBFInterpolator import statsmodels.api as sm import requests import tempfile import shutil import xarray as xr # NEW: Advanced ML imports try: import umap.umap_ as umap UMAP_AVAILABLE = True except ImportError: UMAP_AVAILABLE = False print("UMAP not available - clustering features limited") # Optional CNN imports with robust error handling CNN_AVAILABLE = False try: # Set environment variables before importing TensorFlow os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Suppress TensorFlow warnings import tensorflow as tf from tensorflow.keras import layers, models # Test if TensorFlow actually works tf.config.set_visible_devices([], 'GPU') # Disable GPU to avoid conflicts CNN_AVAILABLE = True print("TensorFlow successfully loaded - CNN features enabled") except Exception as e: CNN_AVAILABLE = False print(f"TensorFlow not available - CNN features disabled: {str(e)[:100]}...") try: import cdsapi CDSAPI_AVAILABLE = True except ImportError: CDSAPI_AVAILABLE = False import tropycal.tracks as tracks # ----------------------------- # Configuration and Setup # ----------------------------- logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) # Remove argument parser to simplify startup DATA_PATH = '/tmp/typhoon_data' if 'SPACE_ID' in os.environ else tempfile.gettempdir() # Ensure directory exists and is writable try: os.makedirs(DATA_PATH, exist_ok=True) # Test write permissions test_file = os.path.join(DATA_PATH, 'test_write.txt') with open(test_file, 'w') as f: f.write('test') os.remove(test_file) logging.info(f"Data directory is writable: {DATA_PATH}") except Exception as e: logging.warning(f"Data directory not writable, using temp dir: {e}") DATA_PATH = tempfile.mkdtemp() logging.info(f"Using temporary directory: {DATA_PATH}") # Update file paths ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv') TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv') MERGED_DATA_CSV = os.path.join(DATA_PATH, 'merged_typhoon_era5_data.csv') # IBTrACS settings BASIN_FILES = { 'EP': 'ibtracs.EP.list.v04r01.csv', 'NA': 'ibtracs.NA.list.v04r01.csv', 'WP': 'ibtracs.WP.list.v04r01.csv' } IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/' LOCAL_IBTRACS_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv') CACHE_FILE = os.path.join(DATA_PATH, 'ibtracs_cache.pkl') CACHE_EXPIRY_DAYS = 1 # ----------------------------- # ENHANCED: Color Maps and Standards with TD Support (FIXED TAIWAN CLASSIFICATION) # ----------------------------- # Enhanced color mapping with TD support (for Plotly) enhanced_color_map = { 'Unknown': 'rgb(200, 200, 200)', 'Tropical Depression': 'rgb(128, 128, 128)', # Gray for TD 'Tropical Storm': 'rgb(0, 0, 255)', 'C1 Typhoon': 'rgb(0, 255, 255)', 'C2 Typhoon': 'rgb(0, 255, 0)', 'C3 Strong Typhoon': 'rgb(255, 255, 0)', 'C4 Very Strong Typhoon': 'rgb(255, 165, 0)', 'C5 Super Typhoon': 'rgb(255, 0, 0)' } # Matplotlib-compatible color mapping (hex colors) matplotlib_color_map = { 'Unknown': '#C8C8C8', 'Tropical Depression': '#808080', # Gray for TD 'Tropical Storm': '#0000FF', # Blue 'C1 Typhoon': '#00FFFF', # Cyan 'C2 Typhoon': '#00FF00', # Green 'C3 Strong Typhoon': '#FFFF00', # Yellow 'C4 Very Strong Typhoon': '#FFA500', # Orange 'C5 Super Typhoon': '#FF0000' # Red } # FIXED Taiwan color mapping with correct categories taiwan_color_map = { 'Tropical Depression': '#808080', # Gray 'Tropical Storm': '#0000FF', # Blue 'Moderate Typhoon': '#FFA500', # Orange 'Intense Typhoon': '#FF0000' # Red } def rgb_string_to_hex(rgb_string): """Convert 'rgb(r,g,b)' string to hex color for matplotlib""" try: # Extract numbers from 'rgb(r,g,b)' format import re numbers = re.findall(r'\d+', rgb_string) if len(numbers) == 3: r, g, b = map(int, numbers) return f'#{r:02x}{g:02x}{b:02x}' else: return '#808080' # Default gray except: return '#808080' # Default gray def get_matplotlib_color(category): """Get matplotlib-compatible color for a storm category""" return matplotlib_color_map.get(category, '#808080') def get_taiwan_color(category): """Get Taiwan standard color for a storm category""" return taiwan_color_map.get(category, '#808080') # Cluster colors for route visualization CLUSTER_COLORS = [ '#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7', '#DDA0DD', '#98D8C8', '#F7DC6F', '#BB8FCE', '#85C1E9', '#F8C471', '#82E0AA', '#F1948A', '#85C1E9', '#D2B4DE' ] # Route prediction colors ROUTE_COLORS = [ '#FF0066', '#00FF66', '#6600FF', '#FF6600', '#0066FF', '#FF00CC', '#00FFCC', '#CC00FF', '#CCFF00', '#00CCFF' ] # Original color map for backward compatibility color_map = { 'C5 Super Typhoon': 'rgb(255, 0, 0)', 'C4 Very Strong Typhoon': 'rgb(255, 165, 0)', 'C3 Strong Typhoon': 'rgb(255, 255, 0)', 'C2 Typhoon': 'rgb(0, 255, 0)', 'C1 Typhoon': 'rgb(0, 255, 255)', 'Tropical Storm': 'rgb(0, 0, 255)', 'Tropical Depression': 'rgb(128, 128, 128)' } atlantic_standard = { 'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'}, 'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'}, 'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'}, 'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'}, 'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'}, 'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'}, 'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'} } # FIXED Taiwan standard with correct official CWA thresholds taiwan_standard = { 'Intense Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'}, # 100+ knots (51.0+ m/s) 'Moderate Typhoon': {'wind_speed': 32.7, 'color': 'Orange', 'hex': '#FFA500'}, # 64-99 knots (32.7-50.9 m/s) 'Tropical Storm': {'wind_speed': 17.2, 'color': 'Blue', 'hex': '#0000FF'}, # 34-63 knots (17.2-32.6 m/s) 'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'} # <34 knots (<17.2 m/s) } # ----------------------------- # Utility Functions for HF Spaces # ----------------------------- def safe_file_write(file_path, data_frame, backup_dir=None): """Safely write DataFrame to CSV with backup and error handling""" try: # Create directory if it doesn't exist os.makedirs(os.path.dirname(file_path), exist_ok=True) # Try to write to a temporary file first temp_path = file_path + '.tmp' data_frame.to_csv(temp_path, index=False) # If successful, rename to final file os.rename(temp_path, file_path) logging.info(f"Successfully saved {len(data_frame)} records to {file_path}") return True except PermissionError as e: logging.warning(f"Permission denied writing to {file_path}: {e}") if backup_dir: try: backup_path = os.path.join(backup_dir, os.path.basename(file_path)) data_frame.to_csv(backup_path, index=False) logging.info(f"Saved to backup location: {backup_path}") return True except Exception as backup_e: logging.error(f"Failed to save to backup location: {backup_e}") return False except Exception as e: logging.error(f"Error saving file {file_path}: {e}") # Clean up temp file if it exists temp_path = file_path + '.tmp' if os.path.exists(temp_path): try: os.remove(temp_path) except: pass return False def get_fallback_data_dir(): """Get a fallback data directory that's guaranteed to be writable""" fallback_dirs = [ tempfile.gettempdir(), '/tmp', os.path.expanduser('~'), os.getcwd() ] for directory in fallback_dirs: try: test_dir = os.path.join(directory, 'typhoon_fallback') os.makedirs(test_dir, exist_ok=True) test_file = os.path.join(test_dir, 'test.txt') with open(test_file, 'w') as f: f.write('test') os.remove(test_file) return test_dir except: continue # If all else fails, use current directory return os.getcwd() # ----------------------------- # ONI and Typhoon Data Functions # ----------------------------- def download_oni_file(url, filename): """Download ONI file with retry logic""" max_retries = 3 for attempt in range(max_retries): try: response = requests.get(url, timeout=30) response.raise_for_status() with open(filename, 'wb') as f: f.write(response.content) return True except Exception as e: logging.warning(f"Attempt {attempt + 1} failed to download ONI: {e}") if attempt < max_retries - 1: time.sleep(2 ** attempt) # Exponential backoff else: logging.error(f"Failed to download ONI after {max_retries} attempts") return False def convert_oni_ascii_to_csv(input_file, output_file): """Convert ONI ASCII format to CSV""" data = defaultdict(lambda: [''] * 12) season_to_month = {'DJF':12, 'JFM':1, 'FMA':2, 'MAM':3, 'AMJ':4, 'MJJ':5, 'JJA':6, 'JAS':7, 'ASO':8, 'SON':9, 'OND':10, 'NDJ':11} try: with open(input_file, 'r') as f: lines = f.readlines()[1:] # Skip header for line in lines: parts = line.split() if len(parts) >= 4: season, year, anom = parts[0], parts[1], parts[-1] if season in season_to_month: month = season_to_month[season] if season == 'DJF': year = str(int(year)-1) data[year][month-1] = anom # Write to CSV with safe write df = pd.DataFrame(data).T.reset_index() df.columns = ['Year','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] df = df.sort_values('Year').reset_index(drop=True) return safe_file_write(output_file, df, get_fallback_data_dir()) except Exception as e: logging.error(f"Error converting ONI file: {e}") return False def update_oni_data(): """Update ONI data with error handling""" url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt" temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt") input_file = os.path.join(DATA_PATH, "oni.ascii.txt") output_file = ONI_DATA_PATH try: if download_oni_file(url, temp_file): if not os.path.exists(input_file) or not os.path.exists(output_file): os.rename(temp_file, input_file) convert_oni_ascii_to_csv(input_file, output_file) else: os.remove(temp_file) else: # Create fallback ONI data if download fails logging.warning("Creating fallback ONI data") create_fallback_oni_data(output_file) except Exception as e: logging.error(f"Error updating ONI data: {e}") create_fallback_oni_data(output_file) def create_fallback_oni_data(output_file): """Create minimal ONI data for testing""" years = range(2000, 2026) # Extended to include 2025 months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] # Create synthetic ONI data data = [] for year in years: row = [year] for month in months: # Generate some realistic ONI values value = np.random.normal(0, 1) * 0.5 row.append(f"{value:.2f}") data.append(row) df = pd.DataFrame(data, columns=['Year'] + months) safe_file_write(output_file, df, get_fallback_data_dir()) # ----------------------------- # FIXED: IBTrACS Data Loading # ----------------------------- def download_ibtracs_file(basin, force_download=False): """Download specific basin file from IBTrACS""" filename = BASIN_FILES[basin] local_path = os.path.join(DATA_PATH, filename) url = IBTRACS_BASE_URL + filename # Check if file exists and is recent (less than 7 days old) if os.path.exists(local_path) and not force_download: file_age = time.time() - os.path.getmtime(local_path) if file_age < 7 * 24 * 3600: # 7 days logging.info(f"Using cached {basin} basin file") return local_path try: logging.info(f"Downloading {basin} basin file from {url}") response = requests.get(url, timeout=60) response.raise_for_status() # Ensure directory exists os.makedirs(os.path.dirname(local_path), exist_ok=True) with open(local_path, 'wb') as f: f.write(response.content) logging.info(f"Successfully downloaded {basin} basin file") return local_path except Exception as e: logging.error(f"Failed to download {basin} basin file: {e}") return None def examine_ibtracs_structure(file_path): """Examine the actual structure of an IBTrACS CSV file""" try: with open(file_path, 'r') as f: lines = f.readlines() # Show first 5 lines logging.info("First 5 lines of IBTrACS file:") for i, line in enumerate(lines[:5]): logging.info(f"Line {i}: {line.strip()}") # The first line contains the actual column headers # No need to skip rows for IBTrACS v04r01 df = pd.read_csv(file_path, nrows=5) logging.info(f"Columns from first row: {list(df.columns)}") return list(df.columns) except Exception as e: logging.error(f"Error examining IBTrACS structure: {e}") return None def load_ibtracs_csv_directly(basin='WP'): """Load IBTrACS data directly from CSV - FIXED VERSION""" filename = BASIN_FILES[basin] local_path = os.path.join(DATA_PATH, filename) # Download if not exists if not os.path.exists(local_path): downloaded_path = download_ibtracs_file(basin) if not downloaded_path: return None try: # First, examine the structure actual_columns = examine_ibtracs_structure(local_path) if not actual_columns: logging.error("Could not examine IBTrACS file structure") return None # Read IBTrACS CSV - DON'T skip any rows for v04r01 # The first row contains proper column headers logging.info(f"Reading IBTrACS CSV file: {local_path}") df = pd.read_csv(local_path, low_memory=False) # Don't skip any rows logging.info(f"Original columns: {list(df.columns)}") logging.info(f"Data shape before cleaning: {df.shape}") # Check which essential columns exist required_cols = ['SID', 'ISO_TIME', 'LAT', 'LON'] available_required = [col for col in required_cols if col in df.columns] if len(available_required) < 2: logging.error(f"Missing critical columns. Available: {list(df.columns)}") return None # Clean and standardize the data with format specification if 'ISO_TIME' in df.columns: df['ISO_TIME'] = pd.to_datetime(df['ISO_TIME'], format='%Y-%m-%d %H:%M:%S', errors='coerce') # Clean numeric columns numeric_columns = ['LAT', 'LON', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES'] for col in numeric_columns: if col in df.columns: df[col] = pd.to_numeric(df[col], errors='coerce') # Filter out invalid/missing critical data valid_rows = df['LAT'].notna() & df['LON'].notna() df = df[valid_rows] # Ensure LAT/LON are in reasonable ranges df = df[(df['LAT'] >= -90) & (df['LAT'] <= 90)] df = df[(df['LON'] >= -180) & (df['LON'] <= 180)] # Add basin info if missing if 'BASIN' not in df.columns: df['BASIN'] = basin # Add default columns if missing if 'NAME' not in df.columns: df['NAME'] = 'UNNAMED' if 'SEASON' not in df.columns and 'ISO_TIME' in df.columns: df['SEASON'] = df['ISO_TIME'].dt.year logging.info(f"Successfully loaded {len(df)} records from {basin} basin") return df except Exception as e: logging.error(f"Error reading IBTrACS CSV file: {e}") return None def load_ibtracs_data_fixed(): """Fixed version of IBTrACS data loading""" ibtracs_data = {} # Try to load each basin, but prioritize WP for this application load_order = ['WP', 'EP', 'NA'] for basin in load_order: try: logging.info(f"Loading {basin} basin data...") df = load_ibtracs_csv_directly(basin) if df is not None and not df.empty: ibtracs_data[basin] = df logging.info(f"Successfully loaded {basin} basin with {len(df)} records") else: logging.warning(f"No data loaded for basin {basin}") ibtracs_data[basin] = None except Exception as e: logging.error(f"Failed to load basin {basin}: {e}") ibtracs_data[basin] = None return ibtracs_data def load_data_fixed(oni_path, typhoon_path): """Fixed version of load_data function""" # Load ONI data oni_data = pd.DataFrame({'Year': [], 'Jan': [], 'Feb': [], 'Mar': [], 'Apr': [], 'May': [], 'Jun': [], 'Jul': [], 'Aug': [], 'Sep': [], 'Oct': [], 'Nov': [], 'Dec': []}) if not os.path.exists(oni_path): logging.warning(f"ONI data file not found: {oni_path}") update_oni_data() try: oni_data = pd.read_csv(oni_path) logging.info(f"Successfully loaded ONI data with {len(oni_data)} years") except Exception as e: logging.error(f"Error loading ONI data: {e}") update_oni_data() try: oni_data = pd.read_csv(oni_path) except Exception as e: logging.error(f"Still can't load ONI data: {e}") # Load typhoon data - NEW APPROACH typhoon_data = None # First, try to load from existing processed file if os.path.exists(typhoon_path): try: typhoon_data = pd.read_csv(typhoon_path, low_memory=False) # Ensure basic columns exist and are valid required_cols = ['LAT', 'LON'] if all(col in typhoon_data.columns for col in required_cols): if 'ISO_TIME' in typhoon_data.columns: typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') logging.info(f"Loaded processed typhoon data with {len(typhoon_data)} records") else: logging.warning("Processed typhoon data missing required columns, will reload from IBTrACS") typhoon_data = None except Exception as e: logging.error(f"Error loading processed typhoon data: {e}") typhoon_data = None # If no valid processed data, load from IBTrACS if typhoon_data is None or typhoon_data.empty: logging.info("Loading typhoon data from IBTrACS...") ibtracs_data = load_ibtracs_data_fixed() # Combine all available basin data, prioritizing WP combined_dfs = [] for basin in ['WP', 'EP', 'NA']: if basin in ibtracs_data and ibtracs_data[basin] is not None: df = ibtracs_data[basin].copy() df['BASIN'] = basin combined_dfs.append(df) if combined_dfs: typhoon_data = pd.concat(combined_dfs, ignore_index=True) # Ensure SID has proper format if 'SID' not in typhoon_data.columns and 'BASIN' in typhoon_data.columns: # Create SID from basin and other identifiers if missing if 'SEASON' in typhoon_data.columns: typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) + typhoon_data.index.astype(str).str.zfill(2) + typhoon_data['SEASON'].astype(str)) else: typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) + typhoon_data.index.astype(str).str.zfill(2) + '2000') # Save the processed data for future use safe_file_write(typhoon_path, typhoon_data, get_fallback_data_dir()) logging.info(f"Combined IBTrACS data: {len(typhoon_data)} total records") else: logging.error("Failed to load any IBTrACS basin data") # Create minimal fallback data typhoon_data = create_fallback_typhoon_data() # Final validation of typhoon data if typhoon_data is not None: # Ensure required columns exist with fallback values required_columns = { 'SID': 'UNKNOWN', 'ISO_TIME': pd.Timestamp('2000-01-01'), 'LAT': 0.0, 'LON': 0.0, 'USA_WIND': np.nan, 'USA_PRES': np.nan, 'NAME': 'UNNAMED', 'SEASON': 2000 } for col, default_val in required_columns.items(): if col not in typhoon_data.columns: typhoon_data[col] = default_val logging.warning(f"Added missing column {col} with default value") # Ensure data types if 'ISO_TIME' in typhoon_data.columns: typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') typhoon_data['LAT'] = pd.to_numeric(typhoon_data['LAT'], errors='coerce') typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce') typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce') typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce') # Remove rows with invalid coordinates typhoon_data = typhoon_data.dropna(subset=['LAT', 'LON']) logging.info(f"Final typhoon data: {len(typhoon_data)} records after validation") return oni_data, typhoon_data def create_fallback_typhoon_data(): """Create minimal fallback typhoon data - FIXED VERSION""" # Use proper pandas date_range instead of numpy dates = pd.date_range(start='2000-01-01', end='2025-12-31', freq='D') # Extended to 2025 storm_dates = dates[np.random.choice(len(dates), size=100, replace=False)] data = [] for i, date in enumerate(storm_dates): # Create realistic WP storm tracks base_lat = np.random.uniform(10, 30) base_lon = np.random.uniform(130, 160) # Generate 20-50 data points per storm track_length = np.random.randint(20, 51) sid = f"WP{i+1:02d}{date.year}" for j in range(track_length): lat = base_lat + j * 0.2 + np.random.normal(0, 0.1) lon = base_lon + j * 0.3 + np.random.normal(0, 0.1) wind = max(25, 70 + np.random.normal(0, 20)) pres = max(950, 1000 - wind + np.random.normal(0, 5)) data.append({ 'SID': sid, 'ISO_TIME': date + pd.Timedelta(hours=j*6), # Use pd.Timedelta instead 'NAME': f'FALLBACK_{i+1}', 'SEASON': date.year, 'LAT': lat, 'LON': lon, 'USA_WIND': wind, 'USA_PRES': pres, 'BASIN': 'WP' }) df = pd.DataFrame(data) logging.info(f"Created fallback typhoon data with {len(df)} records") return df def process_oni_data(oni_data): """Process ONI data into long format""" oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI') month_map = {'Jan':'01','Feb':'02','Mar':'03','Apr':'04','May':'05','Jun':'06', 'Jul':'07','Aug':'08','Sep':'09','Oct':'10','Nov':'11','Dec':'12'} oni_long['Month'] = oni_long['Month'].map(month_map) oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str)+'-'+oni_long['Month']+'-01') oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce') return oni_long def process_typhoon_data(typhoon_data): """Process typhoon data""" if 'ISO_TIME' in typhoon_data.columns: typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce') typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce') typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce') logging.info(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}") typhoon_max = typhoon_data.groupby('SID').agg({ 'USA_WIND':'max','USA_PRES':'min','ISO_TIME':'first','SEASON':'first','NAME':'first', 'LAT':'first','LON':'first' }).reset_index() if 'ISO_TIME' in typhoon_max.columns: typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m') typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year else: # Fallback if no ISO_TIME typhoon_max['Month'] = '01' typhoon_max['Year'] = typhoon_max['SEASON'] typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon_enhanced) return typhoon_max def merge_data(oni_long, typhoon_max): """Merge ONI and typhoon data""" return pd.merge(typhoon_max, oni_long, on=['Year','Month']) # ----------------------------- # ENHANCED: Categorization Functions (FIXED TAIWAN) # ----------------------------- def categorize_typhoon_enhanced(wind_speed): """Enhanced categorization that properly includes Tropical Depressions""" if pd.isna(wind_speed): return 'Unknown' # Convert to knots if in m/s (some datasets use m/s) if wind_speed < 10: # Likely in m/s, convert to knots wind_speed = wind_speed * 1.94384 # FIXED thresholds to include TD if wind_speed < 34: # Below 34 knots = Tropical Depression return 'Tropical Depression' elif wind_speed < 64: # 34-63 knots = Tropical Storm return 'Tropical Storm' elif wind_speed < 83: # 64-82 knots = Category 1 Typhoon return 'C1 Typhoon' elif wind_speed < 96: # 83-95 knots = Category 2 Typhoon return 'C2 Typhoon' elif wind_speed < 113: # 96-112 knots = Category 3 Strong Typhoon return 'C3 Strong Typhoon' elif wind_speed < 137: # 113-136 knots = Category 4 Very Strong Typhoon return 'C4 Very Strong Typhoon' else: # 137+ knots = Category 5 Super Typhoon return 'C5 Super Typhoon' def categorize_typhoon_taiwan(wind_speed): """FIXED Taiwan categorization system according to official CWA standards""" if pd.isna(wind_speed): return 'Tropical Depression' # Convert from knots to m/s (official CWA uses m/s thresholds) if wind_speed > 200: # Likely already in m/s wind_speed_ms = wind_speed else: # Likely in knots, convert to m/s wind_speed_ms = wind_speed * 0.514444 # Official CWA Taiwan classification thresholds if wind_speed_ms >= 51.0: # 100+ knots return 'Intense Typhoon' elif wind_speed_ms >= 32.7: # 64-99 knots return 'Moderate Typhoon' elif wind_speed_ms >= 17.2: # 34-63 knots return 'Tropical Storm' else: # <34 knots return 'Tropical Depression' # Original function for backward compatibility def categorize_typhoon(wind_speed): """Original categorize typhoon function for backward compatibility""" return categorize_typhoon_enhanced(wind_speed) def classify_enso_phases(oni_value): """Classify ENSO phases based on ONI value""" if isinstance(oni_value, pd.Series): oni_value = oni_value.iloc[0] if pd.isna(oni_value): return 'Neutral' if oni_value >= 0.5: return 'El Nino' elif oni_value <= -0.5: return 'La Nina' else: return 'Neutral' def categorize_typhoon_by_standard(wind_speed, standard='atlantic'): """FIXED categorization function with correct Taiwan standards""" if pd.isna(wind_speed): return 'Tropical Depression', '#808080' if standard == 'taiwan': category = categorize_typhoon_taiwan(wind_speed) color = taiwan_color_map.get(category, '#808080') return category, color else: # Atlantic/International standard (existing logic is correct) if wind_speed >= 137: return 'C5 Super Typhoon', '#FF0000' # Red elif wind_speed >= 113: return 'C4 Very Strong Typhoon', '#FFA500' # Orange elif wind_speed >= 96: return 'C3 Strong Typhoon', '#FFFF00' # Yellow elif wind_speed >= 83: return 'C2 Typhoon', '#00FF00' # Green elif wind_speed >= 64: return 'C1 Typhoon', '#00FFFF' # Cyan elif wind_speed >= 34: return 'Tropical Storm', '#0000FF' # Blue return 'Tropical Depression', '#808080' # Gray # ----------------------------- # FIXED: Genesis Potential Index (GPI) Based Prediction System # ----------------------------- def calculate_genesis_potential_index(sst, rh, vorticity, wind_shear, lat, lon, month, oni_value): """ Calculate Genesis Potential Index based on environmental parameters Following Emanuel and Nolan (2004) formulation with modifications for monthly predictions """ try: # Base environmental parameters # SST factor - optimal range 26-30°C sst_factor = max(0, (sst - 26.5) / 4.0) if sst > 26.5 else 0 # Humidity factor - mid-level relative humidity (600 hPa) rh_factor = max(0, (rh - 40) / 50.0) # Normalized 40-90% # Vorticity factor - low-level absolute vorticity (850 hPa) vort_factor = max(0, min(vorticity / 5e-5, 3.0)) # Cap at reasonable max # Wind shear factor - vertical wind shear (inverse relationship) shear_factor = max(0, (20 - wind_shear) / 15.0) if wind_shear < 20 else 0 # Coriolis factor - latitude dependency coriolis_factor = max(0, min(abs(lat) / 20.0, 1.0)) if abs(lat) > 5 else 0 # Seasonal factor seasonal_weights = { 1: 0.3, 2: 0.2, 3: 0.4, 4: 0.6, 5: 0.8, 6: 1.0, 7: 1.2, 8: 1.4, 9: 1.5, 10: 1.3, 11: 0.9, 12: 0.5 } seasonal_factor = seasonal_weights.get(month, 1.0) # ENSO modulation if oni_value > 0.5: # El Niño enso_factor = 0.6 if lon > 140 else 0.8 # Suppress in WP elif oni_value < -0.5: # La Niña enso_factor = 1.4 if lon > 140 else 1.1 # Enhance in WP else: # Neutral enso_factor = 1.0 # Regional modulation (Western Pacific specifics) if 10 <= lat <= 25 and 120 <= lon <= 160: # Main Development Region regional_factor = 1.3 elif 5 <= lat <= 15 and 130 <= lon <= 150: # Prime genesis zone regional_factor = 1.5 else: regional_factor = 0.8 # Calculate GPI gpi = (sst_factor * rh_factor * vort_factor * shear_factor * coriolis_factor * seasonal_factor * enso_factor * regional_factor) return max(0, min(gpi, 5.0)) # Cap at reasonable maximum except Exception as e: logging.error(f"Error calculating GPI: {e}") return 0.0 def get_environmental_conditions(lat, lon, month, oni_value): """ Get realistic environmental conditions for a given location and time Based on climatological patterns and ENSO modulation """ try: # Base SST calculation (climatological) base_sst = 28.5 - 0.15 * abs(lat - 15) # Peak at 15°N seasonal_sst_adj = 2.0 * np.cos(2 * np.pi * (month - 9) / 12) # Peak in Sep enso_sst_adj = oni_value * 0.8 if lon > 140 else oni_value * 0.4 sst = base_sst + seasonal_sst_adj + enso_sst_adj # Relative humidity (600 hPa) base_rh = 75 - 0.5 * abs(lat - 12) # Peak around 12°N seasonal_rh_adj = 10 * np.cos(2 * np.pi * (month - 8) / 12) # Peak in Aug monsoon_effect = 5 if 100 <= lon <= 120 and month in [6,7,8,9] else 0 rh = max(40, min(90, base_rh + seasonal_rh_adj + monsoon_effect)) # Low-level vorticity (850 hPa) base_vort = 2e-5 * (1 + 0.1 * np.sin(2 * np.pi * lat / 30)) seasonal_vort_adj = 1e-5 * np.cos(2 * np.pi * (month - 8) / 12) itcz_effect = 1.5e-5 if 5 <= lat <= 15 else 0 vorticity = max(0, base_vort + seasonal_vort_adj + itcz_effect) # Vertical wind shear (200-850 hPa) base_shear = 8 + 0.3 * abs(lat - 20) # Lower near 20°N seasonal_shear_adj = 4 * np.cos(2 * np.pi * (month - 2) / 12) # Low in Aug-Sep enso_shear_adj = oni_value * 3 if lon > 140 else 0 # El Niño increases shear wind_shear = max(2, base_shear + seasonal_shear_adj + enso_shear_adj) return { 'sst': sst, 'relative_humidity': rh, 'vorticity': vorticity, 'wind_shear': wind_shear } except Exception as e: logging.error(f"Error getting environmental conditions: {e}") return { 'sst': 28.0, 'relative_humidity': 70.0, 'vorticity': 2e-5, 'wind_shear': 10.0 } def generate_genesis_prediction_monthly(month, oni_value, year=2025): """ Generate realistic typhoon genesis prediction for a given month using GPI Returns day-by-day genesis potential and storm development scenarios """ try: logging.info(f"Generating GPI-based prediction for month {month}, ONI {oni_value}") # Define the Western Pacific domain lat_range = np.arange(5, 35, 2.5) # 5°N to 35°N lon_range = np.arange(110, 180, 2.5) # 110°E to 180°E # Number of days in the month days_in_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31][month - 1] if month == 2 and year % 4 == 0: # Leap year days_in_month = 29 # Daily GPI evolution daily_gpi_maps = [] genesis_events = [] for day in range(1, days_in_month + 1): # Calculate GPI for each grid point gpi_field = np.zeros((len(lat_range), len(lon_range))) for i, lat in enumerate(lat_range): for j, lon in enumerate(lon_range): # Get environmental conditions env_conditions = get_environmental_conditions(lat, lon, month, oni_value) # Add daily variability daily_variation = 0.1 * np.sin(2 * np.pi * day / 30) + np.random.normal(0, 0.05) # Calculate GPI gpi = calculate_genesis_potential_index( sst=env_conditions['sst'] + daily_variation, rh=env_conditions['relative_humidity'], vorticity=env_conditions['vorticity'], wind_shear=env_conditions['wind_shear'], lat=lat, lon=lon, month=month, oni_value=oni_value ) gpi_field[i, j] = gpi daily_gpi_maps.append({ 'day': day, 'gpi_field': gpi_field, 'lat_range': lat_range, 'lon_range': lon_range }) # Check for genesis events (GPI > threshold) genesis_threshold = 1.5 # Adjusted threshold if np.max(gpi_field) > genesis_threshold: # Find peak genesis locations peak_indices = np.where(gpi_field > genesis_threshold) if len(peak_indices[0]) > 0: # Select strongest genesis point max_idx = np.argmax(gpi_field) max_i, max_j = np.unravel_index(max_idx, gpi_field.shape) genesis_lat = lat_range[max_i] genesis_lon = lon_range[max_j] genesis_gpi = gpi_field[max_i, max_j] # Determine probability of actual genesis genesis_prob = min(0.8, genesis_gpi / 3.0) if np.random.random() < genesis_prob: genesis_events.append({ 'day': day, 'lat': genesis_lat, 'lon': genesis_lon, 'gpi': genesis_gpi, 'probability': genesis_prob, 'date': f"{year}-{month:02d}-{day:02d}" }) # Generate storm tracks for genesis events storm_predictions = [] for i, genesis in enumerate(genesis_events): storm_track = generate_storm_track_from_genesis( genesis['lat'], genesis['lon'], genesis['day'], month, oni_value, storm_id=i+1 ) if storm_track: storm_predictions.append({ 'storm_id': i + 1, 'genesis_event': genesis, 'track': storm_track, 'uncertainty': calculate_track_uncertainty(storm_track) }) return { 'month': month, 'year': year, 'oni_value': oni_value, 'daily_gpi_maps': daily_gpi_maps, 'genesis_events': genesis_events, 'storm_predictions': storm_predictions, 'summary': { 'total_genesis_events': len(genesis_events), 'total_storm_predictions': len(storm_predictions), 'peak_gpi_day': max(daily_gpi_maps, key=lambda x: np.max(x['gpi_field']))['day'], 'peak_gpi_value': max(np.max(day_data['gpi_field']) for day_data in daily_gpi_maps) } } except Exception as e: logging.error(f"Error in genesis prediction: {e}") import traceback traceback.print_exc() return { 'error': str(e), 'month': month, 'oni_value': oni_value, 'storm_predictions': [] } def generate_storm_track_from_genesis(genesis_lat, genesis_lon, genesis_day, month, oni_value, storm_id=1): """ Generate a realistic storm track from a genesis location """ try: track_points = [] current_lat = genesis_lat current_lon = genesis_lon current_intensity = 25 # Start as TD # Track duration (3-10 days typically) track_duration_hours = np.random.randint(72, 240) for hour in range(0, track_duration_hours + 6, 6): # Calculate storm motion # Base motion patterns for Western Pacific if current_lat < 20: # Low latitude - westward motion lat_speed = 0.1 + np.random.normal(0, 0.05) # Slight poleward lon_speed = -0.3 + np.random.normal(0, 0.1) # Westward elif current_lat < 25: # Mid latitude - WNW motion lat_speed = 0.15 + np.random.normal(0, 0.05) lon_speed = -0.2 + np.random.normal(0, 0.1) else: # High latitude - recurvature lat_speed = 0.2 + np.random.normal(0, 0.05) lon_speed = 0.1 + np.random.normal(0, 0.1) # Eastward # ENSO effects on motion if oni_value > 0.5: # El Niño - more eastward lon_speed += 0.05 elif oni_value < -0.5: # La Niña - more westward lon_speed -= 0.05 # Update position current_lat += lat_speed current_lon += lon_speed # Intensity evolution # Get environmental conditions for intensity change env_conditions = get_environmental_conditions(current_lat, current_lon, month, oni_value) # Intensity change factors sst_factor = max(0, env_conditions['sst'] - 26.5) shear_factor = max(0, (15 - env_conditions['wind_shear']) / 10) # Basic intensity change if hour < 48: # Development phase intensity_change = 3 + sst_factor + shear_factor + np.random.normal(0, 2) elif hour < 120: # Mature phase intensity_change = 1 + sst_factor * 0.5 + np.random.normal(0, 1.5) else: # Weakening phase intensity_change = -2 + sst_factor * 0.3 + np.random.normal(0, 1) # Environmental limits if current_lat > 30: # Cool waters intensity_change -= 5 if current_lon < 120: # Land interaction intensity_change -= 8 current_intensity += intensity_change current_intensity = max(15, min(180, current_intensity)) # Realistic bounds # Calculate pressure pressure = max(900, 1013 - (current_intensity - 25) * 0.9) # Add uncertainty position_uncertainty = 0.5 + (hour / 120) * 1.5 # Growing uncertainty intensity_uncertainty = 5 + (hour / 120) * 15 track_points.append({ 'hour': hour, 'day': genesis_day + hour / 24.0, 'lat': current_lat, 'lon': current_lon, 'intensity': current_intensity, 'pressure': pressure, 'category': categorize_typhoon_enhanced(current_intensity), 'position_uncertainty': position_uncertainty, 'intensity_uncertainty': intensity_uncertainty }) # Stop if storm moves too far or weakens significantly if current_lat > 40 or current_lat < 0 or current_lon < 100 or current_intensity < 20: break return track_points except Exception as e: logging.error(f"Error generating storm track: {e}") return None def calculate_track_uncertainty(track_points): """Calculate uncertainty metrics for a storm track""" if not track_points: return {'position': 0, 'intensity': 0} # Position uncertainty grows with time position_uncertainty = [point['position_uncertainty'] for point in track_points] # Intensity uncertainty intensity_uncertainty = [point['intensity_uncertainty'] for point in track_points] return { 'position_mean': np.mean(position_uncertainty), 'position_max': np.max(position_uncertainty), 'intensity_mean': np.mean(intensity_uncertainty), 'intensity_max': np.max(intensity_uncertainty), 'track_length': len(track_points) } def create_predict_animation(prediction_data, enable_animation=True): """ Typhoon genesis PREDICT tab animation: shows monthly genesis-potential + progressive storm positions """ try: daily_maps = prediction_data.get('daily_gpi_maps', []) if not daily_maps: return create_error_plot("No GPI data for prediction") storms = prediction_data.get('storm_predictions', []) month = prediction_data['month'] oni = prediction_data['oni_value'] year = prediction_data.get('year', 2025) # -- 1) static underlay: full storm routes (dashed gray lines) static_routes = [] for s in storms: track = s.get('track', []) if not track: continue lats = [pt['lat'] for pt in track] lons = [pt['lon'] for pt in track] static_routes.append( go.Scattergeo( lat=lats, lon=lons, mode='lines', line=dict(width=2, dash='dash', color='gray'), showlegend=False, hoverinfo='skip' ) ) # figure out map bounds all_lats = [pt['lat'] for s in storms for pt in s.get('track',[])] all_lons = [pt['lon'] for s in storms for pt in s.get('track',[])] mb = { 'lat_min': min(5, min(all_lats)-5) if all_lats else 5, 'lat_max': max(35, max(all_lats)+5) if all_lats else 35, 'lon_min': min(110, min(all_lons)-10) if all_lons else 110, 'lon_max': max(180, max(all_lons)+10) if all_lons else 180 } # -- 2) build frames frames = [] for idx, day_data in enumerate(daily_maps): day = day_data['day'] gpi = day_data['gpi_field'] lats = day_data['lat_range'] lons = day_data['lon_range'] traces = [] # genesis‐potential scatter traces.append(go.Scattergeo( lat=np.repeat(lats, len(lons)), lon=np.tile(lons, len(lats)), mode='markers', marker=dict( size=6, color=gpi.flatten(), colorscale='Viridis', cmin=0, cmax=3, opacity=0.6, showscale=(idx==0), colorbar=(dict( title=dict(text="Genesis
Potential
Index", side="right") ) if idx==0 else None) ), name='GPI', showlegend=(idx==0), hovertemplate=( 'GPI: %{marker.color:.2f}
' 'Lat: %{lat:.1f}°N
' 'Lon: %{lon:.1f}°E
' f'Day {day} of {month:02d}/{year}' ) )) # storm positions up to this day for s in storms: past = [pt for pt in s.get('track',[]) if pt['day'] <= day] if not past: continue lats_p = [pt['lat'] for pt in past] lons_p = [pt['lon'] for pt in past] intens = [pt['intensity'] for pt in past] cats = [pt['category'] for pt in past] # line history traces.append(go.Scattergeo( lat=lats_p, lon=lons_p, mode='lines', line=dict(width=2, color='gray'), showlegend=(idx==0), hoverinfo='skip' )) # current position traces.append(go.Scattergeo( lat=[lats_p[-1]], lon=[lons_p[-1]], mode='markers', marker=dict(size=10, symbol='circle', color='red'), showlegend=(idx==0), hovertemplate=( f"{s['storm_id']}
" f"Intensity: {intens[-1]} kt
" f"Category: {cats[-1]}" ) )) frames.append(go.Frame( data=traces, name=str(day), # ← name is REQUIRED as string :contentReference[oaicite:1]{index=1} layout=go.Layout( geo=dict( projection_type="natural earth", showland=True, landcolor="lightgray", showocean=True, oceancolor="lightblue", showcoastlines=True, coastlinecolor="darkgray", center=dict(lat=(mb['lat_min']+mb['lat_max'])/2, lon=(mb['lon_min']+mb['lon_max'])/2), lonaxis_range=[mb['lon_min'], mb['lon_max']], lataxis_range=[mb['lat_min'], mb['lat_max']], resolution=50 ), title=f"Day {day} of {month:02d}/{year} | ONI: {oni:.2f}" ) )) # -- 3) initial Figure (static + first frame) init_data = static_routes + list(frames[0].data) fig = go.Figure(data=init_data, frames=frames) # -- 4) play/pause + slider (redraw=True!) if enable_animation and len(frames)>1: steps = [ dict(method="animate", args=[[fr.name], {"mode":"immediate", "frame":{"duration":600,"redraw":True}, "transition":{"duration":0}}], label=fr.name) for fr in frames ] fig.update_layout( updatemenus=[dict( type="buttons", showactive=False, x=1.05, y=0.05, xanchor="right", yanchor="bottom", buttons=[ dict(label="▶ Play", method="animate", args=[None, # None=all frames {"frame":{"duration":600,"redraw":True}, # ← redraw fixes dead ▶ "fromcurrent":True,"transition":{"duration":0}}]), dict(label="⏸ Pause", method="animate", args=[[None], {"frame":{"duration":0,"redraw":False}, "mode":"immediate"}]) ] )], sliders=[dict(active=0, pad=dict(t=50), steps=steps)] ) else: # fallback: show only final day + static routes final = static_routes + list(frames[-1].data) fig = go.Figure(data=final) # -- 5) shared layout styling fig.update_layout( title={ 'text': f"🌊 Typhoon Prediction — {month:02d}/{year} | ONI: {oni:.2f}", 'x':0.5,'font':{'size':18} }, geo=dict( projection_type="natural earth", showland=True, landcolor="lightgray", showocean=True, oceancolor="lightblue", showcoastlines=True, coastlinecolor="darkgray", showlakes=True, lakecolor="lightblue", showcountries=True, countrycolor="gray", resolution=50, center=dict(lat=20, lon=140), lonaxis_range=[110,180], lataxis_range=[5,35] ), width=1100, height=750, showlegend=True, legend=dict( x=0.02,y=0.98, bgcolor="rgba(255,255,255,0.7)", bordercolor="gray",borderwidth=1 ) ) return fig except Exception as e: logging.error(f"Error in predict animation: {e}") import traceback; traceback.print_exc() return create_error_plot(f"Animation error: {e}") def create_genesis_animation(prediction_data, enable_animation=True): """ Create professional typhoon track animation showing daily genesis potential and storm development Following NHC/JTWC visualization standards with proper geographic map and time controls """ try: daily_maps = prediction_data.get('daily_gpi_maps', []) if not daily_maps: return create_error_plot("No GPI data available for animation") storm_predictions = prediction_data.get('storm_predictions', []) month = prediction_data['month'] oni_value = prediction_data['oni_value'] year = prediction_data.get('year', 2025) # ---- 1) Prepare static full-track routes ---- static_routes = [] for storm in storm_predictions: track = storm.get('track', []) if not track: continue lats = [pt['lat'] for pt in track] lons = [pt['lon'] for pt in track] static_routes.append( go.Scattergeo( lat=lats, lon=lons, mode='lines', line=dict(width=2, dash='dash', color='gray'), showlegend=False, hoverinfo='skip' ) ) # ---- 2) Build animation frames ---- frames = [] # determine map bounds from all storm tracks all_lats = [pt['lat'] for storm in storm_predictions for pt in storm.get('track', [])] all_lons = [pt['lon'] for storm in storm_predictions for pt in storm.get('track', [])] map_bounds = { 'lat_min': min(5, min(all_lats) - 5) if all_lats else 5, 'lat_max': max(35, max(all_lats) + 5) if all_lats else 35, 'lon_min': min(110, min(all_lons) - 10) if all_lons else 110, 'lon_max': max(180, max(all_lons) + 10) if all_lons else 180 } for day_idx, day_data in enumerate(daily_maps): day = day_data['day'] gpi = day_data['gpi_field'] lats = day_data['lat_range'] lons = day_data['lon_range'] traces = [] # Genesis potential dots traces.append(go.Scattergeo( lat=np.repeat(lats, len(lons)), lon=np.tile(lons, len(lats)), mode='markers', marker=dict( size=6, color=gpi.flatten(), colorscale='Viridis', cmin=0, cmax=3, opacity=0.6, showscale=(day_idx == 0), colorbar=(dict( title=dict(text="Genesis
Potential
Index", side="right") ) if day_idx == 0 else None) ), name='Genesis Potential', showlegend=(day_idx == 0), hovertemplate=( 'GPI: %{marker.color:.2f}
' + 'Lat: %{lat:.1f}°N
' + 'Lon: %{lon:.1f}°E
' + f'Day {day} of {month:02d}/{year}' ) )) # Storm positions up to this day for storm in storm_predictions: past = [pt for pt in storm.get('track', []) if pt['day'] <= day] if not past: continue lats_p = [pt['lat'] for pt in past] lons_p = [pt['lon'] for pt in past] intens = [pt['intensity'] for pt in past] cats = [pt['category'] for pt in past] # historical line traces.append(go.Scattergeo( lat=lats_p, lon=lons_p, mode='lines', line=dict(width=2, color='gray'), name=f"{storm['storm_id']} Track", showlegend=(day_idx == 0), hoverinfo='skip' )) # current position traces.append(go.Scattergeo( lat=[lats_p[-1]], lon=[lons_p[-1]], mode='markers', marker=dict(size=10, symbol='circle', color='red'), name=f"{storm['storm_id']} Position", showlegend=(day_idx == 0), hovertemplate=( f"{storm['storm_id']}
" f"Intensity: {intens[-1]} kt
" f"Category: {cats[-1]}" ) )) frames.append(go.Frame( data=traces, name=str(day), layout=go.Layout( geo=dict( projection_type="natural earth", showland=True, landcolor="lightgray", showocean=True, oceancolor="lightblue", showcoastlines=True, coastlinecolor="darkgray", center=dict( lat=(map_bounds['lat_min'] + map_bounds['lat_max'])/2, lon=(map_bounds['lon_min'] + map_bounds['lon_max'])/2 ), lonaxis_range=[map_bounds['lon_min'], map_bounds['lon_max']], lataxis_range=[map_bounds['lat_min'], map_bounds['lat_max']], resolution=50 ), title=f"Day {day} of {month:02d}/{year} ONI: {oni_value:.2f}" ) )) # ---- 3) Initialize figure with static routes + first frame ---- initial_data = static_routes + list(frames[0].data) fig = go.Figure(data=initial_data, frames=frames) # ---- 4) Add play/pause buttons with redraw=True ---- if enable_animation and len(frames) > 1: # slider steps steps = [ dict(method="animate", args=[[fr.name], {"mode": "immediate", "frame": {"duration": 600, "redraw": True}, "transition": {"duration": 0}}], label=fr.name) for fr in frames ] fig.update_layout( updatemenus=[dict( type="buttons", showactive=False, x=1.05, y=0.05, xanchor="right", yanchor="bottom", buttons=[ dict(label="▶ Play", method="animate", args=[None, # None means “all frames” {"frame": {"duration": 600, "redraw": True}, "fromcurrent": True, "transition": {"duration": 0}} ]), # redraw=True fixes the dead play button :contentReference[oaicite:1]{index=1} dict(label="⏸ Pause", method="animate", args=[[None], {"frame": {"duration": 0, "redraw": False}, "mode": "immediate"}]) ] )], sliders=[dict(active=0, pad=dict(t=50), steps=steps)] ) # No-animation fallback: just show final day + routes else: final = static_routes + list(frames[-1].data) fig = go.Figure(data=final) # ---- 5) Common layout styling ---- fig.update_layout( title={ 'text': f"🌊 Typhoon Genesis & Development Forecast
" f"{month:02d}/{year} | ONI: {oni_value:.2f}", 'x': 0.5, 'font': {'size': 18} }, geo=dict( projection_type="natural earth", showland=True, landcolor="lightgray", showocean=True, oceancolor="lightblue", showcoastlines=True, coastlinecolor="darkgray", showlakes=True, lakecolor="lightblue", showcountries=True, countrycolor="gray", resolution=50, center=dict(lat=20, lon=140), lonaxis_range=[110, 180], lataxis_range=[5, 35] ), width=1100, height=750, showlegend=True, legend=dict(x=0.02, y=0.98, bgcolor="rgba(255,255,255,0.7)", bordercolor="gray", borderwidth=1) ) return fig except Exception as e: logging.error(f"Error creating professional genesis animation: {e}") import traceback; traceback.print_exc() return create_error_plot(f"Animation error: {e}") def create_error_plot(error_message): """Create a simple error plot""" fig = go.Figure() fig.add_annotation( text=error_message, xref="paper", yref="paper", x=0.5, y=0.5, xanchor='center', yanchor='middle', showarrow=False, font_size=16 ) fig.update_layout(title="Error in Visualization") return fig def create_prediction_summary(prediction_data): """Create a comprehensive summary of the prediction""" try: if 'error' in prediction_data: return f"Error in prediction: {prediction_data['error']}" month = prediction_data['month'] oni_value = prediction_data['oni_value'] summary = prediction_data.get('summary', {}) genesis_events = prediction_data.get('genesis_events', []) storm_predictions = prediction_data.get('storm_predictions', []) month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] month_name = month_names[month - 1] summary_text = f""" TYPHOON GENESIS PREDICTION SUMMARY - {month_name.upper()} 2025 {'='*70} 🌊 ENVIRONMENTAL CONDITIONS: • Month: {month_name} (Month {month}) • ONI Value: {oni_value:.2f} {'(El Niño)' if oni_value > 0.5 else '(La Niña)' if oni_value < -0.5 else '(Neutral)'} • Season Phase: {'Peak Season' if month in [7,8,9,10] else 'Off Season' if month in [1,2,3,4,11,12] else 'Transition Season'} 📊 GENESIS POTENTIAL ANALYSIS: • Peak GPI Day: Day {summary.get('peak_gpi_day', 'Unknown')} • Peak GPI Value: {summary.get('peak_gpi_value', 0):.2f} • Total Genesis Events: {summary.get('total_genesis_events', 0)} • Storm Development Success: {summary.get('total_storm_predictions', 0)}/{summary.get('total_genesis_events', 0)} events 🎯 GENESIS EVENTS BREAKDOWN: """ if genesis_events: for i, event in enumerate(genesis_events, 1): summary_text += f""" Event {i}: • Date: {event['date']} • Location: {event['lat']:.1f}°N, {event['lon']:.1f}°E • GPI Value: {event['gpi']:.2f} • Genesis Probability: {event['probability']*100:.0f}% """ else: summary_text += "\n• No significant genesis events predicted for this month\n" summary_text += f""" 🌪️ STORM TRACK PREDICTIONS: """ if storm_predictions: for storm in storm_predictions: track = storm['track'] if track: genesis = storm['genesis_event'] max_intensity = max(pt['intensity'] for pt in track) max_category = categorize_typhoon_enhanced(max_intensity) track_duration = len(track) * 6 # hours final_pos = track[-1] summary_text += f""" Storm {storm['storm_id']}: • Genesis: Day {genesis['day']}, {genesis['lat']:.1f}°N {genesis['lon']:.1f}°E • Peak Intensity: {max_intensity:.0f} kt ({max_category}) • Track Duration: {track_duration} hours ({track_duration/24:.1f} days) • Final Position: {final_pos['lat']:.1f}°N, {final_pos['lon']:.1f}°E • Uncertainty: ±{storm['uncertainty']['position_mean']:.1f}° position, ±{storm['uncertainty']['intensity_mean']:.0f} kt intensity """ else: summary_text += "\n• No storm development predicted from genesis events\n" # Add climatological context summary_text += f""" 📈 CLIMATOLOGICAL CONTEXT: • {month_name} Typical Activity: {'Very High' if month in [8,9] else 'High' if month in [7,10] else 'Moderate' if month in [6,11] else 'Low'} • ENSO Influence: {'Strong suppression expected' if oni_value > 1.0 else 'Moderate suppression' if oni_value > 0.5 else 'Strong enhancement likely' if oni_value < -1.0 else 'Moderate enhancement' if oni_value < -0.5 else 'Near-normal activity'} • Regional Focus: Western Pacific Main Development Region (10-25°N, 120-160°E) 🔧 METHODOLOGY DETAILS: • Genesis Potential Index: Emanuel & Nolan (2004) formulation • Environmental Factors: SST, humidity, vorticity, wind shear, Coriolis effect • Temporal Resolution: Daily evolution throughout month • Spatial Resolution: 2.5° grid spacing • ENSO Modulation: Integrated ONI effects on environmental parameters • Track Prediction: Physics-based storm motion and intensity evolution ⚠️ UNCERTAINTY & LIMITATIONS: • Genesis timing: ±2-3 days typical uncertainty • Track position: Growing uncertainty with time (±0.5° to ±2°) • Intensity prediction: ±5-15 kt uncertainty range • Environmental assumptions: Based on climatological patterns • Model limitations: Simplified compared to operational NWP systems 🎯 FORECAST CONFIDENCE: • Genesis Location: {'High' if summary.get('peak_gpi_value', 0) > 2 else 'Moderate' if summary.get('peak_gpi_value', 0) > 1 else 'Low'} • Genesis Timing: {'High' if month in [7,8,9] else 'Moderate' if month in [6,10] else 'Low'} • Track Prediction: Moderate (physics-based motion patterns) • Intensity Evolution: Moderate (environmental constraints applied) 📋 OPERATIONAL IMPLICATIONS: • Monitor Days {', '.join([str(event['day']) for event in genesis_events[:3]])} for potential development • Focus regions: {', '.join([f"{event['lat']:.0f}°N {event['lon']:.0f}°E" for event in genesis_events[:3]])} • Preparedness level: {'High' if len(storm_predictions) > 2 else 'Moderate' if len(storm_predictions) > 0 else 'Routine'} 🔬 RESEARCH APPLICATIONS: • Suitable for seasonal planning and climate studies • Genesis mechanism investigation • ENSO-typhoon relationship analysis • Environmental parameter sensitivity studies ⚠️ IMPORTANT DISCLAIMERS: • This is a research prediction system, not operational forecast • Use official meteorological services for real-time warnings • Actual conditions may differ from climatological assumptions • Model simplified compared to operational prediction systems • Uncertainty grows significantly beyond 5-7 day lead times """ return summary_text except Exception as e: logging.error(f"Error creating prediction summary: {e}") return f"Error generating summary: {str(e)}" # ----------------------------- # FIXED: ADVANCED ML FEATURES WITH ROBUST ERROR HANDLING # ----------------------------- def extract_storm_features(typhoon_data): """Extract comprehensive features for clustering analysis - FIXED VERSION""" try: if typhoon_data is None or typhoon_data.empty: logging.error("No typhoon data provided for feature extraction") return None # Basic features - ensure columns exist basic_features = [] for sid in typhoon_data['SID'].unique(): storm_data = typhoon_data[typhoon_data['SID'] == sid].copy() if len(storm_data) == 0: continue # Initialize feature dict with safe defaults features = {'SID': sid} # Wind statistics if 'USA_WIND' in storm_data.columns: wind_values = pd.to_numeric(storm_data['USA_WIND'], errors='coerce').dropna() if len(wind_values) > 0: features['USA_WIND_max'] = wind_values.max() features['USA_WIND_mean'] = wind_values.mean() features['USA_WIND_std'] = wind_values.std() if len(wind_values) > 1 else 0 else: features['USA_WIND_max'] = 30 features['USA_WIND_mean'] = 30 features['USA_WIND_std'] = 0 else: features['USA_WIND_max'] = 30 features['USA_WIND_mean'] = 30 features['USA_WIND_std'] = 0 # Pressure statistics if 'USA_PRES' in storm_data.columns: pres_values = pd.to_numeric(storm_data['USA_PRES'], errors='coerce').dropna() if len(pres_values) > 0: features['USA_PRES_min'] = pres_values.min() features['USA_PRES_mean'] = pres_values.mean() features['USA_PRES_std'] = pres_values.std() if len(pres_values) > 1 else 0 else: features['USA_PRES_min'] = 1000 features['USA_PRES_mean'] = 1000 features['USA_PRES_std'] = 0 else: features['USA_PRES_min'] = 1000 features['USA_PRES_mean'] = 1000 features['USA_PRES_std'] = 0 # Location statistics if 'LAT' in storm_data.columns and 'LON' in storm_data.columns: lat_values = pd.to_numeric(storm_data['LAT'], errors='coerce').dropna() lon_values = pd.to_numeric(storm_data['LON'], errors='coerce').dropna() if len(lat_values) > 0 and len(lon_values) > 0: features['LAT_mean'] = lat_values.mean() features['LAT_std'] = lat_values.std() if len(lat_values) > 1 else 0 features['LAT_max'] = lat_values.max() features['LAT_min'] = lat_values.min() features['LON_mean'] = lon_values.mean() features['LON_std'] = lon_values.std() if len(lon_values) > 1 else 0 features['LON_max'] = lon_values.max() features['LON_min'] = lon_values.min() # Genesis location (first valid position) features['genesis_lat'] = lat_values.iloc[0] features['genesis_lon'] = lon_values.iloc[0] features['genesis_intensity'] = features['USA_WIND_mean'] # Use mean as fallback # Track characteristics features['lat_range'] = lat_values.max() - lat_values.min() features['lon_range'] = lon_values.max() - lon_values.min() # Calculate track distance if len(lat_values) > 1: distances = [] for i in range(1, len(lat_values)): dlat = lat_values.iloc[i] - lat_values.iloc[i-1] dlon = lon_values.iloc[i] - lon_values.iloc[i-1] distances.append(np.sqrt(dlat**2 + dlon**2)) features['total_distance'] = sum(distances) features['avg_speed'] = np.mean(distances) if distances else 0 else: features['total_distance'] = 0 features['avg_speed'] = 0 # Track curvature if len(lat_values) > 2: bearing_changes = [] for i in range(1, len(lat_values)-1): dlat1 = lat_values.iloc[i] - lat_values.iloc[i-1] dlon1 = lon_values.iloc[i] - lon_values.iloc[i-1] dlat2 = lat_values.iloc[i+1] - lat_values.iloc[i] dlon2 = lon_values.iloc[i+1] - lon_values.iloc[i] angle1 = np.arctan2(dlat1, dlon1) angle2 = np.arctan2(dlat2, dlon2) change = abs(angle2 - angle1) bearing_changes.append(change) features['avg_curvature'] = np.mean(bearing_changes) if bearing_changes else 0 else: features['avg_curvature'] = 0 else: # Default location values features.update({ 'LAT_mean': 20, 'LAT_std': 0, 'LAT_max': 20, 'LAT_min': 20, 'LON_mean': 140, 'LON_std': 0, 'LON_max': 140, 'LON_min': 140, 'genesis_lat': 20, 'genesis_lon': 140, 'genesis_intensity': 30, 'lat_range': 0, 'lon_range': 0, 'total_distance': 0, 'avg_speed': 0, 'avg_curvature': 0 }) else: # Default location values if columns missing features.update({ 'LAT_mean': 20, 'LAT_std': 0, 'LAT_max': 20, 'LAT_min': 20, 'LON_mean': 140, 'LON_std': 0, 'LON_max': 140, 'LON_min': 140, 'genesis_lat': 20, 'genesis_lon': 140, 'genesis_intensity': 30, 'lat_range': 0, 'lon_range': 0, 'total_distance': 0, 'avg_speed': 0, 'avg_curvature': 0 }) # Track length features['track_length'] = len(storm_data) # Add seasonal information if 'SEASON' in storm_data.columns: features['season'] = storm_data['SEASON'].iloc[0] else: features['season'] = 2000 # Add basin information if 'BASIN' in storm_data.columns: features['basin'] = storm_data['BASIN'].iloc[0] elif 'SID' in storm_data.columns: features['basin'] = sid[:2] if len(sid) >= 2 else 'WP' else: features['basin'] = 'WP' basic_features.append(features) if not basic_features: logging.error("No valid storm features could be extracted") return None # Convert to DataFrame storm_features = pd.DataFrame(basic_features) # Ensure all numeric columns are properly typed numeric_columns = [col for col in storm_features.columns if col not in ['SID', 'basin']] for col in numeric_columns: storm_features[col] = pd.to_numeric(storm_features[col], errors='coerce').fillna(0) logging.info(f"Successfully extracted features for {len(storm_features)} storms") logging.info(f"Feature columns: {list(storm_features.columns)}") return storm_features except Exception as e: logging.error(f"Error in extract_storm_features: {e}") import traceback traceback.print_exc() return None def perform_dimensionality_reduction(storm_features, method='umap', n_components=2): """Perform UMAP or t-SNE dimensionality reduction - FIXED VERSION""" try: if storm_features is None or storm_features.empty: raise ValueError("No storm features provided") # Select numeric features for clustering - FIXED feature_cols = [] for col in storm_features.columns: if col not in ['SID', 'basin'] and storm_features[col].dtype in ['float64', 'int64']: # Check if column has valid data valid_data = storm_features[col].dropna() if len(valid_data) > 0 and valid_data.std() > 0: # Only include columns with variance feature_cols.append(col) if len(feature_cols) == 0: raise ValueError("No valid numeric features found for clustering") logging.info(f"Using {len(feature_cols)} features for clustering: {feature_cols}") X = storm_features[feature_cols].fillna(0) # Check if we have enough samples if len(X) < 2: raise ValueError("Need at least 2 storms for clustering") # Standardize features scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Perform dimensionality reduction if method.lower() == 'umap' and UMAP_AVAILABLE and len(X_scaled) >= 4: # UMAP parameters optimized for typhoon data - fixed warnings n_neighbors = min(15, len(X_scaled) - 1) reducer = umap.UMAP( n_components=n_components, n_neighbors=n_neighbors, min_dist=0.1, metric='euclidean', random_state=42, n_jobs=1 # Explicitly set to avoid warning ) elif method.lower() == 'tsne' and len(X_scaled) >= 4: # t-SNE parameters perplexity = min(30, len(X_scaled) // 4) perplexity = max(1, perplexity) # Ensure perplexity is at least 1 reducer = TSNE( n_components=n_components, perplexity=perplexity, learning_rate=200, n_iter=1000, random_state=42 ) else: # Fallback to PCA reducer = PCA(n_components=n_components, random_state=42) # Fit and transform embedding = reducer.fit_transform(X_scaled) logging.info(f"Dimensionality reduction successful: {X_scaled.shape} -> {embedding.shape}") return embedding, feature_cols, scaler except Exception as e: logging.error(f"Error in perform_dimensionality_reduction: {e}") raise def cluster_storms_data(embedding, method='dbscan', eps=0.5, min_samples=3): """Cluster storms based on their embedding - FIXED NAME VERSION""" try: if len(embedding) < 2: return np.array([0] * len(embedding)) # Single cluster for insufficient data if method.lower() == 'dbscan': # Adjust min_samples based on data size min_samples = min(min_samples, max(2, len(embedding) // 5)) clusterer = DBSCAN(eps=eps, min_samples=min_samples) elif method.lower() == 'kmeans': # Adjust n_clusters based on data size n_clusters = min(5, max(2, len(embedding) // 3)) clusterer = KMeans(n_clusters=n_clusters, random_state=42) else: raise ValueError("Method must be 'dbscan' or 'kmeans'") clusters = clusterer.fit_predict(embedding) logging.info(f"Clustering complete: {len(np.unique(clusters))} clusters found") return clusters except Exception as e: logging.error(f"Error in cluster_storms_data: {e}") # Return single cluster as fallback return np.array([0] * len(embedding)) def create_separate_clustering_plots(storm_features, typhoon_data, method='umap'): """Create separate plots for clustering analysis - ENHANCED CLARITY VERSION""" try: # Validate inputs if storm_features is None or storm_features.empty: raise ValueError("No storm features available for clustering") if typhoon_data is None or typhoon_data.empty: raise ValueError("No typhoon data available for route visualization") logging.info(f"Starting clustering visualization with {len(storm_features)} storms") # Perform dimensionality reduction embedding, feature_cols, scaler = perform_dimensionality_reduction(storm_features, method) # Perform clustering cluster_labels = cluster_storms_data(embedding, 'dbscan') # Add clustering results to storm features storm_features_viz = storm_features.copy() storm_features_viz['cluster'] = cluster_labels storm_features_viz['dim1'] = embedding[:, 0] storm_features_viz['dim2'] = embedding[:, 1] # Merge with typhoon data for additional info - SAFE MERGE try: storm_info = typhoon_data.groupby('SID').first()[['NAME', 'SEASON']].reset_index() storm_features_viz = storm_features_viz.merge(storm_info, on='SID', how='left') # Fill missing values storm_features_viz['NAME'] = storm_features_viz['NAME'].fillna('UNNAMED') storm_features_viz['SEASON'] = storm_features_viz['SEASON'].fillna(2000) except Exception as merge_error: logging.warning(f"Could not merge storm info: {merge_error}") storm_features_viz['NAME'] = 'UNNAMED' storm_features_viz['SEASON'] = 2000 # Get unique clusters and assign distinct colors unique_clusters = sorted([c for c in storm_features_viz['cluster'].unique() if c != -1]) noise_count = len(storm_features_viz[storm_features_viz['cluster'] == -1]) # 1. Enhanced clustering scatter plot with clear cluster identification fig_cluster = go.Figure() # Add noise points first if noise_count > 0: noise_data = storm_features_viz[storm_features_viz['cluster'] == -1] fig_cluster.add_trace( go.Scatter( x=noise_data['dim1'], y=noise_data['dim2'], mode='markers', marker=dict(color='lightgray', size=8, opacity=0.5, symbol='x'), name=f'Noise ({noise_count} storms)', hovertemplate=( '%{customdata[0]}
' 'Season: %{customdata[1]}
' 'Cluster: Noise
' f'{method.upper()} Dim 1: %{{x:.2f}}
' f'{method.upper()} Dim 2: %{{y:.2f}}
' '' ), customdata=np.column_stack(( noise_data['NAME'].fillna('UNNAMED'), noise_data['SEASON'].fillna(2000) )) ) ) # Add clusters with distinct colors and shapes cluster_symbols = ['circle', 'square', 'diamond', 'triangle-up', 'triangle-down', 'pentagon', 'hexagon', 'star', 'cross', 'circle-open'] for i, cluster in enumerate(unique_clusters): cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster] color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)] symbol = cluster_symbols[i % len(cluster_symbols)] fig_cluster.add_trace( go.Scatter( x=cluster_data['dim1'], y=cluster_data['dim2'], mode='markers', marker=dict(color=color, size=10, symbol=symbol, line=dict(width=1, color='white')), name=f'Cluster {cluster} ({len(cluster_data)} storms)', hovertemplate=( '%{customdata[0]}
' 'Season: %{customdata[1]}
' f'Cluster: {cluster}
' f'{method.upper()} Dim 1: %{{x:.2f}}
' f'{method.upper()} Dim 2: %{{y:.2f}}
' 'Intensity: %{customdata[2]:.0f} kt
' '' ), customdata=np.column_stack(( cluster_data['NAME'].fillna('UNNAMED'), cluster_data['SEASON'].fillna(2000), cluster_data['USA_WIND_max'].fillna(0) )) ) ) fig_cluster.update_layout( title=f'Storm Clustering Analysis using {method.upper()}
Each symbol/color represents a distinct storm pattern group', xaxis_title=f'{method.upper()} Dimension 1', yaxis_title=f'{method.upper()} Dimension 2', height=600, showlegend=True ) # 2. ENHANCED route map with cluster legends and clearer representation fig_routes = go.Figure() # Create a comprehensive legend showing cluster characteristics cluster_info_text = [] for i, cluster in enumerate(unique_clusters): cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist() color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)] # Get cluster statistics for legend cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster] avg_intensity = cluster_data['USA_WIND_max'].mean() if 'USA_WIND_max' in cluster_data.columns else 0 avg_pressure = cluster_data['USA_PRES_min'].mean() if 'USA_PRES_min' in cluster_data.columns else 1000 cluster_info_text.append( f"Cluster {cluster}: {len(cluster_storm_ids)} storms, " f"Avg: {avg_intensity:.0f}kt/{avg_pressure:.0f}hPa" ) # Add multiple storms per cluster with clear identification storms_added = 0 for j, sid in enumerate(cluster_storm_ids[:8]): # Show up to 8 storms per cluster try: storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME') if len(storm_track) > 1: # Ensure valid coordinates valid_coords = storm_track['LAT'].notna() & storm_track['LON'].notna() storm_track = storm_track[valid_coords] if len(storm_track) > 1: storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED' storm_season = storm_track['SEASON'].iloc[0] if 'SEASON' in storm_track.columns else 'Unknown' # Vary line style for different storms in same cluster line_styles = ['solid', 'dash', 'dot', 'dashdot'] line_style = line_styles[j % len(line_styles)] line_width = 3 if j == 0 else 2 # First storm thicker fig_routes.add_trace( go.Scattergeo( lon=storm_track['LON'], lat=storm_track['LAT'], mode='lines+markers', line=dict(color=color, width=line_width, dash=line_style), marker=dict(color=color, size=3), name=f'C{cluster}: {storm_name} ({storm_season})', showlegend=True, legendgroup=f'cluster_{cluster}', hovertemplate=( f'Cluster {cluster}: {storm_name}
' 'Lat: %{lat:.1f}°
' 'Lon: %{lon:.1f}°
' f'Season: {storm_season}
' f'Pattern Group: {cluster}
' '' ) ) ) storms_added += 1 except Exception as track_error: logging.warning(f"Error adding track for storm {sid}: {track_error}") continue # Add cluster centroid marker if len(cluster_storm_ids) > 0: # Calculate average genesis location for cluster cluster_storm_data = storm_features_viz[storm_features_viz['cluster'] == cluster] if 'genesis_lat' in cluster_storm_data.columns and 'genesis_lon' in cluster_storm_data.columns: avg_lat = cluster_storm_data['genesis_lat'].mean() avg_lon = cluster_storm_data['genesis_lon'].mean() fig_routes.add_trace( go.Scattergeo( lon=[avg_lon], lat=[avg_lat], mode='markers', marker=dict( color=color, size=20, symbol='star', line=dict(width=2, color='white') ), name=f'C{cluster} Center', showlegend=True, legendgroup=f'cluster_{cluster}', hovertemplate=( f'Cluster {cluster} Genesis Center
' f'Avg Position: {avg_lat:.1f}°N, {avg_lon:.1f}°E
' f'Storms: {len(cluster_storm_ids)}
' f'Avg Intensity: {avg_intensity:.0f} kt
' '' ) ) ) # Update route map layout with enhanced information and LARGER SIZE fig_routes.update_layout( title=f"Storm Routes by {method.upper()} Clusters
Different line styles = different storms in same cluster | Stars = cluster centers", geo=dict( projection_type="natural earth", showland=True, landcolor="LightGray", showocean=True, oceancolor="LightBlue", showcoastlines=True, coastlinecolor="Gray", center=dict(lat=20, lon=140), projection_scale=2.5 # Larger map ), height=800, # Much larger height width=1200, # Wider map showlegend=True ) # Add cluster info annotation cluster_summary = "
".join(cluster_info_text) fig_routes.add_annotation( text=f"Cluster Summary:
{cluster_summary}", xref="paper", yref="paper", x=0.02, y=0.98, showarrow=False, align="left", bgcolor="rgba(255,255,255,0.8)", bordercolor="gray", borderwidth=1 ) # 3. Enhanced pressure evolution plot with cluster identification fig_pressure = go.Figure() for i, cluster in enumerate(unique_clusters): cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist() color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)] cluster_pressures = [] for j, sid in enumerate(cluster_storm_ids[:5]): # Limit to 5 storms per cluster try: storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME') if len(storm_track) > 1 and 'USA_PRES' in storm_track.columns: pressure_values = pd.to_numeric(storm_track['USA_PRES'], errors='coerce').dropna() if len(pressure_values) > 0: storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED' time_hours = range(len(pressure_values)) # Normalize time to show relative progression normalized_time = np.linspace(0, 100, len(pressure_values)) fig_pressure.add_trace( go.Scatter( x=normalized_time, y=pressure_values, mode='lines', line=dict(color=color, width=2, dash='solid' if j == 0 else 'dash'), name=f'C{cluster}: {storm_name}' if j == 0 else None, showlegend=(j == 0), legendgroup=f'pressure_cluster_{cluster}', hovertemplate=( f'Cluster {cluster}: {storm_name}
' 'Progress: %{x:.0f}%
' 'Pressure: %{y:.0f} hPa
' '' ), opacity=0.8 if j == 0 else 0.5 ) ) cluster_pressures.extend(pressure_values) except Exception as e: continue # Add cluster average line if cluster_pressures: avg_pressure = np.mean(cluster_pressures) fig_pressure.add_hline( y=avg_pressure, line_dash="dot", line_color=color, annotation_text=f"C{cluster} Avg: {avg_pressure:.0f}", annotation_position="right" ) fig_pressure.update_layout( title=f"Pressure Evolution by {method.upper()} Clusters
Normalized timeline (0-100%) | Dotted lines = cluster averages", xaxis_title="Storm Progress (%)", yaxis_title="Pressure (hPa)", height=500 ) # 4. Enhanced wind evolution plot fig_wind = go.Figure() for i, cluster in enumerate(unique_clusters): cluster_storm_ids = storm_features_viz[storm_features_viz['cluster'] == cluster]['SID'].tolist() color = CLUSTER_COLORS[i % len(CLUSTER_COLORS)] cluster_winds = [] for j, sid in enumerate(cluster_storm_ids[:5]): # Limit to 5 storms per cluster try: storm_track = typhoon_data[typhoon_data['SID'] == sid].sort_values('ISO_TIME') if len(storm_track) > 1 and 'USA_WIND' in storm_track.columns: wind_values = pd.to_numeric(storm_track['USA_WIND'], errors='coerce').dropna() if len(wind_values) > 0: storm_name = storm_track['NAME'].iloc[0] if pd.notna(storm_track['NAME'].iloc[0]) else 'UNNAMED' # Normalize time to show relative progression normalized_time = np.linspace(0, 100, len(wind_values)) fig_wind.add_trace( go.Scatter( x=normalized_time, y=wind_values, mode='lines', line=dict(color=color, width=2, dash='solid' if j == 0 else 'dash'), name=f'C{cluster}: {storm_name}' if j == 0 else None, showlegend=(j == 0), legendgroup=f'wind_cluster_{cluster}', hovertemplate=( f'Cluster {cluster}: {storm_name}
' 'Progress: %{x:.0f}%
' 'Wind: %{y:.0f} kt
' '' ), opacity=0.8 if j == 0 else 0.5 ) ) cluster_winds.extend(wind_values) except Exception as e: continue # Add cluster average line if cluster_winds: avg_wind = np.mean(cluster_winds) fig_wind.add_hline( y=avg_wind, line_dash="dot", line_color=color, annotation_text=f"C{cluster} Avg: {avg_wind:.0f}", annotation_position="right" ) fig_wind.update_layout( title=f"Wind Speed Evolution by {method.upper()} Clusters
Normalized timeline (0-100%) | Dotted lines = cluster averages", xaxis_title="Storm Progress (%)", yaxis_title="Wind Speed (kt)", height=500 ) # Generate enhanced cluster statistics with clear explanations try: stats_text = f"ENHANCED {method.upper()} CLUSTER ANALYSIS RESULTS\n" + "="*60 + "\n\n" stats_text += f"🔍 DIMENSIONALITY REDUCTION: {method.upper()}\n" stats_text += f"🎯 CLUSTERING ALGORITHM: DBSCAN (automatic pattern discovery)\n" stats_text += f"📊 TOTAL STORMS ANALYZED: {len(storm_features_viz)}\n" stats_text += f"🎨 CLUSTERS DISCOVERED: {len(unique_clusters)}\n" if noise_count > 0: stats_text += f"❌ NOISE POINTS: {noise_count} storms (don't fit clear patterns)\n" stats_text += "\n" for cluster in sorted(storm_features_viz['cluster'].unique()): cluster_data = storm_features_viz[storm_features_viz['cluster'] == cluster] storm_count = len(cluster_data) if cluster == -1: stats_text += f"❌ NOISE GROUP: {storm_count} storms\n" stats_text += " → These storms don't follow the main patterns\n" stats_text += " → May represent unique or rare storm behaviors\n\n" continue stats_text += f"🎯 CLUSTER {cluster}: {storm_count} storms\n" stats_text += f" 🎨 Color: {CLUSTER_COLORS[cluster % len(CLUSTER_COLORS)]}\n" # Add detailed statistics if available if 'USA_WIND_max' in cluster_data.columns: wind_mean = cluster_data['USA_WIND_max'].mean() wind_std = cluster_data['USA_WIND_max'].std() stats_text += f" 💨 Intensity: {wind_mean:.1f} ± {wind_std:.1f} kt\n" if 'USA_PRES_min' in cluster_data.columns: pres_mean = cluster_data['USA_PRES_min'].mean() pres_std = cluster_data['USA_PRES_min'].std() stats_text += f" 🌡️ Pressure: {pres_mean:.1f} ± {pres_std:.1f} hPa\n" if 'track_length' in cluster_data.columns: track_mean = cluster_data['track_length'].mean() stats_text += f" 📏 Avg Track Length: {track_mean:.1f} points\n" if 'genesis_lat' in cluster_data.columns and 'genesis_lon' in cluster_data.columns: lat_mean = cluster_data['genesis_lat'].mean() lon_mean = cluster_data['genesis_lon'].mean() stats_text += f" 🎯 Genesis Region: {lat_mean:.1f}°N, {lon_mean:.1f}°E\n" # Add interpretation if wind_mean < 50: stats_text += " 💡 Pattern: Weaker storm group\n" elif wind_mean > 100: stats_text += " 💡 Pattern: Intense storm group\n" else: stats_text += " 💡 Pattern: Moderate intensity group\n" stats_text += "\n" # Add explanation of the analysis stats_text += "📖 INTERPRETATION GUIDE:\n" stats_text += f"• {method.upper()} reduces storm characteristics to 2D for visualization\n" stats_text += "• DBSCAN finds natural groupings without preset number of clusters\n" stats_text += "• Each cluster represents storms with similar behavior patterns\n" stats_text += "• Route colors match cluster colors from the similarity plot\n" stats_text += "• Stars on map show average genesis locations for each cluster\n" stats_text += "• Temporal plots show how each cluster behaves over time\n\n" stats_text += f"🔧 FEATURES USED FOR CLUSTERING:\n" stats_text += f" Total: {len(feature_cols)} storm characteristics\n" stats_text += f" Including: intensity, pressure, track shape, genesis location\n" except Exception as stats_error: stats_text = f"Error generating enhanced statistics: {str(stats_error)}" return fig_cluster, fig_routes, fig_pressure, fig_wind, stats_text except Exception as e: logging.error(f"Error in enhanced clustering analysis: {e}") import traceback traceback.print_exc() error_fig = go.Figure() error_fig.add_annotation( text=f"Error in clustering analysis: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, xanchor='center', yanchor='middle', showarrow=False, font_size=16 ) return error_fig, error_fig, error_fig, error_fig, f"Error in clustering: {str(e)}" # ----------------------------- # Regression Functions (Original) # ----------------------------- def perform_wind_regression(start_year, start_month, end_year, end_month): """Perform wind regression analysis""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_WIND','ONI']) data['severe_typhoon'] = (data['USA_WIND']>=64).astype(int) X = sm.add_constant(data['ONI']) y = data['severe_typhoon'] try: model = sm.Logit(y, X).fit(disp=0) beta_1 = model.params['ONI'] exp_beta_1 = np.exp(beta_1) p_value = model.pvalues['ONI'] return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" except Exception as e: return f"Wind Regression Error: {e}" def perform_pressure_regression(start_year, start_month, end_year, end_month): """Perform pressure regression analysis""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_PRES','ONI']) data['intense_typhoon'] = (data['USA_PRES']<=950).astype(int) X = sm.add_constant(data['ONI']) y = data['intense_typhoon'] try: model = sm.Logit(y, X).fit(disp=0) beta_1 = model.params['ONI'] exp_beta_1 = np.exp(beta_1) p_value = model.pvalues['ONI'] return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" except Exception as e: return f"Pressure Regression Error: {e}" def perform_longitude_regression(start_year, start_month, end_year, end_month): """Perform longitude regression analysis""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['LON','ONI']) data['western_typhoon'] = (data['LON']<=140).astype(int) X = sm.add_constant(data['ONI']) y = data['western_typhoon'] try: model = sm.OLS(y, sm.add_constant(X)).fit() beta_1 = model.params['ONI'] exp_beta_1 = np.exp(beta_1) p_value = model.pvalues['ONI'] return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" except Exception as e: return f"Longitude Regression Error: {e}" # ----------------------------- # Visualization Functions (Enhanced) # ----------------------------- def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): """Get full typhoon tracks""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy() filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) if enso_phase != 'all': filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] unique_storms = filtered_data['SID'].unique() count = len(unique_storms) fig = go.Figure() for sid in unique_storms: storm_data = typhoon_data[typhoon_data['SID']==sid] if storm_data.empty: continue name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed" basin = storm_data['SID'].iloc[0][:2] storm_oni = filtered_data[filtered_data['SID']==sid]['ONI'].iloc[0] color = 'red' if storm_oni>=0.5 else ('blue' if storm_oni<=-0.5 else 'green') fig.add_trace(go.Scattergeo( lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines', name=f"{name} ({basin})", line=dict(width=1.5, color=color), hoverinfo="name" )) if typhoon_search: search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False) if search_mask.any(): for sid in typhoon_data[search_mask]['SID'].unique(): storm_data = typhoon_data[typhoon_data['SID']==sid] fig.add_trace(go.Scattergeo( lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers', name=f"MATCHED: {storm_data['NAME'].iloc[0]}", line=dict(width=3, color='yellow'), marker=dict(size=5), hoverinfo="name" )) fig.update_layout( title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})", geo=dict( projection_type='natural earth', showland=True, showcoastlines=True, landcolor='rgb(243,243,243)', countrycolor='rgb(204,204,204)', coastlinecolor='rgb(204,204,204)', center=dict(lon=140, lat=20), projection_scale=3 ), legend_title="Typhoons by ENSO Phase", showlegend=True, height=700 ) fig.add_annotation( x=0.02, y=0.98, xref="paper", yref="paper", text="Red: El Niño, Blue: La Nina, Green: Neutral", showarrow=False, align="left", bgcolor="rgba(255,255,255,0.8)" ) return fig, f"Total typhoons displayed: {count}" def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): """Get wind analysis with enhanced categorization""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy() filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) if enso_phase != 'all': filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME','Year','Category'], title='Wind Speed vs ONI', labels={'ONI':'ONI Value','USA_WIND':'Max Wind Speed (knots)'}, color_discrete_map=enhanced_color_map) if typhoon_search: mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False) if mask.any(): fig.add_trace(go.Scatter( x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_WIND'], mode='markers', marker=dict(size=10, color='red', symbol='star'), name=f'Matched: {typhoon_search}', text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')' )) regression = perform_wind_regression(start_year, start_month, end_year, end_month) return fig, regression def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): """Get pressure analysis with enhanced categorization""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy() filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) if enso_phase != 'all': filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME','Year','Category'], title='Pressure vs ONI', labels={'ONI':'ONI Value','USA_PRES':'Min Pressure (hPa)'}, color_discrete_map=enhanced_color_map) if typhoon_search: mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False) if mask.any(): fig.add_trace(go.Scatter( x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_PRES'], mode='markers', marker=dict(size=10, color='red', symbol='star'), name=f'Matched: {typhoon_search}', text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')' )) regression = perform_pressure_regression(start_year, start_month, end_year, end_month) return fig, regression def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): """Get longitude analysis""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy() filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) if enso_phase != 'all': filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'], title='Typhoon Generation Longitude vs ONI (All Years)') if len(filtered_data) > 1: X = np.array(filtered_data['LON']).reshape(-1,1) y = filtered_data['ONI'] try: model = sm.OLS(y, sm.add_constant(X)).fit() y_pred = model.predict(sm.add_constant(X)) fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line')) slope = model.params[1] slopes_text = f"All Years Slope: {slope:.4f}" except Exception as e: slopes_text = f"Regression Error: {e}" else: slopes_text = "Insufficient data for regression" regression = perform_longitude_regression(start_year, start_month, end_year, end_month) return fig, slopes_text, regression # ----------------------------- # ENHANCED: Animation Functions with Taiwan Standard Support # ----------------------------- def get_available_years(typhoon_data): """Get all available years including 2025 - with error handling""" try: if typhoon_data is None or typhoon_data.empty: return [str(year) for year in range(2000, 2026)] if 'ISO_TIME' in typhoon_data.columns: years = typhoon_data['ISO_TIME'].dt.year.dropna().unique() elif 'SEASON' in typhoon_data.columns: years = typhoon_data['SEASON'].dropna().unique() else: years = range(2000, 2026) # Default range including 2025 # Convert to strings and sort year_strings = sorted([str(int(year)) for year in years if not pd.isna(year)]) # Ensure we have at least some years if not year_strings: return [str(year) for year in range(2000, 2026)] return year_strings except Exception as e: print(f"Error in get_available_years: {e}") return [str(year) for year in range(2000, 2026)] def update_typhoon_options_enhanced(year, basin): """Enhanced typhoon options with TD support and 2025 data""" try: year = int(year) # Filter by year - handle both ISO_TIME and SEASON columns if 'ISO_TIME' in typhoon_data.columns: year_mask = typhoon_data['ISO_TIME'].dt.year == year elif 'SEASON' in typhoon_data.columns: year_mask = typhoon_data['SEASON'] == year else: # Fallback - try to extract year from SID or other fields year_mask = typhoon_data.index >= 0 # Include all data as fallback year_data = typhoon_data[year_mask].copy() # Filter by basin if specified if basin != "All Basins": basin_code = basin.split(' - ')[0] if ' - ' in basin else basin[:2] if 'SID' in year_data.columns: year_data = year_data[year_data['SID'].str.startswith(basin_code, na=False)] elif 'BASIN' in year_data.columns: year_data = year_data[year_data['BASIN'] == basin_code] if year_data.empty: return gr.update(choices=["No storms found"], value=None) # Get unique storms - include ALL intensities (including TD) storms = year_data.groupby('SID').agg({ 'NAME': 'first', 'USA_WIND': 'max' }).reset_index() # Enhanced categorization including TD storms['category'] = storms['USA_WIND'].apply(categorize_typhoon_enhanced) # Create options with category information options = [] for _, storm in storms.iterrows(): name = storm['NAME'] if pd.notna(storm['NAME']) and storm['NAME'] != '' else 'UNNAMED' sid = storm['SID'] category = storm['category'] max_wind = storm['USA_WIND'] if pd.notna(storm['USA_WIND']) else 0 option = f"{name} ({sid}) - {category} ({max_wind:.0f}kt)" options.append(option) if not options: return gr.update(choices=["No storms found"], value=None) return gr.update(choices=sorted(options), value=options[0]) except Exception as e: print(f"Error in update_typhoon_options_enhanced: {e}") return gr.update(choices=["Error loading storms"], value=None) def generate_enhanced_track_video(year, typhoon_selection, standard): """Enhanced track video generation with TD support, Taiwan standard, and 2025 compatibility""" if not typhoon_selection or typhoon_selection == "No storms found": return None try: # Extract SID from selection sid = typhoon_selection.split('(')[1].split(')')[0] # Get storm data storm_df = typhoon_data[typhoon_data['SID'] == sid].copy() if storm_df.empty: print(f"No data found for storm {sid}") return None # Sort by time if 'ISO_TIME' in storm_df.columns: storm_df = storm_df.sort_values('ISO_TIME') # Extract data for animation lats = storm_df['LAT'].astype(float).values lons = storm_df['LON'].astype(float).values if 'USA_WIND' in storm_df.columns: winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').fillna(0).values else: winds = np.full(len(lats), 30) # Default TD strength # Enhanced metadata storm_name = storm_df['NAME'].iloc[0] if pd.notna(storm_df['NAME'].iloc[0]) else "UNNAMED" season = storm_df['SEASON'].iloc[0] if 'SEASON' in storm_df.columns else year print(f"Generating video for {storm_name} ({sid}) with {len(lats)} track points using {standard} standard") # Create figure with enhanced map fig, ax = plt.subplots(figsize=(16, 10), subplot_kw={'projection': ccrs.PlateCarree()}) # Enhanced map features ax.stock_img() ax.add_feature(cfeature.COASTLINE, linewidth=0.8) ax.add_feature(cfeature.BORDERS, linewidth=0.5) ax.add_feature(cfeature.OCEAN, color='lightblue', alpha=0.5) ax.add_feature(cfeature.LAND, color='lightgray', alpha=0.5) # Set extent based on track padding = 5 ax.set_extent([ min(lons) - padding, max(lons) + padding, min(lats) - padding, max(lats) + padding ]) # Add gridlines gl = ax.gridlines(draw_labels=True, alpha=0.3) gl.top_labels = gl.right_labels = False # Title with enhanced info and standard ax.set_title(f"{season} {storm_name} ({sid}) Track Animation - {standard.upper()} Standard", fontsize=18, fontweight='bold') # Animation elements line, = ax.plot([], [], 'b-', linewidth=3, alpha=0.7, label='Track') point, = ax.plot([], [], 'o', markersize=15) # Enhanced info display info_box = ax.text(0.02, 0.98, '', transform=ax.transAxes, fontsize=12, verticalalignment='top', bbox=dict(boxstyle="round,pad=0.5", facecolor='white', alpha=0.9)) # Color legend with both standards - ENHANCED legend_elements = [] if standard == 'taiwan': categories = ['Tropical Depression', 'Tropical Storm', 'Moderate Typhoon', 'Intense Typhoon'] for category in categories: color = get_taiwan_color(category) legend_elements.append(plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=color, markersize=10, label=category)) else: categories = ['Tropical Depression', 'Tropical Storm', 'C1 Typhoon', 'C2 Typhoon', 'C3 Strong Typhoon', 'C4 Very Strong Typhoon', 'C5 Super Typhoon'] for category in categories: color = get_matplotlib_color(category) legend_elements.append(plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=color, markersize=10, label=category)) ax.legend(handles=legend_elements, loc='upper right', fontsize=10) def animate(frame): try: if frame >= len(lats): return line, point, info_box # Update track line line.set_data(lons[:frame+1], lats[:frame+1]) # Update current position with appropriate categorization current_wind = winds[frame] if standard == 'taiwan': category, color = categorize_typhoon_by_standard(current_wind, 'taiwan') else: category, color = categorize_typhoon_by_standard(current_wind, 'atlantic') # Debug print for first few frames if frame < 3: print(f"Frame {frame}: Wind={current_wind:.1f}kt, Category={category}, Color={color}, Standard={standard}") point.set_data([lons[frame]], [lats[frame]]) point.set_color(color) point.set_markersize(10 + current_wind/8) # Size based on intensity # Enhanced info display with standard information if 'ISO_TIME' in storm_df.columns and frame < len(storm_df): current_time = storm_df.iloc[frame]['ISO_TIME'] time_str = current_time.strftime('%Y-%m-%d %H:%M UTC') if pd.notna(current_time) else 'Unknown' else: time_str = f"Step {frame+1}" # Convert wind speed for Taiwan standard display if standard == 'taiwan': wind_ms = current_wind * 0.514444 # Convert to m/s for display wind_display = f"{current_wind:.0f} kt ({wind_ms:.1f} m/s)" else: wind_display = f"{current_wind:.0f} kt" info_text = ( f"Storm: {storm_name}\n" f"Time: {time_str}\n" f"Position: {lats[frame]:.1f}°N, {lons[frame]:.1f}°E\n" f"Max Wind: {wind_display}\n" f"Category: {category}\n" f"Standard: {standard.upper()}\n" f"Frame: {frame+1}/{len(lats)}" ) info_box.set_text(info_text) return line, point, info_box except Exception as e: print(f"Error in animate frame {frame}: {e}") return line, point, info_box # Create animation anim = animation.FuncAnimation( fig, animate, frames=len(lats), interval=400, blit=False, repeat=True # Slightly slower for better viewing ) # Save animation with graceful fallback if FFmpeg is unavailable if shutil.which('ffmpeg'): writer = animation.FFMpegWriter( fps=3, bitrate=2000, codec='libx264', extra_args=['-pix_fmt', 'yuv420p'] ) suffix = '.mp4' else: print("FFmpeg not found - generating GIF instead") writer = animation.PillowWriter(fps=3) suffix = '.gif' temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=suffix, dir=tempfile.gettempdir()) print(f"Saving animation to {temp_file.name}") anim.save(temp_file.name, writer=writer, dpi=120) plt.close(fig) print(f"Video generated successfully: {temp_file.name}") return temp_file.name except Exception as e: print(f"Error generating video: {e}") import traceback traceback.print_exc() return None # Simplified wrapper for backward compatibility - FIXED def simplified_track_video(year, basin, typhoon, standard): """Simplified track video function with fixed color handling""" if not typhoon: return None return generate_enhanced_track_video(year, typhoon, standard) # ----------------------------- # Load & Process Data # ----------------------------- # Global variables initialization oni_data = None typhoon_data = None merged_data = None def initialize_data(): """Initialize all data safely""" global oni_data, typhoon_data, merged_data try: logging.info("Starting data loading process...") update_oni_data() oni_data, typhoon_data = load_data_fixed(ONI_DATA_PATH, TYPHOON_DATA_PATH) if oni_data is not None and typhoon_data is not None: oni_long = process_oni_data(oni_data) typhoon_max = process_typhoon_data(typhoon_data) merged_data = merge_data(oni_long, typhoon_max) logging.info("Data loading complete.") else: logging.error("Failed to load required data") # Create minimal fallback data oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0], 'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0], 'Oct': [0], 'Nov': [0], 'Dec': [0]}) typhoon_data = create_fallback_typhoon_data() oni_long = process_oni_data(oni_data) typhoon_max = process_typhoon_data(typhoon_data) merged_data = merge_data(oni_long, typhoon_max) except Exception as e: logging.error(f"Error during data initialization: {e}") # Create minimal fallback data oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0], 'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0], 'Oct': [0], 'Nov': [0], 'Dec': [0]}) typhoon_data = create_fallback_typhoon_data() oni_long = process_oni_data(oni_data) typhoon_max = process_typhoon_data(typhoon_data) merged_data = merge_data(oni_long, typhoon_max) # Initialize data initialize_data() # ----------------------------- # ENHANCED: Gradio Interface with Fixed Route Visualization and Enhanced Features # ----------------------------- def create_interface(): """Create the enhanced Gradio interface with robust error handling""" try: # Ensure data is available if oni_data is None or typhoon_data is None or merged_data is None: logging.warning("Data not properly loaded, creating minimal interface") return create_minimal_fallback_interface() # Get safe data statistics try: total_storms = len(typhoon_data['SID'].unique()) if 'SID' in typhoon_data.columns else 0 total_records = len(typhoon_data) available_years = get_available_years(typhoon_data) year_range_display = f"{available_years[0]} - {available_years[-1]}" if available_years else "Unknown" except Exception as e: logging.error(f"Error getting data statistics: {e}") total_storms = 0 total_records = 0 year_range_display = "Unknown" available_years = [str(year) for year in range(2000, 2026)] with gr.Blocks(title="Enhanced Typhoon Analysis Platform", theme=gr.themes.Soft()) as demo: gr.Markdown("# 🌪️ Enhanced Typhoon Analysis Platform") gr.Markdown("**Advanced ML clustering, route predictions, and comprehensive tropical cyclone analysis including Tropical Depressions**") with gr.Tab("🏠 Overview"): overview_text = f""" ## Welcome to the Enhanced Typhoon Analysis Dashboard This dashboard provides comprehensive analysis of typhoon data in relation to ENSO phases with advanced machine learning capabilities. ### 🚀 Enhanced Features: - **Advanced ML Clustering**: UMAP/t-SNE storm pattern analysis with separate visualizations - **Predictive Routing**: Advanced storm track and intensity forecasting with uncertainty quantification - **Complete TD Support**: Now includes Tropical Depressions (< 34 kt) - **Taiwan Standard**: Full support for Taiwan meteorological classification system - **2025 Data Ready**: Real-time compatibility with current year data - **Enhanced Animations**: High-quality storm track visualizations with both standards ### 📊 Data Status: - **ONI Data**: {len(oni_data)} years loaded - **Typhoon Data**: {total_records:,} records loaded - **Merged Data**: {len(merged_data):,} typhoons with ONI values - **Available Years**: {year_range_display} ### 🔧 Technical Capabilities: - **UMAP Clustering**: {"✅ Available" if UMAP_AVAILABLE else "⚠️ Limited to t-SNE/PCA"} - **AI Predictions**: {"🧠 Deep Learning" if CNN_AVAILABLE else "🔬 Physics-based"} - **Enhanced Categorization**: Tropical Depression to Super Typhoon - **Platform**: Optimized for Hugging Face Spaces ### 📈 Research Applications: - Climate change impact studies - Seasonal forecasting research - Storm pattern classification - ENSO-typhoon relationship analysis - Intensity prediction model development """ gr.Markdown(overview_text) with gr.Tab("🌊 Monthly Typhoon Genesis Prediction"): gr.Markdown("## 🌊 Monthly Typhoon Genesis Prediction") gr.Markdown("**Enter month (1-12) and ONI value to see realistic typhoon development throughout the month using Genesis Potential Index**") with gr.Row(): with gr.Column(scale=1): genesis_month = gr.Slider( 1, 12, label="Month", value=9, step=1, info="1=Jan, 2=Feb, ..., 12=Dec" ) genesis_oni = gr.Number( label="ONI Value", value=0.0, info="El Niño (+) / La Niña (-) / Neutral (0)" ) enable_genesis_animation = gr.Checkbox( label="Enable Animation", value=True, info="Watch daily genesis potential evolution" ) generate_genesis_btn = gr.Button("🌊 Generate Monthly Genesis Prediction", variant="primary", size="lg") with gr.Column(scale=2): gr.Markdown("### 🌊 What You'll Get:") gr.Markdown(""" - **Daily GPI Evolution**: See genesis potential change day-by-day throughout the month - **Genesis Event Detection**: Automatic identification of likely cyclogenesis times/locations - **Storm Track Development**: Physics-based tracks from each genesis point - **Real-time Animation**: Watch storms develop and move with uncertainty visualization - **Environmental Analysis**: SST, humidity, wind shear, and vorticity effects - **ENSO Modulation**: How El Niño/La Niña affects monthly patterns """) with gr.Row(): genesis_animation = gr.HTML(label="🗺️ Daily Genesis Potential & Storm Development") with gr.Row(): genesis_summary = gr.Textbox(label="📋 Monthly Genesis Analysis Summary", lines=25) def run_genesis_prediction(month, oni, animation): try: # Generate monthly prediction using GPI prediction_data = generate_genesis_prediction_monthly(month, oni, year=2025) # Create animation genesis_fig = create_genesis_animation(prediction_data, animation) # Generate summary summary_text = create_prediction_summary(prediction_data) html = genesis_fig.to_html(include_plotlyjs='cdn', full_html=False) return html, summary_text except Exception as e: import traceback error_msg = f"Genesis prediction failed: {str(e)}\n\nDetails:\n{traceback.format_exc()}" logging.error(error_msg) err_fig = create_error_plot(error_msg) return err_fig.to_html(include_plotlyjs='cdn', full_html=False), error_msg generate_genesis_btn.click( fn=run_genesis_prediction, inputs=[genesis_month, genesis_oni, enable_genesis_animation], outputs=[genesis_animation, genesis_summary] ) with gr.Tab("🔬 Advanced ML Clustering"): gr.Markdown("## 🎯 Storm Pattern Analysis with Separate Visualizations") gr.Markdown("**Four separate plots: Clustering, Routes, Pressure Evolution, and Wind Evolution**") with gr.Row(): with gr.Column(scale=2): reduction_method = gr.Dropdown( choices=['UMAP', 't-SNE', 'PCA'], value='UMAP' if UMAP_AVAILABLE else 't-SNE', label="🔍 Dimensionality Reduction Method", info="UMAP provides better global structure preservation" ) with gr.Column(scale=1): analyze_clusters_btn = gr.Button("🚀 Generate All Cluster Analyses", variant="primary", size="lg") with gr.Row(): with gr.Column(): cluster_plot = gr.Plot(label="📊 Storm Clustering Analysis") with gr.Column(): routes_plot = gr.Plot(label="🗺️ Clustered Storm Routes") with gr.Row(): with gr.Column(): pressure_plot = gr.Plot(label="🌡️ Pressure Evolution by Cluster") with gr.Column(): wind_plot = gr.Plot(label="💨 Wind Speed Evolution by Cluster") with gr.Row(): cluster_stats = gr.Textbox(label="📈 Detailed Cluster Statistics", lines=15, max_lines=20) def run_separate_clustering_analysis(method): try: # Extract features for clustering storm_features = extract_storm_features(typhoon_data) if storm_features is None: return None, None, None, None, "Error: Could not extract storm features" fig_cluster, fig_routes, fig_pressure, fig_wind, stats = create_separate_clustering_plots( storm_features, typhoon_data, method.lower() ) return fig_cluster, fig_routes, fig_pressure, fig_wind, stats except Exception as e: import traceback error_details = traceback.format_exc() error_msg = f"Error: {str(e)}\n\nDetails:\n{error_details}" return None, None, None, None, error_msg analyze_clusters_btn.click( fn=run_separate_clustering_analysis, inputs=[reduction_method], outputs=[cluster_plot, routes_plot, pressure_plot, wind_plot, cluster_stats] ) with gr.Tab("🗺️ Track Visualization"): with gr.Row(): start_year = gr.Number(label="Start Year", value=2020) start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) end_year = gr.Number(label="End Year", value=2025) end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') typhoon_search = gr.Textbox(label="Typhoon Search") analyze_btn = gr.Button("Generate Tracks") tracks_plot = gr.Plot() typhoon_count = gr.Textbox(label="Number of Typhoons Displayed") analyze_btn.click( fn=get_full_tracks, inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search], outputs=[tracks_plot, typhoon_count] ) with gr.Tab("💨 Wind Analysis"): with gr.Row(): wind_start_year = gr.Number(label="Start Year", value=2020) wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) wind_end_year = gr.Number(label="End Year", value=2024) wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') wind_typhoon_search = gr.Textbox(label="Typhoon Search") wind_analyze_btn = gr.Button("Generate Wind Analysis") wind_scatter = gr.Plot() wind_regression_results = gr.Textbox(label="Wind Regression Results") wind_analyze_btn.click( fn=get_wind_analysis, inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search], outputs=[wind_scatter, wind_regression_results] ) with gr.Tab("🌡️ Pressure Analysis"): with gr.Row(): pressure_start_year = gr.Number(label="Start Year", value=2020) pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) pressure_end_year = gr.Number(label="End Year", value=2024) pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') pressure_typhoon_search = gr.Textbox(label="Typhoon Search") pressure_analyze_btn = gr.Button("Generate Pressure Analysis") pressure_scatter = gr.Plot() pressure_regression_results = gr.Textbox(label="Pressure Regression Results") pressure_analyze_btn.click( fn=get_pressure_analysis, inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search], outputs=[pressure_scatter, pressure_regression_results] ) with gr.Tab("🌏 Longitude Analysis"): with gr.Row(): lon_start_year = gr.Number(label="Start Year", value=2020) lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) lon_end_year = gr.Number(label="End Year", value=2020) lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)") lon_analyze_btn = gr.Button("Generate Longitude Analysis") regression_plot = gr.Plot() slopes_text = gr.Textbox(label="Regression Slopes") lon_regression_results = gr.Textbox(label="Longitude Regression Results") lon_analyze_btn.click( fn=get_longitude_analysis, inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search], outputs=[regression_plot, slopes_text, lon_regression_results] ) with gr.Tab("🎬 Enhanced Track Animation"): gr.Markdown("## 🎥 High-Quality Storm Track Visualization (Atlantic & Taiwan Standards)") with gr.Row(): year_dropdown = gr.Dropdown( label="Year", choices=available_years, value=available_years[-1] if available_years else "2024" ) basin_dropdown = gr.Dropdown( label="Basin", choices=["All Basins", "WP - Western Pacific", "EP - Eastern Pacific", "NA - North Atlantic"], value="All Basins" ) with gr.Row(): typhoon_dropdown = gr.Dropdown(label="Storm Selection (All Categories Including TD)") standard_dropdown = gr.Dropdown( label="🎌 Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic', info="Atlantic: International standard | Taiwan: Local meteorological standard" ) generate_video_btn = gr.Button("🎬 Generate Enhanced Animation", variant="primary") video_output = gr.Video(label="Storm Track Animation") # Update storm options when year or basin changes for input_comp in [year_dropdown, basin_dropdown]: input_comp.change( fn=update_typhoon_options_enhanced, inputs=[year_dropdown, basin_dropdown], outputs=[typhoon_dropdown] ) # Generate video generate_video_btn.click( fn=generate_enhanced_track_video, inputs=[year_dropdown, typhoon_dropdown, standard_dropdown], outputs=[video_output] ) with gr.Tab("📊 Data Statistics & Insights"): gr.Markdown("## 📈 Comprehensive Dataset Analysis") # Create enhanced data summary try: if len(typhoon_data) > 0: # Storm category distribution storm_cats = typhoon_data.groupby('SID')['USA_WIND'].max().apply(categorize_typhoon_enhanced) cat_counts = storm_cats.value_counts() # Create distribution chart with enhanced colors fig_dist = px.bar( x=cat_counts.index, y=cat_counts.values, title="Storm Intensity Distribution (Including Tropical Depressions)", labels={'x': 'Category', 'y': 'Number of Storms'}, color=cat_counts.index, color_discrete_map=enhanced_color_map ) # Seasonal distribution if 'ISO_TIME' in typhoon_data.columns: seasonal_data = typhoon_data.copy() seasonal_data['Month'] = seasonal_data['ISO_TIME'].dt.month monthly_counts = seasonal_data.groupby(['Month', 'SID']).size().groupby('Month').size() fig_seasonal = px.bar( x=monthly_counts.index, y=monthly_counts.values, title="Seasonal Storm Distribution", labels={'x': 'Month', 'y': 'Number of Storms'}, color=monthly_counts.values, color_continuous_scale='Viridis' ) else: fig_seasonal = None # Basin distribution if 'SID' in typhoon_data.columns: basin_data = typhoon_data['SID'].str[:2].value_counts() fig_basin = px.pie( values=basin_data.values, names=basin_data.index, title="Distribution by Basin" ) else: fig_basin = None with gr.Row(): gr.Plot(value=fig_dist) if fig_seasonal: with gr.Row(): gr.Plot(value=fig_seasonal) if fig_basin: with gr.Row(): gr.Plot(value=fig_basin) except Exception as e: gr.Markdown(f"Visualization error: {str(e)}") # Enhanced statistics - FIXED formatting total_storms = len(typhoon_data['SID'].unique()) if 'SID' in typhoon_data.columns else 0 total_records = len(typhoon_data) if 'SEASON' in typhoon_data.columns: try: min_year = int(typhoon_data['SEASON'].min()) max_year = int(typhoon_data['SEASON'].max()) year_range = f"{min_year}-{max_year}" years_covered = typhoon_data['SEASON'].nunique() except (ValueError, TypeError): year_range = "Unknown" years_covered = 0 else: year_range = "Unknown" years_covered = 0 if 'SID' in typhoon_data.columns: try: basins_available = ', '.join(sorted(typhoon_data['SID'].str[:2].unique())) avg_storms_per_year = total_storms / max(years_covered, 1) except Exception: basins_available = "Unknown" avg_storms_per_year = 0 else: basins_available = "Unknown" avg_storms_per_year = 0 # TD specific statistics try: if 'USA_WIND' in typhoon_data.columns: td_storms = len(typhoon_data[typhoon_data['USA_WIND'] < 34]['SID'].unique()) ts_storms = len(typhoon_data[(typhoon_data['USA_WIND'] >= 34) & (typhoon_data['USA_WIND'] < 64)]['SID'].unique()) typhoon_storms = len(typhoon_data[typhoon_data['USA_WIND'] >= 64]['SID'].unique()) td_percentage = (td_storms / max(total_storms, 1)) * 100 else: td_storms = ts_storms = typhoon_storms = 0 td_percentage = 0 except Exception as e: print(f"Error calculating TD statistics: {e}") td_storms = ts_storms = typhoon_storms = 0 td_percentage = 0 # Create statistics text safely stats_text = f""" ### 📊 Enhanced Dataset Summary: - **Total Unique Storms**: {total_storms:,} - **Total Track Records**: {total_records:,} - **Year Range**: {year_range} ({years_covered} years) - **Basins Available**: {basins_available} - **Average Storms/Year**: {avg_storms_per_year:.1f} ### 🌪️ Storm Category Breakdown: - **Tropical Depressions**: {td_storms:,} storms ({td_percentage:.1f}%) - **Tropical Storms**: {ts_storms:,} storms - **Typhoons (C1-C5)**: {typhoon_storms:,} storms ### 🚀 Platform Capabilities: - **Complete TD Analysis** - First platform to include comprehensive TD tracking - **Dual Classification Systems** - Both Atlantic and Taiwan standards supported - **Advanced ML Clustering** - DBSCAN pattern recognition with separate visualizations - **Real-time Predictions** - Physics-based and optional CNN intensity forecasting - **2025 Data Ready** - Full compatibility with current season data - **Enhanced Animations** - Professional-quality storm track videos - **Multi-basin Analysis** - Comprehensive Pacific and Atlantic coverage ### 🔬 Research Applications: - Climate change impact studies - Seasonal forecasting research - Storm pattern classification - ENSO-typhoon relationship analysis - Intensity prediction model development - Cross-regional classification comparisons """ gr.Markdown(stats_text) return demo except Exception as e: logging.error(f"Error creating Gradio interface: {e}") import traceback traceback.print_exc() # Create a minimal fallback interface return create_minimal_fallback_interface() def create_minimal_fallback_interface(): """Create a minimal fallback interface when main interface fails""" with gr.Blocks() as demo: gr.Markdown("# Enhanced Typhoon Analysis Platform") gr.Markdown("**Notice**: Loading with minimal interface due to data issues.") with gr.Tab("Status"): gr.Markdown(""" ## Platform Status The application is running but encountered issues loading the full interface. This could be due to: - Data loading problems - Missing dependencies - Configuration issues ### Available Features: - Basic interface is functional - Error logs are being generated - System is ready for debugging ### Next Steps: 1. Check the console logs for detailed error information 2. Verify all required data files are accessible 3. Ensure all dependencies are properly installed 4. Try restarting the application """) with gr.Tab("Debug"): gr.Markdown("## Debug Information") def get_debug_info(): debug_text = f""" Python Environment: - Working Directory: {os.getcwd()} - Data Path: {DATA_PATH} - UMAP Available: {UMAP_AVAILABLE} - CNN Available: {CNN_AVAILABLE} Data Status: - ONI Data: {'Loaded' if oni_data is not None else 'Failed'} - Typhoon Data: {'Loaded' if typhoon_data is not None else 'Failed'} - Merged Data: {'Loaded' if merged_data is not None else 'Failed'} File Checks: - ONI Path Exists: {os.path.exists(ONI_DATA_PATH)} - Typhoon Path Exists: {os.path.exists(TYPHOON_DATA_PATH)} """ return debug_text debug_btn = gr.Button("Get Debug Info") debug_output = gr.Textbox(label="Debug Information", lines=15) debug_btn.click(fn=get_debug_info, outputs=debug_output) return demo # Create and launch the interface demo = create_interface() if __name__ == "__main__": demo.launch(share=True) # Enable sharing with public link