import gradio as gr import plotly.graph_objects as go import plotly.express as px import pickle import tropycal.tracks as tracks import pandas as pd import numpy as np import cachetools import functools import hashlib import os import argparse from datetime import datetime, timedelta from datetime import date, datetime from scipy import stats from scipy.optimize import minimize, curve_fit from sklearn.linear_model import LinearRegression from sklearn.cluster import KMeans from scipy.interpolate import interp1d from fractions import Fraction from concurrent.futures import ThreadPoolExecutor from sklearn.metrics import mean_squared_error import statsmodels.api as sm import schedule import time import threading import requests from io import StringIO import tempfile import csv from collections import defaultdict import shutil import filecmp # Add command-line argument parsing parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard') parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory') args = parser.parse_args() # Use the command-line argument for data path DATA_PATH = args.data_path ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv') TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv') LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv') iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv' CACHE_FILE = 'ibtracs_cache.pkl' CACHE_EXPIRY_DAYS = 1 last_oni_update = None def should_update_oni(): today = datetime.now() # Beginning of the month: 1st day if today.day == 1: return True # Middle of the month: 15th day if today.day == 15: return True # End of the month: last day if today.day == (today.replace(day=1, month=today.month%12+1) - timedelta(days=1)).day: return True return False color_map = { 'C5 Super Typhoon': 'rgb(255, 0, 0)', # Red 'C4 Very Strong Typhoon': 'rgb(255, 63, 0)', # Red-Orange 'C3 Strong Typhoon': 'rgb(255, 127, 0)', # Orange 'C2 Typhoon': 'rgb(255, 191, 0)', # Orange-Yellow 'C1 Typhoon': 'rgb(255, 255, 0)', # Yellow 'Tropical Storm': 'rgb(0, 255, 255)', # Cyan 'Tropical Depression': 'rgb(173, 216, 230)' # Light Blue } def convert_typhoondata(input_file, output_file): with open(input_file, 'r') as infile: # Skip the title and the unit line. next(infile) next(infile) reader = csv.reader(infile) # Used for storing data for each SID sid_data = defaultdict(list) for row in reader: if not row: # Skip the blank lines continue sid = row[0] iso_time = row[6] sid_data[sid].append((row, iso_time)) with open(output_file, 'w', newline='') as outfile: fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE'] writer = csv.DictWriter(outfile, fieldnames=fieldnames) writer.writeheader() for sid, data in sid_data.items(): start_date = min(data, key=lambda x: x[1])[1] end_date = max(data, key=lambda x: x[1])[1] for row, iso_time in data: writer.writerow({ 'SID': row[0], 'ISO_TIME': iso_time, 'LAT': row[8], 'LON': row[9], 'SEASON': row[1], 'NAME': row[5], 'WMO_WIND': row[10].strip() or ' ', 'WMO_PRES': row[11].strip() or ' ', 'USA_WIND': row[23].strip() or ' ', 'USA_PRES': row[24].strip() or ' ', 'START_DATE': start_date, 'END_DATE': end_date }) def download_oni_file(url, filename): print(f"Downloading file from {url}...") try: response = requests.get(url) response.raise_for_status() # Raises an exception for non-200 status codes with open(filename, 'wb') as f: f.write(response.content) print(f"File successfully downloaded and saved as {filename}") return True except requests.RequestException as e: print(f"Download failed. Error: {e}") return False def convert_oni_ascii_to_csv(input_file, output_file): data = defaultdict(lambda: [''] * 12) season_to_month = { 'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5, 'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11 } print(f"Attempting to read file: {input_file}") try: with open(input_file, 'r') as f: lines = f.readlines() print(f"Successfully read {len(lines)} lines") if len(lines) <= 1: print("Error: File is empty or contains only header") return for line in lines[1:]: # Skip header parts = line.split() if len(parts) >= 4: season, year = parts[0], parts[1] anom = parts[-1] if season in season_to_month: month = season_to_month[season] if season == 'DJF': year = str(int(year) - 1) data[year][month-1] = anom else: print(f"Warning: Unknown season: {season}") else: print(f"Warning: Skipping invalid line: {line.strip()}") print(f"Processed data for {len(data)} years") except Exception as e: print(f"Error reading file: {e}") return print(f"Attempting to write file: {output_file}") try: with open(output_file, 'w', newline='') as f: writer = csv.writer(f) writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']) for year in sorted(data.keys()): row = [year] + data[year] writer.writerow(row) print(f"Successfully wrote {len(data)} rows of data") except Exception as e: print(f"Error writing file: {e}") return print(f"Conversion complete. Data saved to {output_file}") def update_oni_data(): global last_oni_update current_date = date.today() # Check if already updated today if last_oni_update == current_date: print("ONI data already checked today. Skipping update.") return url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt" temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt") input_file = os.path.join(DATA_PATH, "oni.ascii.txt") output_file = ONI_DATA_PATH if download_oni_file(url, temp_file): if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file, shallow=False): # File doesn't exist or has been updated os.replace(temp_file, input_file) print("New ONI data detected. Converting to CSV.") convert_oni_ascii_to_csv(input_file, output_file) print("ONI data updated successfully.") else: print("ONI data is up to date. No conversion needed.") os.remove(temp_file) # Remove temporary file last_oni_update = current_date else: print("Failed to download ONI data.") if os.path.exists(temp_file): os.remove(temp_file) # Ensure cleanup of temporary file def load_ibtracs_data(): if os.path.exists(CACHE_FILE): cache_time = datetime.fromtimestamp(os.path.getmtime(CACHE_FILE)) if datetime.now() - cache_time < timedelta(days=CACHE_EXPIRY_DAYS): print("Loading data from cache...") with open(CACHE_FILE, 'rb') as f: return pickle.load(f) if os.path.exists(LOCAL_iBtrace_PATH): print("Using local IBTrACS file...") ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH) else: print("Local IBTrACS file not found. Fetching data from remote server...") try: response = requests.get(iBtrace_uri) response.raise_for_status() with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file: temp_file.write(response.text) temp_file_path = temp_file.name # Save the downloaded data as the local file shutil.move(temp_file_path, LOCAL_iBtrace_PATH) print(f"Downloaded data saved to {LOCAL_iBtrace_PATH}") ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH) except requests.RequestException as e: print(f"Error downloading data: {e}") print("No local file available and download failed. Unable to load IBTrACS data.") return None with open(CACHE_FILE, 'wb') as f: pickle.dump(ibtracs, f) return ibtracs def update_ibtracs_data(): global ibtracs print("Checking for IBTrACS data updates...") try: # Get the last-modified time of the remote file response = requests.head(iBtrace_uri) remote_last_modified = datetime.strptime(response.headers['Last-Modified'], '%a, %d %b %Y %H:%M:%S GMT') # Get the last-modified time of the local file if os.path.exists(LOCAL_iBtrace_PATH): local_last_modified = datetime.fromtimestamp(os.path.getmtime(LOCAL_iBtrace_PATH)) else: local_last_modified = datetime.min # Compare the modification times if remote_last_modified <= local_last_modified: print("Local IBTrACS data is up to date. No update needed.") if os.path.exists(CACHE_FILE): # Update the cache file's timestamp to extend its validity os.utime(CACHE_FILE, None) print("Cache file timestamp updated.") return print("Remote data is newer. Updating IBTrACS data...") # Download the new data response = requests.get(iBtrace_uri) response.raise_for_status() with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file: temp_file.write(response.text) temp_file_path = temp_file.name # Save the downloaded data as the local file shutil.move(temp_file_path, LOCAL_iBtrace_PATH) print(f"Downloaded data saved to {LOCAL_iBtrace_PATH}") # Update the last modified time of the local file to match the remote file os.utime(LOCAL_iBtrace_PATH, (remote_last_modified.timestamp(), remote_last_modified.timestamp())) ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH) with open(CACHE_FILE, 'wb') as f: pickle.dump(ibtracs, f) print("IBTrACS data updated and cache refreshed.") except requests.RequestException as e: print(f"Error checking or downloading data: {e}") if os.path.exists(LOCAL_iBtrace_PATH): print("Using existing local file.") ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH) if os.path.exists(CACHE_FILE): # Update the cache file's timestamp even when using existing local file os.utime(CACHE_FILE, None) print("Cache file timestamp updated.") else: print("No local file available. Update failed.") def run_schedule(): while True: schedule.run_pending() time.sleep(1) def analyze_typhoon_generation(merged_data, start_date, end_date): filtered_data = merged_data[ (merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date) ] filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) typhoon_counts = filtered_data['ENSO_Phase'].value_counts().to_dict() month_counts = filtered_data.groupby(['ENSO_Phase', filtered_data['ISO_TIME'].dt.month]).size().unstack(fill_value=0) concentrated_months = month_counts.idxmax(axis=1).to_dict() return typhoon_counts, concentrated_months def cache_key_generator(*args, **kwargs): key = hashlib.md5() for arg in args: key.update(str(arg).encode()) for k, v in sorted(kwargs.items()): key.update(str(k).encode()) key.update(str(v).encode()) return key.hexdigest() def categorize_typhoon(wind_speed): wind_speed_kt = wind_speed / 2 # Convert kt to m/s # Add category classification if wind_speed_kt >= 137/2.35: return 'C5 Super Typhoon' elif wind_speed_kt >= 113/2.35: return 'C4 Very Strong Typhoon' elif wind_speed_kt >= 96/2.35: return 'C3 Strong Typhoon' elif wind_speed_kt >= 83/2.35: return 'C2 Typhoon' elif wind_speed_kt >= 64/2.35: return 'C1 Typhoon' elif wind_speed_kt >= 34/2.35: return 'Tropical Storm' else: return 'Tropical Depression' @functools.lru_cache(maxsize=None) def process_oni_data_cached(oni_data_hash): return process_oni_data(oni_data) def process_oni_data(oni_data): oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI') oni_long['Month'] = oni_long['Month'].map({ 'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06', 'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12' }) oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01') oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce') return oni_long def process_oni_data_with_cache(oni_data): oni_data_hash = cache_key_generator(oni_data.to_json()) return process_oni_data_cached(oni_data_hash) @functools.lru_cache(maxsize=None) def process_typhoon_data_cached(typhoon_data_hash): return process_typhoon_data(typhoon_data) def process_typhoon_data(typhoon_data): typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce') typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce') typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce') typhoon_max = typhoon_data.groupby('SID').agg({ 'USA_WIND': 'max', 'USA_PRES': 'min', 'ISO_TIME': 'first', 'SEASON': 'first', 'NAME': 'first', 'LAT': 'first', 'LON': 'first' }).reset_index() typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m') typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon) return typhoon_max def process_typhoon_data_with_cache(typhoon_data): typhoon_data_hash = cache_key_generator(typhoon_data.to_json()) return process_typhoon_data_cached(typhoon_data_hash) def merge_data(oni_long, typhoon_max): return pd.merge(typhoon_max, oni_long, on=['Year', 'Month']) def calculate_logistic_regression(merged_data): data = merged_data.dropna(subset=['USA_WIND', 'ONI']) # Create binary outcome for severe typhoons data['severe_typhoon'] = (data['USA_WIND'] >= 51).astype(int) # Create binary predictor for El Niño data['el_nino'] = (data['ONI'] >= 0.5).astype(int) X = data['el_nino'] X = sm.add_constant(X) # Add constant term y = data['severe_typhoon'] model = sm.Logit(y, X).fit() beta_1 = model.params['el_nino'] exp_beta_1 = np.exp(beta_1) p_value = model.pvalues['el_nino'] return beta_1, exp_beta_1, p_value @cachetools.cached(cache={}) def fetch_oni_data_from_csv(file_path): df = pd.read_csv(file_path, sep=',', header=0, na_values='-99.90') df.columns = ['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] df = df.melt(id_vars=['Year'], var_name='Month', value_name='ONI') df['Date'] = pd.to_datetime(df['Year'].astype(str) + df['Month'], format='%Y%b') df = df.set_index('Date') return df def classify_enso_phases(oni_value): if isinstance(oni_value, pd.Series): oni_value = oni_value.iloc[0] if oni_value >= 0.5: return 'El Nino' elif oni_value <= -0.5: return 'La Nina' else: return 'Neutral' def load_data(oni_data_path, typhoon_data_path): oni_data = pd.read_csv(oni_data_path) typhoon_data = pd.read_csv(typhoon_data_path, low_memory=False) typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') typhoon_data = typhoon_data.dropna(subset=['ISO_TIME']) print(f"Typhoon data shape after cleaning: {typhoon_data.shape}") print(f"Year range: {typhoon_data['ISO_TIME'].dt.year.min()} - {typhoon_data['ISO_TIME'].dt.year.max()}") return oni_data, typhoon_data def preprocess_data(oni_data, typhoon_data): typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce') typhoon_data['WMO_PRES'] = pd.to_numeric(typhoon_data['WMO_PRES'], errors='coerce') typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') typhoon_data['Year'] = typhoon_data['ISO_TIME'].dt.year typhoon_data['Month'] = typhoon_data['ISO_TIME'].dt.month monthly_max_wind_speed = typhoon_data.groupby(['Year', 'Month'])['USA_WIND'].max().reset_index() oni_data_long = pd.melt(oni_data, id_vars=['Year'], var_name='Month', value_name='ONI') oni_data_long['Month'] = oni_data_long['Month'].apply(lambda x: pd.to_datetime(x, format='%b').month) merged_data = pd.merge(monthly_max_wind_speed, oni_data_long, on=['Year', 'Month']) return merged_data def calculate_max_wind_min_pressure(typhoon_data): max_wind_speed = typhoon_data['USA_WIND'].max() min_pressure = typhoon_data['WMO_PRES'].min() return max_wind_speed, min_pressure @functools.lru_cache(maxsize=None) def get_storm_data(storm_id): return ibtracs.get_storm(storm_id) def filter_west_pacific_coordinates(lons, lats): mask = (100 <= lons) & (lons <= 180) & (0 <= lats) & (lats <= 40) return lons[mask], lats[mask] def polynomial_exp(x, a, b, c, d): return a * x**2 + b * x + c + d * np.exp(x) def exponential(x, a, b, c): return a * np.exp(b * x) + c def generate_cluster_equations(cluster_center): X = cluster_center[:, 0] # Longitudes y = cluster_center[:, 1] # Latitudes x_min = X.min() x_max = X.max() equations = [] # Fourier Series (up to 4th order) def fourier_series(x, a0, a1, b1, a2, b2, a3, b3, a4, b4): return (a0 + a1*np.cos(x) + b1*np.sin(x) + a2*np.cos(2*x) + b2*np.sin(2*x) + a3*np.cos(3*x) + b3*np.sin(3*x) + a4*np.cos(4*x) + b4*np.sin(4*x)) # Normalize X to the range [0, 2π] X_normalized = 2 * np.pi * (X - x_min) / (x_max - x_min) params, _ = curve_fit(fourier_series, X_normalized, y) a0, a1, b1, a2, b2, a3, b3, a4, b4 = params # Create the equation string fourier_eq = (f"y = {a0:.4f} + {a1:.4f}*cos(x) + {b1:.4f}*sin(x) + " f"{a2:.4f}*cos(2x) + {b2:.4f}*sin(2x) + " f"{a3:.4f}*cos(3x) + {b3:.4f}*sin(3x) + " f"{a4:.4f}*cos(4x) + {b4:.4f}*sin(4x)") equations.append(("Fourier Series", fourier_eq)) equations.append(("X Range", f"x goes from 0 to {2*np.pi:.4f}")) equations.append(("Longitude Range", f"Longitude goes from {x_min:.4f}°E to {x_max:.4f}°E")) return equations, (x_min, x_max) # Classification standards atlantic_standard = { 'C5 Super Typhoon': {'wind_speed': 137, 'color': 'rgb(255, 0, 0)'}, 'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'rgb(255, 63, 0)'}, 'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'rgb(255, 127, 0)'}, 'C2 Typhoon': {'wind_speed': 83, 'color': 'rgb(255, 191, 0)'}, 'C1 Typhoon': {'wind_speed': 64, 'color': 'rgb(255, 255, 0)'}, 'Tropical Storm': {'wind_speed': 34, 'color': 'rgb(0, 255, 255)'}, 'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'} } taiwan_standard = { 'Strong Typhoon': {'wind_speed': 51.0, 'color': 'rgb(255, 0, 0)'}, # >= 51.0 m/s 'Medium Typhoon': {'wind_speed': 33.7, 'color': 'rgb(255, 127, 0)'}, # 33.7-50.9 m/s 'Mild Typhoon': {'wind_speed': 17.2, 'color': 'rgb(255, 255, 0)'}, # 17.2-33.6 m/s 'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'} # < 17.2 m/s } def categorize_typhoon_by_standard(wind_speed, standard='atlantic'): """ Categorize typhoon based on wind speed and chosen standard wind_speed is in knots """ if standard == 'taiwan': # Convert knots to m/s for Taiwan standard wind_speed_ms = wind_speed * 0.514444 if wind_speed_ms >= 51.0: return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['color'] elif wind_speed_ms >= 33.7: return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['color'] elif wind_speed_ms >= 17.2: return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['color'] else: return 'Tropical Depression', taiwan_standard['Tropical Depression']['color'] else: # Atlantic standard uses knots if wind_speed >= 137: return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['color'] elif wind_speed >= 113: return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['color'] elif wind_speed >= 96: return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['color'] elif wind_speed >= 83: return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['color'] elif wind_speed >= 64: return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['color'] elif wind_speed >= 34: return 'Tropical Storm', atlantic_standard['Tropical Storm']['color'] else: return 'Tropical Depression', atlantic_standard['Tropical Depression']['color'] # Initialize data at startup def initialize_data(): global oni_df, ibtracs, oni_data, typhoon_data, oni_long, typhoon_max, merged_data, data, max_wind_speed, min_pressure print(f"Using data path: {DATA_PATH}") # Update ONI data before starting the application update_oni_data() oni_df = fetch_oni_data_from_csv(ONI_DATA_PATH) ibtracs = load_ibtracs_data() if os.path.exists(LOCAL_iBtrace_PATH): convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH) oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH) oni_long = process_oni_data(oni_data) typhoon_max = process_typhoon_data(typhoon_data) merged_data = merge_data(oni_long, typhoon_max) data = preprocess_data(oni_data, typhoon_data) max_wind_speed, min_pressure = calculate_max_wind_min_pressure(typhoon_data) # Schedule data updates schedule.every().day.at("01:00").do(update_ibtracs_data) schedule.every().day.at("00:00").do(lambda: update_oni_data() if should_update_oni() else None) # Run the scheduler in a separate thread scheduler_thread = threading.Thread(target=run_schedule) scheduler_thread.daemon = True scheduler_thread.start() return oni_df, ibtracs, typhoon_data # Function to get available years from typhoon data def get_available_years(): if typhoon_data is None: return [] years = typhoon_data['ISO_TIME'].dt.year.unique() years = years[~np.isnan(years)] years = sorted(years) return years # Function to get available typhoons for a selected year def get_typhoons_for_year(year): if not year or ibtracs is None: return [] try: year = int(year) season = ibtracs.get_season(year) storm_summary = season.summary() typhoon_options = [] for i in range(storm_summary['season_storms']): storm_id = storm_summary['id'][i] storm_name = storm_summary['name'][i] typhoon_options.append((f"{storm_name} ({storm_id})", storm_id)) return typhoon_options except Exception as e: print(f"Error getting typhoons for year {year}: {e}") return [] # Create animation for typhoon path def create_typhoon_path_animation(year, typhoon_id, standard): if not year or not typhoon_id: return None try: storm = ibtracs.get_storm(typhoon_id) fig = go.Figure() fig.add_trace( go.Scattergeo( lon=storm.lon, lat=storm.lat, mode='lines', line=dict(width=2, color='gray'), name='Path', showlegend=False, ) ) fig.add_trace( go.Scattergeo( lon=[storm.lon[0]], lat=[storm.lat[0]], mode='markers', marker=dict(size=10, color='green', symbol='star'), name='Starting Point', text=storm.time[0].strftime('%Y-%m-%d %H:%M'), hoverinfo='text+name', ) ) frames = [] for i in range(len(storm.time)): category, color = categorize_typhoon_by_standard(storm.vmax[i], standard) # Get additional data if available r34_ne = storm.dict['USA_R34_NE'][i] if 'USA_R34_NE' in storm.dict else None r34_se = storm.dict['USA_R34_SE'][i] if 'USA_R34_SE' in storm.dict else None r34_sw = storm.dict['USA_R34_SW'][i] if 'USA_R34_SW' in storm.dict else None r34_nw = storm.dict['USA_R34_NW'][i] if 'USA_R34_NW' in storm.dict else None rmw = storm.dict['USA_RMW'][i] if 'USA_RMW' in storm.dict else None eye_diameter = storm.dict['USA_EYE'][i] if 'USA_EYE' in storm.dict else None radius_info = f"R34: NE={r34_ne}, SE={r34_se}, SW={r34_sw}, NW={r34_nw}
" radius_info += f"RMW: {rmw}
" radius_info += f"Eye Diameter: {eye_diameter}" frame_data = [ go.Scattergeo( lon=storm.lon[:i+1], lat=storm.lat[:i+1], mode='lines', line=dict(width=2, color='blue'), name='Path Traveled', showlegend=False, ), go.Scattergeo( lon=[storm.lon[i]], lat=[storm.lat[i]], mode='markers+text', marker=dict(size=10, color=color, symbol='star'), text=category, textposition="top center", textfont=dict(size=12, color=color), name='Current Location', hovertext=f"{storm.time[i].strftime('%Y-%m-%d %H:%M')}
" f"Category: {category}
" f"Wind Speed: {storm.vmax[i]:.1f} m/s
" f"{radius_info}", hoverinfo='text', ), ] frames.append(go.Frame(data=frame_data, name=f"frame{i}")) fig.frames = frames fig.update_layout( title=f"{year} Year {storm.name} Typhoon Path", showlegend=False, geo=dict( projection_type='natural earth', showland=True, landcolor='rgb(243, 243, 243)', countrycolor='rgb(204, 204, 204)', coastlinecolor='rgb(100, 100, 100)', showocean=True, oceancolor='rgb(230, 250, 255)', ), updatemenus=[{ "buttons": [ { "args": [None, {"frame": {"duration": 100, "redraw": True}, "fromcurrent": True, "transition": {"duration": 0}}], "label": "Play", "method": "animate" }, { "args": [[None], {"frame": {"duration": 0, "redraw": True}, "mode": "immediate", "transition": {"duration": 0}}], "label": "Pause", "method": "animate" } ], "direction": "left", "pad": {"r": 10, "t": 87}, "showactive": False, "type": "buttons", "x": 0.1, "xanchor": "right", "y": 0, "yanchor": "top" }], sliders=[{ "active": 0, "yanchor": "top", "xanchor": "left", "currentvalue": { "font": {"size": 20}, "prefix": "Time: ", "visible": True, "xanchor": "right" }, "transition": {"duration": 100, "easing": "cubic-in-out"}, "pad": {"b": 10, "t": 50}, "len": 0.9, "x": 0.1, "y": 0, "steps": [ { "args": [[f"frame{k}"], {"frame": {"duration": 100, "redraw": True}, "mode": "immediate", "transition": {"duration": 0}} ], "label": storm.time[k].strftime('%Y-%m-%d %H:%M'), "method": "animate" } for k in range(len(storm.time)) ] }] ) return fig except Exception as e: print(f"Error creating typhoon path animation: {e}") return None # Function to analyze typhoon tracks def analyze_typhoon_tracks(start_year, start_month, end_year, end_month, enso_selection, typhoon_search=""): start_date = datetime(int(start_year), int(start_month), 1) end_date = datetime(int(end_year), int(end_month), 28) # Create typhoon tracks plot fig_tracks = go.Figure() # Map Gradio dropdown values to the values used in the original code enso_map = { "All Years": "all", "El Niño Years": "el_nino", "La Niña Years": "la_nina", "Neutral Years": "neutral" } enso_value = enso_map[enso_selection] try: for year in range(int(start_year), int(end_year) + 1): if year not in ibtracs.data.keys(): continue season = ibtracs.get_season(year) for storm_id in season.summary()['id']: storm = get_storm_data(storm_id) storm_dates = storm.time if any(start_date <= date <= end_date for date in storm_dates): storm_date_str = storm_dates[0].strftime('%Y-%b') if storm_date_str in oni_df.index: storm_oni = oni_df.loc[storm_date_str]['ONI'] if isinstance(storm_oni, pd.Series): storm_oni = storm_oni.iloc[0] phase = classify_enso_phases(storm_oni) if (enso_value == 'all' or (enso_value == 'el_nino' and phase == 'El Nino') or (enso_value == 'la_nina' and phase == 'La Nina') or (enso_value == 'neutral' and phase == 'Neutral')): color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[phase] # Highlight searched typhoon if typhoon_search and typhoon_search.lower() in storm.name.lower(): line_width = 5 line_color = 'yellow' else: line_width = 2 line_color = color fig_tracks.add_trace(go.Scattergeo( lon=storm.lon, lat=storm.lat, mode='lines', name=storm.name, text=f'{storm.name} ({year})', hoverinfo='text', line=dict(width=line_width, color=line_color) )) fig_tracks.update_layout( title=f'Typhoon Tracks from {start_year}-{start_month} to {end_year}-{end_month}', geo=dict( projection_type='natural earth', showland=True, coastlinecolor='rgb(100, 100, 100)', countrycolor='rgb(204, 204, 204)', ) ) # Calculate statistics for this period filtered_data = merged_data[ (merged_data['Year'] >= int(start_year)) & (merged_data['Year'] <= int(end_year)) & (merged_data['Month'].astype(int) >= int(start_month)) & (merged_data['Month'].astype(int) <= int(end_month)) ] max_wind = filtered_data['USA_WIND'].max() if not filtered_data.empty else 0 min_press = filtered_data['USA_PRES'].min() if not filtered_data.empty else 0 stats_text = f"Maximum Wind Speed: {max_wind:.2f} knots\nMinimum Pressure: {min_press:.2f} hPa" # Create wind scatter plot wind_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME', 'Year', 'Category'], title='Wind Speed vs ONI', labels={'ONI': 'ONI Value', 'USA_WIND': 'Maximum Wind Speed (knots)'}, color_discrete_map=color_map) # Create pressure scatter plot pressure_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME', 'Year', 'Category'], title='Pressure vs ONI', labels={'ONI': 'ONI Value', 'USA_PRES': 'Minimum Pressure (hPa)'}, color_discrete_map=color_map) return fig_tracks, wind_oni_scatter, pressure_oni_scatter, stats_text except Exception as e: error_fig = go.Figure() error_fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False) return error_fig, error_fig, error_fig, f"Error analyzing typhoon tracks: {str(e)}" # Function to run cluster analysis def run_cluster_analysis(start_year, start_month, end_year, end_month, n_clusters, enso_selection, analysis_type): start_date = datetime(int(start_year), int(start_month), 1) end_date = datetime(int(end_year), int(end_month), 28) # Map Gradio dropdown values to the values used in the original code enso_map = { "All Years": "all", "El Niño Years": "el_nino", "La Niña Years": "la_nina", "Neutral Years": "neutral" } enso_value = enso_map[enso_selection] fig_routes = go.Figure() try: # Clustering analysis west_pacific_storms = [] for year in range(int(start_year), int(end_year) + 1): if year not in ibtracs.data.keys(): continue season = ibtracs.get_season(year) for storm_id in season.summary()['id']: storm = get_storm_data(storm_id) storm_date = storm.time[0] # Try to find the ONI value for this storm date date_str = storm_date.strftime('%Y-%b') if date_str in oni_df.index: storm_oni = oni_df.loc[date_str]['ONI'] if isinstance(storm_oni, pd.Series): storm_oni = storm_oni.iloc[0] storm_phase = classify_enso_phases(storm_oni) if enso_value == 'all' or \ (enso_value == 'el_nino' and storm_phase == 'El Nino') or \ (enso_value == 'la_nina' and storm_phase == 'La Nina') or \ (enso_value == 'neutral' and storm_phase == 'Neutral'): lons, lats = filter_west_pacific_coordinates(np.array(storm.lon), np.array(storm.lat)) if len(lons) > 1: # Ensure the storm has a valid path in West Pacific west_pacific_storms.append((lons, lats)) if not west_pacific_storms: return None, "No storms found matching the criteria" max_length = max(len(storm[0]) for storm in west_pacific_storms) standardized_routes = [] for lons, lats in west_pacific_storms: if len(lons) < 2: # Skip if not enough points continue t = np.linspace(0, 1, len(lons)) t_new = np.linspace(0, 1, max_length) lon_interp = interp1d(t, lons, kind='linear')(t_new) lat_interp = interp1d(t, lats, kind='linear')(t_new) route_vector = np.column_stack((lon_interp, lat_interp)).flatten() standardized_routes.append(route_vector) if not standardized_routes: return None, "Unable to create standardized routes" kmeans = KMeans(n_clusters=int(n_clusters), random_state=42, n_init=10) clusters = kmeans.fit_predict(standardized_routes) # Count the number of typhoons in each cluster cluster_counts = np.bincount(clusters) # Draw all routes (with lighter color) if analysis_type == "Show Routes": for lons, lats in west_pacific_storms: fig_routes.add_trace(go.Scattergeo( lon=lons, lat=lats, mode='lines', line=dict(width=1, color='lightgray'), showlegend=False, hoverinfo='none' )) equations_output = "" # Draw cluster centroids if analysis_type == "Show Clusters" or analysis_type == "Fourier Series": for i in range(int(n_clusters)): cluster_center = kmeans.cluster_centers_[i].reshape(-1, 2) fig_routes.add_trace(go.Scattergeo( lon=cluster_center[:, 0], lat=cluster_center[:, 1], mode='lines', name=f'Cluster {i+1} (n={cluster_counts[i]})', line=dict(width=3) )) if analysis_type == "Fourier Series": cluster_equations, (lon_min, lon_max) = generate_cluster_equations(cluster_center) equations_output += f"\n--- Cluster {i+1} (Typhoons: {cluster_counts[i]}) ---\n" for name, eq in cluster_equations: equations_output += f"{name}: {eq}\n" equations_output += "\nTo use in GeoGebra:\n" equations_output += f"1. Set x-axis from 0 to {2*np.pi:.4f}\n" equations_output += "2. Use the equation as is\n" equations_output += f"3. To convert x back to longitude: lon = {lon_min:.4f} + x * {(lon_max - lon_min) / (2*np.pi):.4f}\n\n" enso_phase_text = { 'all': 'All Years', 'el_nino': 'El Niño Years', 'la_nina': 'La Niña Years', 'neutral': 'Neutral Years' } fig_routes.update_layout( title=f'Typhoon Routes Clustering in West Pacific ({start_year}-{end_year}) - {enso_phase_text[enso_value]}', geo=dict( projection_type='mercator', showland=True, landcolor='rgb(243, 243, 243)', countrycolor='rgb(204, 204, 204)', coastlinecolor='rgb(100, 100, 100)', showocean=True, oceancolor='rgb(230, 250, 255)', lataxis={'range': [0, 40]}, lonaxis={'range': [100, 180]}, center={'lat': 20, 'lon': 140}, ), legend_title='Clusters' ) return fig_routes, equations_output except Exception as e: error_fig = go.Figure() error_fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False) return error_fig, f"Error in cluster analysis: {str(e)}" # Function to perform logistic regression def perform_logistic_regression(start_year, start_month, end_year, end_month, regression_type): start_date = datetime(int(start_year), int(start_month), 1) end_date = datetime(int(end_year), int(end_month), 28) try: filtered_data = merged_data[ (merged_data['ISO_TIME'] >= start_date) & (merged_data['ISO_TIME'] <= end_date) ] if regression_type == "Wind Speed": filtered_data['severe_typhoon'] = (filtered_data['USA_WIND'] >= 64).astype(int) # 64 knots threshold for severe typhoons X = sm.add_constant(filtered_data['ONI']) y = filtered_data['severe_typhoon'] model = sm.Logit(y, X).fit() beta_1 = model.params['ONI'] exp_beta_1 = np.exp(beta_1) p_value = model.pvalues['ONI'] el_nino_data = filtered_data[filtered_data['ONI'] >= 0.5] la_nina_data = filtered_data[filtered_data['ONI'] <= -0.5] neutral_data = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)] el_nino_severe = el_nino_data['severe_typhoon'].mean() if not el_nino_data.empty else 0 la_nina_severe = la_nina_data['severe_typhoon'].mean() if not la_nina_data.empty else 0 neutral_severe = neutral_data['severe_typhoon'].mean() if not neutral_data.empty else 0 result = f""" # Wind Speed Logistic Regression Results β1 (ONI coefficient): {beta_1:.4f} exp(β1) (Odds Ratio): {exp_beta_1:.4f} P-value: {p_value:.4f} Interpretation: - For each unit increase in ONI, the odds of a severe typhoon are {"increased" if exp_beta_1 > 1 else "decreased"} by a factor of {exp_beta_1:.2f}. - This effect is {"statistically significant" if p_value < 0.05 else "not statistically significant"} at the 0.05 level. Proportion of severe typhoons: - El Niño conditions: {el_nino_severe:.2%} - La Niña conditions: {la_nina_severe:.2%} - Neutral conditions: {neutral_severe:.2%} """ elif regression_type == "Pressure": filtered_data['intense_typhoon'] = (filtered_data['USA_PRES'] <= 950).astype(int) # 950 hPa threshold for intense typhoons X = sm.add_constant(filtered_data['ONI']) y = filtered_data['intense_typhoon'] model = sm.Logit(y, X).fit() beta_1 = model.params['ONI'] exp_beta_1 = np.exp(beta_1) p_value = model.pvalues['ONI'] el_nino_data = filtered_data[filtered_data['ONI'] >= 0.5] la_nina_data = filtered_data[filtered_data['ONI'] <= -0.5] neutral_data = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)] el_nino_intense = el_nino_data['intense_typhoon'].mean() if not el_nino_data.empty else 0 la_nina_intense = la_nina_data['intense_typhoon'].mean() if not la_nina_data.empty else 0 neutral_intense = neutral_data['intense_typhoon'].mean() if not neutral_data.empty else 0 result = f""" # Pressure Logistic Regression Results β1 (ONI coefficient): {beta_1:.4f} exp(β1) (Odds Ratio): {exp_beta_1:.4f} P-value: {p_value:.4f} Interpretation: - For each unit increase in ONI, the odds of an intense typhoon (pressure <= 950 hPa) are {"increased" if exp_beta_1 > 1 else "decreased"} by a factor of {exp_beta_1:.2f}. - This effect is {"statistically significant" if p_value < 0.05 else "not statistically significant"} at the 0.05 level. Proportion of intense typhoons: - El Niño conditions: {el_nino_intense:.2%} - La Niña conditions: {la_nina_intense:.2%} - Neutral conditions: {neutral_intense:.2%} """ elif regression_type == "Longitude": filtered_data = filtered_data.dropna(subset=['LON']) if len(filtered_data) == 0: return "Insufficient data for longitude analysis" filtered_data['western_typhoon'] = (filtered_data['LON'] <= 140).astype(int) # 140°E as threshold for western typhoons X = sm.add_constant(filtered_data['ONI']) y = filtered_data['western_typhoon'] model = sm.Logit(y, X).fit() beta_1 = model.params['ONI'] exp_beta_1 = np.exp(beta_1) p_value = model.pvalues['ONI'] el_nino_data = filtered_data[filtered_data['ONI'] >= 0.5] la_nina_data = filtered_data[filtered_data['ONI'] <= -0.5] neutral_data = filtered_data[(filtered_data['ONI'] > -0.5) & (filtered_data['ONI'] < 0.5)] el_nino_western = el_nino_data['western_typhoon'].mean() if not el_nino_data.empty else 0 la_nina_western = la_nina_data['western_typhoon'].mean() if not la_nina_data.empty else 0 neutral_western = neutral_data['western_typhoon'].mean() if not neutral_data.empty else 0 result = f""" # Longitude Logistic Regression Results β1 (ONI coefficient): {beta_1:.4f} exp(β1) (Odds Ratio): {exp_beta_1:.4f} P-value: {p_value:.4f} Interpretation: - For each unit increase in ONI, the odds of a typhoon forming west of 140°E are {"increased" if exp_beta_1 > 1 else "decreased"} by a factor of {exp_beta_1:.2f}. - This effect is {"statistically significant" if p_value < 0.05 else "not statistically significant"} at the 0.05 level. Proportion of typhoons forming west of 140°E: - El Niño conditions: {el_nino_western:.2%} - La Niña conditions: {la_nina_western:.2%} - Neutral conditions: {neutral_western:.2%} """ return result except Exception as e: return f"Error performing logistic regression: {str(e)}" # Define Gradio interface def create_interface(): # Initialize data first initialize_data() # Define interface tabs with gr.Blocks(title="Typhoon Analysis Dashboard") as demo: gr.Markdown("# Typhoon Analysis Dashboard") with gr.Tab("Typhoon Tracks Analysis"): with gr.Row(): with gr.Column(): start_year = gr.Number(value=2000, label="Start Year", minimum=1950, maximum=2024, step=1) start_month = gr.Number(value=1, label="Start Month", minimum=1, maximum=12, step=1) with gr.Column(): end_year = gr.Number(value=2024, label="End Year", minimum=1950, maximum=2024, step=1) end_month = gr.Number(value=6, label="End Month", minimum=1, maximum=12, step=1) enso_dropdown = gr.Dropdown( choices=["All Years", "El Niño Years", "La Niña Years", "Neutral Years"], value="All Years", label="ENSO Phase" ) typhoon_search = gr.Textbox(label="Search Typhoon Name") analyze_button = gr.Button("Analyze Tracks") with gr.Row(): tracks_plot = gr.Plot(label="Typhoon Tracks") stats_text = gr.Textbox(label="Statistics", lines=4) with gr.Row(): wind_plot = gr.Plot(label="Wind Speed vs ONI") pressure_plot = gr.Plot(label="Pressure vs ONI") analyze_button.click( analyze_typhoon_tracks, inputs=[start_year, start_month, end_year, end_month, enso_dropdown, typhoon_search], outputs=[tracks_plot, wind_plot, pressure_plot, stats_text] ) with gr.Tab("Clustering Analysis"): with gr.Row(): with gr.Column(): cluster_start_year = gr.Number(value=2000, label="Start Year", minimum=1950, maximum=2024, step=1) cluster_start_month = gr.Number(value=1, label="Start Month", minimum=1, maximum=12, step=1) with gr.Column(): cluster_end_year = gr.Number(value=2024, label="End Year", minimum=1950, maximum=2024, step=1) cluster_end_month = gr.Number(value=6, label="End Month", minimum=1, maximum=12, step=1) with gr.Row(): n_clusters = gr.Number(value=5, label="Number of Clusters", minimum=1, maximum=20, step=1) cluster_enso_dropdown = gr.Dropdown( choices=["All Years", "El Niño Years", "La Niña Years", "Neutral Years"], value="All Years", label="ENSO Phase" ) analysis_type = gr.Radio( choices=["Show Routes", "Show Clusters", "Fourier Series"], value="Show Clusters", label="Analysis Type" ) cluster_button = gr.Button("Run Cluster Analysis") cluster_plot = gr.Plot(label="Typhoon Routes Clustering") equation_text = gr.Textbox(label="Cluster Equations", lines=15) cluster_button.click( run_cluster_analysis, inputs=[ cluster_start_year, cluster_start_month, cluster_end_year, cluster_end_month, n_clusters, cluster_enso_dropdown, analysis_type ], outputs=[cluster_plot, equation_text] ) with gr.Tab("Regression Analysis"): with gr.Row(): with gr.Column(): reg_start_year = gr.Number(value=2000, label="Start Year", minimum=1950, maximum=2024, step=1) reg_start_month = gr.Number(value=1, label="Start Month", minimum=1, maximum=12, step=1) with gr.Column(): reg_end_year = gr.Number(value=2024, label="End Year", minimum=1950, maximum=2024, step=1) reg_end_month = gr.Number(value=6, label="End Month", minimum=1, maximum=12, step=1) regression_type = gr.Radio( choices=["Wind Speed", "Pressure", "Longitude"], value="Wind Speed", label="Regression Type" ) regression_button = gr.Button("Perform Logistic Regression") regression_results = gr.Textbox(label="Regression Results", lines=15) regression_button.click( perform_logistic_regression, inputs=[reg_start_year, reg_start_month, reg_end_year, reg_end_month, regression_type], outputs=regression_results ) with gr.Tab("Typhoon Path Animation"): with gr.Row(): year_dropdown = gr.Dropdown( choices=[str(year) for year in range(1950, 2025)], value="2024", label="Year" ) typhoon_dropdown = gr.Dropdown( label="Typhoon", interactive=True ) standard_dropdown = gr.Dropdown( choices=["atlantic", "taiwan"], value="atlantic", label="Classification Standard" ) # Update typhoon dropdown when year changes year_dropdown.change( lambda year: ( [{"label": name, "value": id} for name, id in get_typhoons_for_year(year)], get_typhoons_for_year(year)[0][1] if get_typhoons_for_year(year) else None ), inputs=year_dropdown, outputs=[typhoon_dropdown, typhoon_dropdown] ) animation_button = gr.Button("Generate Animation") typhoon_animation = gr.Plot(label="Typhoon Path Animation") animation_button.click( create_typhoon_path_animation, inputs=[year_dropdown, typhoon_dropdown, standard_dropdown], outputs=typhoon_animation ) return demo # Run the app if __name__ == "__main__": # Schedule background tasks schedule.every().day.at("01:00").do(update_ibtracs_data) schedule.every().day.at("00:00").do(lambda: update_oni_data() if should_update_oni() else None) scheduler_thread = threading.Thread(target=run_schedule) scheduler_thread.daemon = True scheduler_thread.start() # Create and launch the Gradio interface demo = create_interface() demo.launch(server_name="127.0.0.1", server_port=7860)