import gradio as gr import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots import pickle import tropycal.tracks as tracks import pandas as pd import numpy as np import cachetools import functools import hashlib import os from datetime import datetime, timedelta from datetime import date from scipy import stats from scipy.optimize import minimize, curve_fit from sklearn.linear_model import LinearRegression from sklearn.cluster import KMeans from scipy.interpolate import interp1d from fractions import Fraction import statsmodels.api as sm import time import threading import requests from io import StringIO import tempfile import csv from collections import defaultdict import shutil import filecmp import warnings warnings.filterwarnings('ignore') # Constants DATA_PATH = os.getcwd() ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv') TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv') LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r00.csv') iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r00/access/csv/ibtracs.WP.list.v04r00.csv' CACHE_FILE = 'ibtracs_cache.pkl' CACHE_EXPIRY_DAYS = 1 # Color mappings COLOR_MAP = { 'C5 Super Typhoon': 'rgb(255, 0, 0)', 'C4 Very Strong Typhoon': 'rgb(255, 63, 0)', 'C3 Strong Typhoon': 'rgb(255, 127, 0)', 'C2 Typhoon': 'rgb(255, 191, 0)', 'C1 Typhoon': 'rgb(255, 255, 0)', 'Tropical Storm': 'rgb(0, 255, 255)', 'Tropical Depression': 'rgb(173, 216, 230)' } class TyphoonAnalyzer: def __init__(self): self.last_oni_update = None self.ensure_data_files_exist() self.load_initial_data() def ensure_data_files_exist(self): """Ensure all required data files exist before loading""" print("Checking and downloading required data files...") # Create data directory if it doesn't exist os.makedirs(DATA_PATH, exist_ok=True) # Download ONI data if it doesn't exist if not os.path.exists(ONI_DATA_PATH): print("Downloading ONI data...") url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt" temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt") try: response = requests.get(url) response.raise_for_status() with open(temp_file, 'wb') as f: f.write(response.content) self.convert_oni_ascii_to_csv(temp_file, ONI_DATA_PATH) print("ONI data downloaded and converted successfully") except Exception as e: print(f"Error downloading ONI data: {e}") raise finally: if os.path.exists(temp_file): os.remove(temp_file) # Download IBTrACS data if it doesn't exist if not os.path.exists(LOCAL_iBtrace_PATH): print("Downloading IBTrACS data...") try: response = requests.get(iBtrace_uri) response.raise_for_status() with open(LOCAL_iBtrace_PATH, 'w') as f: f.write(response.text) print("IBTrACS data downloaded successfully") except Exception as e: print(f"Error downloading IBTrACS data: {e}") raise # Create processed typhoon data if it doesn't exist if not os.path.exists(TYPHOON_DATA_PATH): print("Processing typhoon data...") try: self.convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH) print("Typhoon data processed successfully") except Exception as e: print(f"Error processing typhoon data: {e}") raise print("All required data files are ready") def load_initial_data(self): print("Loading initial data...") self.update_oni_data() self.oni_df = self.fetch_oni_data_from_csv() self.ibtracs = self.load_ibtracs_data() self.update_typhoon_data() self.oni_data, self.typhoon_data = self.load_data() self.oni_long = self.process_oni_data(self.oni_data) self.typhoon_max = self.process_typhoon_data(self.typhoon_data) self.merged_data = self.merge_data() print("Initial data loading complete") def fetch_oni_data_from_csv(self): """Load ONI data from CSV""" df = pd.read_csv(ONI_DATA_PATH) df = df.melt(id_vars=['Year'], var_name='Month', value_name='ONI') # Convert month numbers to month names month_map = { '01': 'Jan', '02': 'Feb', '03': 'Mar', '04': 'Apr', '05': 'May', '06': 'Jun', '07': 'Jul', '08': 'Aug', '09': 'Sep', '10': 'Oct', '11': 'Nov', '12': 'Dec' } df['Month'] = df['Month'].map(month_map) # Now create the date df['Date'] = pd.to_datetime(df['Year'].astype(str) + df['Month'], format='%Y%b') return df.set_index('Date') def should_update_oni(self): today = datetime.now() return (today.day == 1 or today.day == 15 or today.day == (today.replace(day=1, month=today.month%12+1) - timedelta(days=1)).day) def convert_typhoondata(self, input_file, output_file): """Convert IBTrACS data to processed format""" print(f"Converting typhoon data from {input_file} to {output_file}") with open(input_file, 'r') as infile: # Skip the header lines next(infile) next(infile) reader = csv.reader(infile) sid_data = defaultdict(list) for row in reader: if not row: # Skip blank lines continue sid = row[0] iso_time = row[6] sid_data[sid].append((row, iso_time)) with open(output_file, 'w', newline='') as outfile: fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE'] writer = csv.DictWriter(outfile, fieldnames=fieldnames) writer.writeheader() for sid, data in sid_data.items(): start_date = min(data, key=lambda x: x[1])[1] end_date = max(data, key=lambda x: x[1])[1] for row, iso_time in data: writer.writerow({ 'SID': row[0], 'ISO_TIME': iso_time, 'LAT': row[8], 'LON': row[9], 'SEASON': row[1], 'NAME': row[5], 'WMO_WIND': row[10].strip() or ' ', 'WMO_PRES': row[11].strip() or ' ', 'USA_WIND': row[23].strip() or ' ', 'USA_PRES': row[24].strip() or ' ', 'START_DATE': start_date, 'END_DATE': end_date }) def update_oni_data(self): if not self.should_update_oni(): return url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt" temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt") try: response = requests.get(url) response.raise_for_status() with open(temp_file, 'wb') as f: f.write(response.content) self.convert_oni_ascii_to_csv(temp_file, ONI_DATA_PATH) self.last_oni_update = date.today() except Exception as e: print(f"Error updating ONI data: {e}") finally: if os.path.exists(temp_file): os.remove(temp_file) def convert_oni_ascii_to_csv(self, input_file, output_file): data = defaultdict(lambda: [''] * 12) season_to_month = { 'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5, 'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11 } with open(input_file, 'r') as f: next(f) # Skip header for line in f: parts = line.split() if len(parts) >= 4: season, year, anom = parts[0], parts[1], parts[-1] if season in season_to_month: month = season_to_month[season] if season == 'DJF': year = str(int(year) - 1) data[year][month-1] = anom with open(output_file, 'w', newline='') as f: writer = csv.writer(f) writer.writerow(['Year'] + [f"{m:02d}" for m in range(1, 13)]) for year in sorted(data.keys()): writer.writerow([year] + data[year]) def load_ibtracs_data(self): if os.path.exists(CACHE_FILE): cache_time = datetime.fromtimestamp(os.path.getmtime(CACHE_FILE)) if datetime.now() - cache_time < timedelta(days=CACHE_EXPIRY_DAYS): with open(CACHE_FILE, 'rb') as f: return pickle.load(f) if os.path.exists(LOCAL_iBtrace_PATH): ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH) else: response = requests.get(iBtrace_uri) response.raise_for_status() with open(LOCAL_iBtrace_PATH, 'w') as f: f.write(response.text) ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH) with open(CACHE_FILE, 'wb') as f: pickle.dump(ibtracs, f) return ibtracs def update_typhoon_data(self): try: response = requests.head(iBtrace_uri) remote_modified = datetime.strptime(response.headers['Last-Modified'], '%a, %d %b %Y %H:%M:%S GMT') local_modified = (datetime.fromtimestamp(os.path.getmtime(LOCAL_iBtrace_PATH)) if os.path.exists(LOCAL_iBtrace_PATH) else datetime.min) if remote_modified > local_modified: response = requests.get(iBtrace_uri) response.raise_for_status() with open(LOCAL_iBtrace_PATH, 'w') as f: f.write(response.text) except Exception as e: print(f"Error updating typhoon data: {e}") def load_data(self): oni_data = pd.read_csv(ONI_DATA_PATH) typhoon_data = pd.read_csv(TYPHOON_DATA_PATH, low_memory=False) typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME']) return oni_data, typhoon_data def process_oni_data(self, oni_data): """Process ONI data""" oni_long = pd.melt(oni_data, id_vars=['Year'], var_name='Month', value_name='ONI') # Create a mapping for month numbers month_map = { '01': 1, '02': 2, '03': 3, '04': 4, '05': 5, '06': 6, '07': 7, '08': 8, '09': 9, '10': 10, '11': 11, '12': 12 } # Convert month strings to numbers directly oni_long['Month'] = oni_long['Month'].map(month_map) return oni_long def process_typhoon_data(self, typhoon_data): typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce') typhoon_data['WMO_PRES'] = pd.to_numeric(typhoon_data['WMO_PRES'], errors='coerce') typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME']) typhoon_data['Year'] = typhoon_data['ISO_TIME'].dt.year typhoon_data['Month'] = typhoon_data['ISO_TIME'].dt.month typhoon_max = typhoon_data.groupby(['SID', 'Year', 'Month']).agg({ 'USA_WIND': 'max', 'WMO_PRES': 'min', 'NAME': 'first', 'LAT': 'first', 'LON': 'first', 'ISO_TIME': 'first' }).reset_index() typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(self.categorize_typhoon) return typhoon_max def merge_data(self): return pd.merge(self.typhoon_max, self.oni_long, on=['Year', 'Month']) def categorize_typhoon(self, wind_speed): if wind_speed >= 137: return 'C5 Super Typhoon' elif wind_speed >= 113: return 'C4 Very Strong Typhoon' elif wind_speed >= 96: return 'C3 Strong Typhoon' elif wind_speed >= 83: return 'C2 Typhoon' elif wind_speed >= 64: return 'C1 Typhoon' elif wind_speed >= 34: return 'Tropical Storm' else: return 'Tropical Depression' def analyze_typhoon(self, start_year, start_month, end_year, end_month, enso_value='all'): start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) filtered_data = self.merged_data[ (self.merged_data['ISO_TIME'] >= start_date) & (self.merged_data['ISO_TIME'] <= end_date) ] if enso_value != 'all': filtered_data = filtered_data[ (filtered_data['ONI'] >= 0.5 if enso_value == 'el_nino' else filtered_data['ONI'] <= -0.5 if enso_value == 'la_nina' else (filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)) ] return { 'tracks': self.create_tracks_plot(filtered_data), 'wind': self.create_wind_analysis(filtered_data), 'pressure': self.create_pressure_analysis(filtered_data), 'clusters': self.create_cluster_analysis(filtered_data, 5), 'stats': self.generate_statistics(filtered_data) } def create_tracks_plot(self, data): """Create typhoon tracks visualization""" fig = go.Figure() fig.update_layout( title={ 'text': 'Typhoon Tracks', 'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top' }, showlegend=True, legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01, bgcolor='rgba(255, 255, 255, 0.8)' ), geo=dict( projection_type='mercator', showland=True, showcoastlines=True, landcolor='rgb(243, 243, 243)', countrycolor='rgb(204, 204, 204)', coastlinecolor='rgb(214, 214, 214)', showocean=True, oceancolor='rgb(230, 250, 255)', showlakes=True, lakecolor='rgb(230, 250, 255)', lataxis=dict(range=[0, 50]), lonaxis=dict(range=[100, 180]), center=dict(lat=20, lon=140), bgcolor='rgba(255, 255, 255, 0.5)' ), paper_bgcolor='rgba(255, 255, 255, 0.5)', plot_bgcolor='rgba(255, 255, 255, 0.5)' ) for category in COLOR_MAP.keys(): category_data = data[data['Category'] == category] # Group by SID to get individual typhoon tracks for _, storm in category_data.groupby('SID'): # Create single track for each typhoon track_data = self.typhoon_data[self.typhoon_data['SID'] == storm['SID'].iloc[0]] track_data = track_data.sort_values('ISO_TIME') fig.add_trace(go.Scattergeo( lon=track_data['LON'], lat=track_data['LAT'], mode='lines', line=dict( width=2, color=COLOR_MAP[category] ), name=category, legendgroup=category, showlegend=True if storm.iloc[0]['SID'] == category_data.iloc[0]['SID'] else False, hovertemplate=( f"Name: {storm['NAME'].iloc[0]}
" + f"Category: {category}
" + f"Wind Speed: {storm['USA_WIND'].iloc[0]:.1f} kt
" + f"Pressure: {storm['WMO_PRES'].iloc[0]:.1f} hPa
" + f"Date: {track_data['ISO_TIME'].dt.strftime('%Y-%m-%d %H:%M').iloc[0]}
" + f"Lat: %{lat:.2f}°N
" + f"Lon: %{lon:.2f}°E
" + "" ) )) return fig def get_typhoons_for_year(self, year): """Get list of typhoons for a specific year""" year_data = self.typhoon_data[self.typhoon_data['ISO_TIME'].dt.year == year] typhoons = year_data.groupby('SID').first() return [{'label': f"{row['NAME']} ({row.name})", 'value': row.name} for _, row in typhoons.iterrows()] def create_typhoon_animation(self, year, typhoon_id): """Create animated visualization of typhoon path""" storm_data = self.typhoon_data[self.typhoon_data['SID'] == typhoon_id] storm_data = storm_data.sort_values('ISO_TIME') fig = go.Figure() # Base map settings fig.update_layout( title=f"Typhoon Path Animation - {storm_data['NAME'].iloc[0]} ({year})", showlegend=True, geo=dict( projection_type='mercator', showland=True, showcoastlines=True, landcolor='rgb(243, 243, 243)', countrycolor='rgb(204, 204, 204)', coastlinecolor='rgb(214, 214, 214)', showocean=True, oceancolor='rgb(230, 250, 255)', lataxis=dict(range=[0, 50]), lonaxis=dict(range=[100, 180]), center=dict(lat=20, lon=140) ) ) # Create animation frames frames = [] for i in range(len(storm_data)): frame = go.Frame( data=[ go.Scattergeo( lon=storm_data['LON'].iloc[:i+1], lat=storm_data['LAT'].iloc[:i+1], mode='lines+markers', line=dict(width=2, color='red'), marker=dict(size=8, color='red'), name='Path' ) ], name=f'frame{i}' ) frames.append(frame) fig.frames = frames # Add animation controls fig.update_layout( updatemenus=[{ 'buttons': [ { 'args': [None, {'frame': {'duration': 100, 'redraw': True}, 'fromcurrent': True}], 'label': 'Play', 'method': 'animate' }, { 'args': [[None], {'frame': {'duration': 0, 'redraw': True}, 'mode': 'immediate', 'transition': {'duration': 0}}], 'label': 'Pause', 'method': 'animate' } ], 'type': 'buttons', 'showactive': False, 'x': 0.1, 'y': 0, 'xanchor': 'right', 'yanchor': 'top' }] ) info_text = f""" ### Typhoon Information - Name: {storm_data['NAME'].iloc[0]} - Start Date: {storm_data['ISO_TIME'].iloc[0]:%Y-%m-%d %H:%M} - End Date: {storm_data['ISO_TIME'].iloc[-1]:%Y-%m-%d %H:%M} - Maximum Wind Speed: {storm_data['USA_WIND'].max():.1f} kt - Minimum Pressure: {storm_data['WMO_PRES'].min():.1f} hPa """ return fig, info_text def create_pressure_analysis(self, data): fig = px.scatter(data, x='ONI', y='WMO_PRES', color='Category', color_discrete_map=COLOR_MAP, title='Pressure vs ONI Index', labels={ 'ONI': 'Oceanic Niño Index', 'WMO_PRES': 'Minimum Pressure (hPa)' }, hover_data=['NAME', 'ISO_TIME'] ) # Add regression line x = data['ONI'] y = data['WMO_PRES'] slope, intercept = np.polyfit(x, y, 1) fig.add_trace( go.Scatter( x=x, y=slope * x + intercept, mode='lines', name=f'Regression (slope={slope:.2f})', line=dict(color='black', dash='dash') ) ) return fig def create_cluster_analysis(self, data, n_clusters=5): # Prepare data for clustering routes = [] for _, storm in data.groupby('SID'): if len(storm) > 1: # Standardize route length t = np.linspace(0, 1, len(storm)) t_new = np.linspace(0, 1, 100) lon_interp = interp1d(t, storm['LON'], kind='linear')(t_new) lat_interp = interp1d(t, storm['LAT'], kind='linear')(t_new) routes.append(np.column_stack((lon_interp, lat_interp))) if not routes: return go.Figure() # Perform clustering routes_array = np.array(routes) routes_reshaped = routes_array.reshape(routes_array.shape[0], -1) kmeans = KMeans(n_clusters=n_clusters, random_state=42) clusters = kmeans.fit_predict(routes_reshaped) # Create visualization fig = go.Figure() # Plot original routes colored by cluster for route, cluster_id in zip(routes, clusters): fig.add_trace(go.Scattergeo( lon=route[:, 0], lat=route[:, 1], mode='lines', line=dict(width=1, color=f'hsl({cluster_id * 360/n_clusters}, 50%, 50%)'), showlegend=False )) # Plot cluster centers for i in range(n_clusters): center = kmeans.cluster_centers_[i].reshape(-1, 2) fig.add_trace(go.Scattergeo( lon=center[:, 0], lat=center[:, 1], mode='lines', name=f'Cluster {i+1} Center', line=dict(width=3, color=f'hsl({i * 360/n_clusters}, 100%, 50%)') )) fig.update_layout( title='Typhoon Route Clusters', showlegend=True, geo=dict( projection_type='mercator', showland=True, showcoastlines=True, landcolor='rgb(243, 243, 243)', countrycolor='rgb(204, 204, 204)', coastlinecolor='rgb(214, 214, 214)', lataxis=dict(range=[0, 50]), lonaxis=dict(range=[100, 180]), ) ) return fig def get_typhoons_for_year(self, year): """Get list of typhoons for a specific year""" year_data = self.typhoon_data[self.typhoon_data['SEASON'] == year] unique_typhoons = year_data.groupby('SID').first().reset_index() return [ {'label': f"{row['NAME']} ({row['ISO_TIME'].strftime('%Y-%m-%d')})", 'value': row['SID']} for _, row in unique_typhoons.iterrows() ] def search_typhoon_details(self, year, typhoon_id): """Get detailed information for a specific typhoon""" if not typhoon_id: return None, "Please select a typhoon" storm_data = self.typhoon_data[self.typhoon_data['SID'] == typhoon_id] storm_data = storm_data.sort_values('ISO_TIME') # Create track plot fig = self.create_single_typhoon_plot(storm_data) # Create detailed information text info = self.create_typhoon_info_text(storm_data) return fig, info def create_single_typhoon_plot(self, storm_data): """Create a detailed plot for a single typhoon""" fig = go.Figure() fig.update_layout( title=f"Typhoon Track - {storm_data['NAME'].iloc[0]} ({storm_data['SEASON'].iloc[0]})", showlegend=True, geo=dict( projection_type='mercator', showland=True, showcoastlines=True, landcolor='rgb(243, 243, 243)', countrycolor='rgb(204, 204, 204)', coastlinecolor='rgb(214, 214, 214)', showocean=True, oceancolor='rgb(230, 250, 255)', lataxis=dict(range=[0, 50]), lonaxis=dict(range=[100, 180]), center=dict(lat=20, lon=140) ) ) # Add main track fig.add_trace(go.Scattergeo( lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers', line=dict(width=2, color='red'), marker=dict( size=8, color=storm_data['USA_WIND'], colorscale='Viridis', showscale=True, colorbar=dict(title='Wind Speed (kt)') ), text=[f"Time: {time:%Y-%m-%d %H:%M}
Wind: {wind:.1f} kt
Pressure: {pres:.1f} hPa" for time, wind, pres in zip(storm_data['ISO_TIME'], storm_data['USA_WIND'], storm_data['WMO_PRES'])], hoverinfo='text' )) return fig def create_typhoon_info_text(self, storm_data): """Create detailed information text for a typhoon""" max_wind = storm_data['USA_WIND'].max() min_pressure = storm_data['WMO_PRES'].min() duration = (storm_data['ISO_TIME'].max() - storm_data['ISO_TIME'].min()).total_seconds() / 3600 # hours return f""" ### Typhoon Details: {storm_data['NAME'].iloc[0]} **Timing Information:** - Start: {storm_data['ISO_TIME'].min():%Y-%m-%d %H:%M} - End: {storm_data['ISO_TIME'].max():%Y-%m-%d %H:%M} - Duration: {duration:.1f} hours **Intensity Metrics:** - Maximum Wind Speed: {max_wind:.1f} kt - Minimum Pressure: {min_pressure:.1f} hPa - Maximum Category: {self.categorize_typhoon(max_wind)} **Track Information:** - Starting Position: {storm_data['LAT'].iloc[0]:.1f}°N, {storm_data['LON'].iloc[0]:.1f}°E - Ending Position: {storm_data['LAT'].iloc[-1]:.1f}°N, {storm_data['LON'].iloc[-1]:.1f}°E - Total Track Points: {len(storm_data)} """ def generate_statistics(self, data): stats = { 'total_typhoons': len(data['SID'].unique()), 'avg_wind': data['USA_WIND'].mean(), 'max_wind': data['USA_WIND'].max(), 'avg_pressure': data['WMO_PRES'].mean(), 'min_pressure': data['WMO_PRES'].min(), 'oni_correlation_wind': data['ONI'].corr(data['USA_WIND']), 'oni_correlation_pressure': data['ONI'].corr(data['WMO_PRES']), 'category_counts': data['Category'].value_counts().to_dict() } return f""" ### Statistical Summary - Total Typhoons: {stats['total_typhoons']} - Average Wind Speed: {stats['avg_wind']:.2f} kt - Maximum Wind Speed: {stats['max_wind']:.2f} kt - Average Pressure: {stats['avg_pressure']:.2f} hPa - Minimum Pressure: {stats['min_pressure']:.2f} hPa - ONI-Wind Speed Correlation: {stats['oni_correlation_wind']:.3f} - ONI-Pressure Correlation: {stats['oni_correlation_pressure']:.3f} ### Category Distribution {chr(10).join(f'- {cat}: {count}' for cat, count in stats['category_counts'].items())} """ def create_interface(): analyzer = TyphoonAnalyzer() with gr.Blocks(title="Typhoon Analysis Dashboard", theme=gr.themes.Base()) as demo: gr.Markdown("# Typhoon Analysis Dashboard") with gr.Tabs(): # Main Analysis Tab with gr.Tab("Main Analysis"): with gr.Row(): with gr.Column(): start_year = gr.Slider(1900, 2024, 2000, label="Start Year") start_month = gr.Slider(1, 12, 1, label="Start Month") with gr.Column(): end_year = gr.Slider(1900, 2024, 2024, label="End Year") end_month = gr.Slider(1, 12, 12, label="End Month") enso_dropdown = gr.Dropdown( choices=["all", "el_nino", "la_nina", "neutral"], value="all", label="ENSO Phase" ) analyze_btn = gr.Button("Analyze") with gr.Row(): tracks_plot = gr.Plot() with gr.Row(): wind_plot = gr.Plot() pressure_plot = gr.Plot() stats_text = gr.Markdown() # Clustering Analysis Tab with gr.Tab("Clustering Analysis"): with gr.Row(): cluster_year = gr.Slider(1900, 2024, 2000, label="Year") n_clusters = gr.Slider(2, 20, 5, label="Number of Clusters") cluster_btn = gr.Button("Analyze Clusters") cluster_plot = gr.Plot() cluster_stats = gr.Markdown() # Animation Tab with gr.Tab("Typhoon Animation"): with gr.Row(): animation_year = gr.Slider( minimum=1900, maximum=2024, value=2024, step=1, label="Select Year" ) with gr.Row(): animation_typhoon = gr.Dropdown( choices=[], label="Select Typhoon", interactive=True ) animation_btn = gr.Button("Animate Typhoon Path", variant="primary") animation_plot = gr.Plot() animation_info = gr.Markdown() # Search Tab with gr.Tab("Typhoon Search"): with gr.Row(): search_year = gr.Slider( minimum=1900, maximum=2024, value=2024, step=1, label="Select Year" ) with gr.Row(): search_typhoon = gr.Dropdown( choices=[], label="Select Typhoon", interactive=True ) search_btn = gr.Button("Show Typhoon Details", variant="primary") search_plot = gr.Plot() search_info = gr.Markdown() # Event handlers def analyze_callback(start_y, start_m, end_y, end_m, enso): results = analyzer.analyze_typhoon(start_y, start_m, end_y, end_m, enso) return [ results['tracks'], results['wind'], results['pressure'], results['stats'] ] def cluster_callback(year, n_clusters): return analyzer.analyze_clusters(year, n_clusters) def update_typhoon_choices(year): typhoons = analyzer.get_typhoons_for_year(year) return gr.Dropdown.update(choices=typhoons, value=None) # Connect events for main analysis analyze_btn.click( analyze_callback, inputs=[start_year, start_month, end_year, end_month, enso_dropdown], outputs=[tracks_plot, wind_plot, pressure_plot, stats_text] ) # Connect events for clustering cluster_btn.click( cluster_callback, inputs=[cluster_year, n_clusters], outputs=[cluster_plot, cluster_stats] ) # Connect events for Animation tab animation_year.change( update_typhoon_choices, inputs=[animation_year], outputs=[animation_typhoon] ) animation_btn.click( analyzer.create_typhoon_animation, inputs=[animation_year, animation_typhoon], outputs=[animation_plot, animation_info] ) # Connect events for Search tab search_year.change( update_typhoon_choices, inputs=[search_year], outputs=[search_typhoon] ) search_btn.click( analyzer.search_typhoon_details, inputs=[search_year, search_typhoon], outputs=[search_plot, search_info] ) return demo if __name__ == "__main__": demo = create_interface() demo.launch( server_name="0.0.0.0", server_port=7860, share=True )