import os import argparse import logging import pickle import threading import time from datetime import datetime, timedelta from collections import defaultdict import csv import gradio as gr import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas import cartopy.crs as ccrs import cartopy.feature as cfeature import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots from sklearn.manifold import TSNE from sklearn.cluster import DBSCAN from sklearn.preprocessing import StandardScaler from scipy.interpolate import interp1d import statsmodels.api as sm import requests import tempfile import shutil import xarray as xr try: import cdsapi CDSAPI_AVAILABLE = True except ImportError: CDSAPI_AVAILABLE = False import tropycal.tracks as tracks # ----------------------------- # Configuration and Setup # ----------------------------- logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) # Remove argument parser to simplify startup DATA_PATH = '/tmp/typhoon_data' if 'SPACE_ID' in os.environ else tempfile.gettempdir() # Ensure directory exists and is writable try: os.makedirs(DATA_PATH, exist_ok=True) # Test write permissions test_file = os.path.join(DATA_PATH, 'test_write.txt') with open(test_file, 'w') as f: f.write('test') os.remove(test_file) logging.info(f"Data directory is writable: {DATA_PATH}") except Exception as e: logging.warning(f"Data directory not writable, using temp dir: {e}") DATA_PATH = tempfile.mkdtemp() logging.info(f"Using temporary directory: {DATA_PATH}") # Update file paths ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv') TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv') MERGED_DATA_CSV = os.path.join(DATA_PATH, 'merged_typhoon_era5_data.csv') # IBTrACS settings BASIN_FILES = { 'EP': 'ibtracs.EP.list.v04r01.csv', 'NA': 'ibtracs.NA.list.v04r01.csv', 'WP': 'ibtracs.WP.list.v04r01.csv' } IBTRACS_BASE_URL = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/' LOCAL_IBTRACS_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv') CACHE_FILE = os.path.join(DATA_PATH, 'ibtracs_cache.pkl') CACHE_EXPIRY_DAYS = 1 # ----------------------------- # Color Maps and Standards # ----------------------------- color_map = { 'C5 Super Typhoon': 'rgb(255, 0, 0)', 'C4 Very Strong Typhoon': 'rgb(255, 165, 0)', 'C3 Strong Typhoon': 'rgb(255, 255, 0)', 'C2 Typhoon': 'rgb(0, 255, 0)', 'C1 Typhoon': 'rgb(0, 255, 255)', 'Tropical Storm': 'rgb(0, 0, 255)', 'Tropical Depression': 'rgb(128, 128, 128)' } atlantic_standard = { 'C5 Super Typhoon': {'wind_speed': 137, 'color': 'Red', 'hex': '#FF0000'}, 'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'Orange', 'hex': '#FFA500'}, 'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'Yellow', 'hex': '#FFFF00'}, 'C2 Typhoon': {'wind_speed': 83, 'color': 'Green', 'hex': '#00FF00'}, 'C1 Typhoon': {'wind_speed': 64, 'color': 'Cyan', 'hex': '#00FFFF'}, 'Tropical Storm': {'wind_speed': 34, 'color': 'Blue', 'hex': '#0000FF'}, 'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'} } taiwan_standard = { 'Strong Typhoon': {'wind_speed': 51.0, 'color': 'Red', 'hex': '#FF0000'}, 'Medium Typhoon': {'wind_speed': 33.7, 'color': 'Orange', 'hex': '#FFA500'}, 'Mild Typhoon': {'wind_speed': 17.2, 'color': 'Yellow', 'hex': '#FFFF00'}, 'Tropical Depression': {'wind_speed': 0, 'color': 'Gray', 'hex': '#808080'} } # ----------------------------- # Utility Functions for HF Spaces # ----------------------------- def safe_file_write(file_path, data_frame, backup_dir=None): """Safely write DataFrame to CSV with backup and error handling""" try: # Create directory if it doesn't exist os.makedirs(os.path.dirname(file_path), exist_ok=True) # Try to write to a temporary file first temp_path = file_path + '.tmp' data_frame.to_csv(temp_path, index=False) # If successful, rename to final file os.rename(temp_path, file_path) logging.info(f"Successfully saved {len(data_frame)} records to {file_path}") return True except PermissionError as e: logging.warning(f"Permission denied writing to {file_path}: {e}") if backup_dir: try: backup_path = os.path.join(backup_dir, os.path.basename(file_path)) data_frame.to_csv(backup_path, index=False) logging.info(f"Saved to backup location: {backup_path}") return True except Exception as backup_e: logging.error(f"Failed to save to backup location: {backup_e}") return False except Exception as e: logging.error(f"Error saving file {file_path}: {e}") # Clean up temp file if it exists temp_path = file_path + '.tmp' if os.path.exists(temp_path): try: os.remove(temp_path) except: pass return False def get_fallback_data_dir(): """Get a fallback data directory that's guaranteed to be writable""" fallback_dirs = [ tempfile.gettempdir(), '/tmp', os.path.expanduser('~'), os.getcwd() ] for directory in fallback_dirs: try: test_dir = os.path.join(directory, 'typhoon_fallback') os.makedirs(test_dir, exist_ok=True) test_file = os.path.join(test_dir, 'test.txt') with open(test_file, 'w') as f: f.write('test') os.remove(test_file) return test_dir except: continue # If all else fails, use current directory return os.getcwd() # ----------------------------- # ONI and Typhoon Data Functions # ----------------------------- def download_oni_file(url, filename): """Download ONI file with retry logic""" max_retries = 3 for attempt in range(max_retries): try: response = requests.get(url, timeout=30) response.raise_for_status() with open(filename, 'wb') as f: f.write(response.content) return True except Exception as e: logging.warning(f"Attempt {attempt + 1} failed to download ONI: {e}") if attempt < max_retries - 1: time.sleep(2 ** attempt) # Exponential backoff else: logging.error(f"Failed to download ONI after {max_retries} attempts") return False def convert_oni_ascii_to_csv(input_file, output_file): """Convert ONI ASCII format to CSV""" data = defaultdict(lambda: [''] * 12) season_to_month = {'DJF':12, 'JFM':1, 'FMA':2, 'MAM':3, 'AMJ':4, 'MJJ':5, 'JJA':6, 'JAS':7, 'ASO':8, 'SON':9, 'OND':10, 'NDJ':11} try: with open(input_file, 'r') as f: lines = f.readlines()[1:] # Skip header for line in lines: parts = line.split() if len(parts) >= 4: season, year, anom = parts[0], parts[1], parts[-1] if season in season_to_month: month = season_to_month[season] if season == 'DJF': year = str(int(year)-1) data[year][month-1] = anom # Write to CSV with safe write df = pd.DataFrame(data).T.reset_index() df.columns = ['Year','Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] df = df.sort_values('Year').reset_index(drop=True) return safe_file_write(output_file, df, get_fallback_data_dir()) except Exception as e: logging.error(f"Error converting ONI file: {e}") return False def update_oni_data(): """Update ONI data with error handling""" url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt" temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt") input_file = os.path.join(DATA_PATH, "oni.ascii.txt") output_file = ONI_DATA_PATH try: if download_oni_file(url, temp_file): if not os.path.exists(input_file) or not os.path.exists(output_file): os.rename(temp_file, input_file) convert_oni_ascii_to_csv(input_file, output_file) else: os.remove(temp_file) else: # Create fallback ONI data if download fails logging.warning("Creating fallback ONI data") create_fallback_oni_data(output_file) except Exception as e: logging.error(f"Error updating ONI data: {e}") create_fallback_oni_data(output_file) def create_fallback_oni_data(output_file): """Create minimal ONI data for testing""" years = range(2000, 2025) months = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] # Create synthetic ONI data data = [] for year in years: row = [year] for month in months: # Generate some realistic ONI values value = np.random.normal(0, 1) * 0.5 row.append(f"{value:.2f}") data.append(row) df = pd.DataFrame(data, columns=['Year'] + months) safe_file_write(output_file, df, get_fallback_data_dir()) # ----------------------------- # FIXED: IBTrACS Data Loading # ----------------------------- def download_ibtracs_file(basin, force_download=False): """Download specific basin file from IBTrACS""" filename = BASIN_FILES[basin] local_path = os.path.join(DATA_PATH, filename) url = IBTRACS_BASE_URL + filename # Check if file exists and is recent (less than 7 days old) if os.path.exists(local_path) and not force_download: file_age = time.time() - os.path.getmtime(local_path) if file_age < 7 * 24 * 3600: # 7 days logging.info(f"Using cached {basin} basin file") return local_path try: logging.info(f"Downloading {basin} basin file from {url}") response = requests.get(url, timeout=60) response.raise_for_status() # Ensure directory exists os.makedirs(os.path.dirname(local_path), exist_ok=True) with open(local_path, 'wb') as f: f.write(response.content) logging.info(f"Successfully downloaded {basin} basin file") return local_path except Exception as e: logging.error(f"Failed to download {basin} basin file: {e}") return None def examine_ibtracs_structure(file_path): """Examine the actual structure of an IBTrACS CSV file""" try: with open(file_path, 'r') as f: lines = f.readlines() # Show first 5 lines logging.info("First 5 lines of IBTrACS file:") for i, line in enumerate(lines[:5]): logging.info(f"Line {i}: {line.strip()}") # The first line contains the actual column headers # No need to skip rows for IBTrACS v04r01 df = pd.read_csv(file_path, nrows=5) logging.info(f"Columns from first row: {list(df.columns)}") return list(df.columns) except Exception as e: logging.error(f"Error examining IBTrACS structure: {e}") return None def load_ibtracs_csv_directly(basin='WP'): """Load IBTrACS data directly from CSV - FIXED VERSION""" filename = BASIN_FILES[basin] local_path = os.path.join(DATA_PATH, filename) # Download if not exists if not os.path.exists(local_path): downloaded_path = download_ibtracs_file(basin) if not downloaded_path: return None try: # First, examine the structure actual_columns = examine_ibtracs_structure(local_path) if not actual_columns: logging.error("Could not examine IBTrACS file structure") return None # Read IBTrACS CSV - DON'T skip any rows for v04r01 # The first row contains proper column headers logging.info(f"Reading IBTrACS CSV file: {local_path}") df = pd.read_csv(local_path, low_memory=False) # Don't skip any rows logging.info(f"Original columns: {list(df.columns)}") logging.info(f"Data shape before cleaning: {df.shape}") # Check which essential columns exist required_cols = ['SID', 'ISO_TIME', 'LAT', 'LON'] available_required = [col for col in required_cols if col in df.columns] if len(available_required) < 2: logging.error(f"Missing critical columns. Available: {list(df.columns)}") return None # Clean and standardize the data with format specification if 'ISO_TIME' in df.columns: df['ISO_TIME'] = pd.to_datetime(df['ISO_TIME'], format='%Y-%m-%d %H:%M:%S', errors='coerce') # Clean numeric columns numeric_columns = ['LAT', 'LON', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES'] for col in numeric_columns: if col in df.columns: df[col] = pd.to_numeric(df[col], errors='coerce') # Filter out invalid/missing critical data valid_rows = df['LAT'].notna() & df['LON'].notna() df = df[valid_rows] # Ensure LAT/LON are in reasonable ranges df = df[(df['LAT'] >= -90) & (df['LAT'] <= 90)] df = df[(df['LON'] >= -180) & (df['LON'] <= 180)] # Add basin info if missing if 'BASIN' not in df.columns: df['BASIN'] = basin # Add default columns if missing if 'NAME' not in df.columns: df['NAME'] = 'UNNAMED' if 'SEASON' not in df.columns and 'ISO_TIME' in df.columns: df['SEASON'] = df['ISO_TIME'].dt.year logging.info(f"Successfully loaded {len(df)} records from {basin} basin") return df except Exception as e: logging.error(f"Error reading IBTrACS CSV file: {e}") return None def load_ibtracs_data_fixed(): """Fixed version of IBTrACS data loading""" ibtracs_data = {} # Try to load each basin, but prioritize WP for this application load_order = ['WP', 'EP', 'NA'] for basin in load_order: try: logging.info(f"Loading {basin} basin data...") df = load_ibtracs_csv_directly(basin) if df is not None and not df.empty: ibtracs_data[basin] = df logging.info(f"Successfully loaded {basin} basin with {len(df)} records") else: logging.warning(f"No data loaded for basin {basin}") ibtracs_data[basin] = None except Exception as e: logging.error(f"Failed to load basin {basin}: {e}") ibtracs_data[basin] = None return ibtracs_data def load_data_fixed(oni_path, typhoon_path): """Fixed version of load_data function""" # Load ONI data oni_data = pd.DataFrame({'Year': [], 'Jan': [], 'Feb': [], 'Mar': [], 'Apr': [], 'May': [], 'Jun': [], 'Jul': [], 'Aug': [], 'Sep': [], 'Oct': [], 'Nov': [], 'Dec': []}) if not os.path.exists(oni_path): logging.warning(f"ONI data file not found: {oni_path}") update_oni_data() try: oni_data = pd.read_csv(oni_path) logging.info(f"Successfully loaded ONI data with {len(oni_data)} years") except Exception as e: logging.error(f"Error loading ONI data: {e}") update_oni_data() try: oni_data = pd.read_csv(oni_path) except Exception as e: logging.error(f"Still can't load ONI data: {e}") # Load typhoon data - NEW APPROACH typhoon_data = None # First, try to load from existing processed file if os.path.exists(typhoon_path): try: typhoon_data = pd.read_csv(typhoon_path, low_memory=False) # Ensure basic columns exist and are valid required_cols = ['LAT', 'LON'] if all(col in typhoon_data.columns for col in required_cols): if 'ISO_TIME' in typhoon_data.columns: typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') logging.info(f"Loaded processed typhoon data with {len(typhoon_data)} records") else: logging.warning("Processed typhoon data missing required columns, will reload from IBTrACS") typhoon_data = None except Exception as e: logging.error(f"Error loading processed typhoon data: {e}") typhoon_data = None # If no valid processed data, load from IBTrACS if typhoon_data is None or typhoon_data.empty: logging.info("Loading typhoon data from IBTrACS...") ibtracs_data = load_ibtracs_data_fixed() # Combine all available basin data, prioritizing WP combined_dfs = [] for basin in ['WP', 'EP', 'NA']: if basin in ibtracs_data and ibtracs_data[basin] is not None: df = ibtracs_data[basin].copy() df['BASIN'] = basin combined_dfs.append(df) if combined_dfs: typhoon_data = pd.concat(combined_dfs, ignore_index=True) # Ensure SID has proper format if 'SID' not in typhoon_data.columns and 'BASIN' in typhoon_data.columns: # Create SID from basin and other identifiers if missing if 'SEASON' in typhoon_data.columns: typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) + typhoon_data.index.astype(str).str.zfill(2) + typhoon_data['SEASON'].astype(str)) else: typhoon_data['SID'] = (typhoon_data['BASIN'].astype(str) + typhoon_data.index.astype(str).str.zfill(2) + '2000') # Save the processed data for future use safe_file_write(typhoon_path, typhoon_data, get_fallback_data_dir()) logging.info(f"Combined IBTrACS data: {len(typhoon_data)} total records") else: logging.error("Failed to load any IBTrACS basin data") # Create minimal fallback data typhoon_data = create_fallback_typhoon_data() # Final validation of typhoon data if typhoon_data is not None: # Ensure required columns exist with fallback values required_columns = { 'SID': 'UNKNOWN', 'ISO_TIME': pd.Timestamp('2000-01-01'), 'LAT': 0.0, 'LON': 0.0, 'USA_WIND': np.nan, 'USA_PRES': np.nan, 'NAME': 'UNNAMED', 'SEASON': 2000 } for col, default_val in required_columns.items(): if col not in typhoon_data.columns: typhoon_data[col] = default_val logging.warning(f"Added missing column {col} with default value") # Ensure data types if 'ISO_TIME' in typhoon_data.columns: typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') typhoon_data['LAT'] = pd.to_numeric(typhoon_data['LAT'], errors='coerce') typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce') typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce') typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce') # Remove rows with invalid coordinates typhoon_data = typhoon_data.dropna(subset=['LAT', 'LON']) logging.info(f"Final typhoon data: {len(typhoon_data)} records after validation") return oni_data, typhoon_data def create_fallback_typhoon_data(): """Create minimal fallback typhoon data - FIXED VERSION""" # Use proper pandas date_range instead of numpy dates = pd.date_range(start='2000-01-01', end='2023-12-31', freq='D') storm_dates = dates[np.random.choice(len(dates), size=100, replace=False)] data = [] for i, date in enumerate(storm_dates): # Create realistic WP storm tracks base_lat = np.random.uniform(10, 30) base_lon = np.random.uniform(130, 160) # Generate 20-50 data points per storm track_length = np.random.randint(20, 51) sid = f"WP{i+1:02d}{date.year}" for j in range(track_length): lat = base_lat + j * 0.2 + np.random.normal(0, 0.1) lon = base_lon + j * 0.3 + np.random.normal(0, 0.1) wind = max(25, 70 + np.random.normal(0, 20)) pres = max(950, 1000 - wind + np.random.normal(0, 5)) data.append({ 'SID': sid, 'ISO_TIME': date + pd.Timedelta(hours=j*6), # Use pd.Timedelta instead 'NAME': f'FALLBACK_{i+1}', 'SEASON': date.year, 'LAT': lat, 'LON': lon, 'USA_WIND': wind, 'USA_PRES': pres, 'BASIN': 'WP' }) df = pd.DataFrame(data) logging.info(f"Created fallback typhoon data with {len(df)} records") return df def process_oni_data(oni_data): """Process ONI data into long format""" oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI') month_map = {'Jan':'01','Feb':'02','Mar':'03','Apr':'04','May':'05','Jun':'06', 'Jul':'07','Aug':'08','Sep':'09','Oct':'10','Nov':'11','Dec':'12'} oni_long['Month'] = oni_long['Month'].map(month_map) oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str)+'-'+oni_long['Month']+'-01') oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce') return oni_long def process_typhoon_data(typhoon_data): """Process typhoon data""" if 'ISO_TIME' in typhoon_data.columns: typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce') typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce') typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce') typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce') logging.info(f"Unique basins in typhoon_data: {typhoon_data['SID'].str[:2].unique()}") typhoon_max = typhoon_data.groupby('SID').agg({ 'USA_WIND':'max','USA_PRES':'min','ISO_TIME':'first','SEASON':'first','NAME':'first', 'LAT':'first','LON':'first' }).reset_index() if 'ISO_TIME' in typhoon_max.columns: typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m') typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year else: # Fallback if no ISO_TIME typhoon_max['Month'] = '01' typhoon_max['Year'] = typhoon_max['SEASON'] typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon) return typhoon_max def merge_data(oni_long, typhoon_max): """Merge ONI and typhoon data""" return pd.merge(typhoon_max, oni_long, on=['Year','Month']) def categorize_typhoon(wind_speed): """Categorize typhoon based on wind speed""" if pd.isna(wind_speed): return 'Tropical Depression' if wind_speed >= 137: return 'C5 Super Typhoon' elif wind_speed >= 113: return 'C4 Very Strong Typhoon' elif wind_speed >= 96: return 'C3 Strong Typhoon' elif wind_speed >= 83: return 'C2 Typhoon' elif wind_speed >= 64: return 'C1 Typhoon' elif wind_speed >= 34: return 'Tropical Storm' else: return 'Tropical Depression' def classify_enso_phases(oni_value): """Classify ENSO phases based on ONI value""" if isinstance(oni_value, pd.Series): oni_value = oni_value.iloc[0] if pd.isna(oni_value): return 'Neutral' if oni_value >= 0.5: return 'El Nino' elif oni_value <= -0.5: return 'La Nina' else: return 'Neutral' # ----------------------------- # Regression Functions # ----------------------------- def perform_wind_regression(start_year, start_month, end_year, end_month): """Perform wind regression analysis""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_WIND','ONI']) data['severe_typhoon'] = (data['USA_WIND']>=64).astype(int) X = sm.add_constant(data['ONI']) y = data['severe_typhoon'] try: model = sm.Logit(y, X).fit(disp=0) beta_1 = model.params['ONI'] exp_beta_1 = np.exp(beta_1) p_value = model.pvalues['ONI'] return f"Wind Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" except Exception as e: return f"Wind Regression Error: {e}" def perform_pressure_regression(start_year, start_month, end_year, end_month): """Perform pressure regression analysis""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['USA_PRES','ONI']) data['intense_typhoon'] = (data['USA_PRES']<=950).astype(int) X = sm.add_constant(data['ONI']) y = data['intense_typhoon'] try: model = sm.Logit(y, X).fit(disp=0) beta_1 = model.params['ONI'] exp_beta_1 = np.exp(beta_1) p_value = model.pvalues['ONI'] return f"Pressure Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" except Exception as e: return f"Pressure Regression Error: {e}" def perform_longitude_regression(start_year, start_month, end_year, end_month): """Perform longitude regression analysis""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].dropna(subset=['LON','ONI']) data['western_typhoon'] = (data['LON']<=140).astype(int) X = sm.add_constant(data['ONI']) y = data['western_typhoon'] try: model = sm.OLS(y, sm.add_constant(X)).fit() beta_1 = model.params['ONI'] exp_beta_1 = np.exp(beta_1) p_value = model.pvalues['ONI'] return f"Longitude Regression: β1={beta_1:.4f}, Odds Ratio={exp_beta_1:.4f}, P-value={p_value:.4f}" except Exception as e: return f"Longitude Regression Error: {e}" # ----------------------------- # Visualization Functions # ----------------------------- def get_full_tracks(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): """Get full typhoon tracks""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy() filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) if enso_phase != 'all': filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] unique_storms = filtered_data['SID'].unique() count = len(unique_storms) fig = go.Figure() for sid in unique_storms: storm_data = typhoon_data[typhoon_data['SID']==sid] if storm_data.empty: continue name = storm_data['NAME'].iloc[0] if pd.notnull(storm_data['NAME'].iloc[0]) else "Unnamed" basin = storm_data['SID'].iloc[0][:2] storm_oni = filtered_data[filtered_data['SID']==sid]['ONI'].iloc[0] color = 'red' if storm_oni>=0.5 else ('blue' if storm_oni<=-0.5 else 'green') fig.add_trace(go.Scattergeo( lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines', name=f"{name} ({basin})", line=dict(width=1.5, color=color), hoverinfo="name" )) if typhoon_search: search_mask = typhoon_data['NAME'].str.contains(typhoon_search, case=False, na=False) if search_mask.any(): for sid in typhoon_data[search_mask]['SID'].unique(): storm_data = typhoon_data[typhoon_data['SID']==sid] fig.add_trace(go.Scattergeo( lon=storm_data['LON'], lat=storm_data['LAT'], mode='lines+markers', name=f"MATCHED: {storm_data['NAME'].iloc[0]}", line=dict(width=3, color='yellow'), marker=dict(size=5), hoverinfo="name" )) fig.update_layout( title=f"Typhoon Tracks ({start_year}-{start_month} to {end_year}-{end_month})", geo=dict( projection_type='natural earth', showland=True, showcoastlines=True, landcolor='rgb(243,243,243)', countrycolor='rgb(204,204,204)', coastlinecolor='rgb(204,204,204)', center=dict(lon=140, lat=20), projection_scale=3 ), legend_title="Typhoons by ENSO Phase", showlegend=True, height=700 ) fig.add_annotation( x=0.02, y=0.98, xref="paper", yref="paper", text="Red: El Niño, Blue: La Nina, Green: Neutral", showarrow=False, align="left", bgcolor="rgba(255,255,255,0.8)" ) return fig, f"Total typhoons displayed: {count}" def get_wind_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): """Get wind analysis""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy() filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) if enso_phase != 'all': filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] fig = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category', hover_data=['NAME','Year','Category'], title='Wind Speed vs ONI', labels={'ONI':'ONI Value','USA_WIND':'Max Wind Speed (knots)'}, color_discrete_map=color_map) if typhoon_search: mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False) if mask.any(): fig.add_trace(go.Scatter( x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_WIND'], mode='markers', marker=dict(size=10, color='red', symbol='star'), name=f'Matched: {typhoon_search}', text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')' )) regression = perform_wind_regression(start_year, start_month, end_year, end_month) return fig, regression def get_pressure_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): """Get pressure analysis""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy() filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) if enso_phase != 'all': filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] fig = px.scatter(filtered_data, x='ONI', y='USA_PRES', color='Category', hover_data=['NAME','Year','Category'], title='Pressure vs ONI', labels={'ONI':'ONI Value','USA_PRES':'Min Pressure (hPa)'}, color_discrete_map=color_map) if typhoon_search: mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False) if mask.any(): fig.add_trace(go.Scatter( x=filtered_data.loc[mask,'ONI'], y=filtered_data.loc[mask,'USA_PRES'], mode='markers', marker=dict(size=10, color='red', symbol='star'), name=f'Matched: {typhoon_search}', text=filtered_data.loc[mask,'NAME']+' ('+filtered_data.loc[mask,'Year'].astype(str)+')' )) regression = perform_pressure_regression(start_year, start_month, end_year, end_month) return fig, regression def get_longitude_analysis(start_year, start_month, end_year, end_month, enso_phase, typhoon_search): """Get longitude analysis""" start_date = datetime(start_year, start_month, 1) end_date = datetime(end_year, end_month, 28) filtered_data = merged_data[(merged_data['ISO_TIME']>=start_date) & (merged_data['ISO_TIME']<=end_date)].copy() filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases) if enso_phase != 'all': filtered_data = filtered_data[filtered_data['ENSO_Phase'] == enso_phase.capitalize()] fig = px.scatter(filtered_data, x='LON', y='ONI', hover_data=['NAME'], title='Typhoon Generation Longitude vs ONI (All Years)') if len(filtered_data) > 1: X = np.array(filtered_data['LON']).reshape(-1,1) y = filtered_data['ONI'] try: model = sm.OLS(y, sm.add_constant(X)).fit() y_pred = model.predict(sm.add_constant(X)) fig.add_trace(go.Scatter(x=filtered_data['LON'], y=y_pred, mode='lines', name='Regression Line')) slope = model.params[1] slopes_text = f"All Years Slope: {slope:.4f}" except Exception as e: slopes_text = f"Regression Error: {e}" else: slopes_text = "Insufficient data for regression" regression = perform_longitude_regression(start_year, start_month, end_year, end_month) return fig, slopes_text, regression def categorize_typhoon_by_standard(wind_speed, standard='atlantic'): """Categorize typhoon by standard""" if pd.isna(wind_speed): return 'Tropical Depression', '#808080' if standard=='taiwan': wind_speed_ms = wind_speed * 0.514444 if wind_speed_ms >= 51.0: return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['hex'] elif wind_speed_ms >= 33.7: return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['hex'] elif wind_speed_ms >= 17.2: return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['hex'] return 'Tropical Depression', taiwan_standard['Tropical Depression']['hex'] else: if wind_speed >= 137: return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['hex'] elif wind_speed >= 113: return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['hex'] elif wind_speed >= 96: return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['hex'] elif wind_speed >= 83: return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['hex'] elif wind_speed >= 64: return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['hex'] elif wind_speed >= 34: return 'Tropical Storm', atlantic_standard['Tropical Storm']['hex'] return 'Tropical Depression', atlantic_standard['Tropical Depression']['hex'] # ----------------------------- # Animation Functions # ----------------------------- def generate_track_video_from_csv(year, storm_id, standard): """Generate track video from CSV data""" storm_df = typhoon_data[typhoon_data['SID'] == storm_id].copy() if storm_df.empty: logging.error(f"No data found for storm: {storm_id}") return None storm_df = storm_df.sort_values('ISO_TIME') lats = storm_df['LAT'].astype(float).values lons = storm_df['LON'].astype(float).values times = pd.to_datetime(storm_df['ISO_TIME']).values if 'USA_WIND' in storm_df.columns: winds = pd.to_numeric(storm_df['USA_WIND'], errors='coerce').values else: winds = np.full(len(lats), np.nan) storm_name = storm_df['NAME'].iloc[0] if pd.notnull(storm_df['NAME'].iloc[0]) else "Unnamed" basin = storm_df['SID'].iloc[0][:2] season = storm_df['SEASON'].iloc[0] if 'SEASON' in storm_df.columns else year min_lat, max_lat = np.min(lats), np.max(lats) min_lon, max_lon = np.min(lons), np.max(lons) lat_padding = max((max_lat - min_lat)*0.3, 5) lon_padding = max((max_lon - min_lon)*0.3, 5) fig = plt.figure(figsize=(12,6), dpi=100) ax = plt.axes([0.05, 0.05, 0.60, 0.85], projection=ccrs.PlateCarree(central_longitude=180)) ax.stock_img() ax.set_extent([min_lon - lon_padding, max_lon + lon_padding, min_lat - lat_padding, max_lat + lat_padding], crs=ccrs.PlateCarree()) ax.coastlines(resolution='50m', color='black', linewidth=1) gl = ax.gridlines(draw_labels=True, color='gray', alpha=0.4, linestyle='--') gl.top_labels = gl.right_labels = False ax.set_title(f"{year} {storm_name} ({basin}) - {season}", fontsize=14) line, = ax.plot([], [], transform=ccrs.PlateCarree(), color='blue', linewidth=2) point, = ax.plot([], [], 'o', markersize=8, transform=ccrs.PlateCarree()) date_text = ax.text(0.02, 0.02, '', transform=ax.transAxes, fontsize=10, bbox=dict(facecolor='white', alpha=0.8)) storm_info_text = fig.text(0.70, 0.60, '', fontsize=10, bbox=dict(facecolor='white', alpha=0.8, boxstyle='round,pad=0.5')) from matplotlib.lines import Line2D standard_dict = atlantic_standard if standard=='atlantic' else taiwan_standard legend_elements = [Line2D([0],[0], marker='o', color='w', label=cat, markerfacecolor=details['hex'], markersize=8) for cat, details in standard_dict.items()] ax.legend(handles=legend_elements, title="Storm Categories", loc='upper right', fontsize=9) def init(): line.set_data([], []) point.set_data([], []) date_text.set_text('') storm_info_text.set_text('') return line, point, date_text, storm_info_text def update(frame): line.set_data(lons[:frame+1], lats[:frame+1]) point.set_data([lons[frame]], [lats[frame]]) wind_speed = winds[frame] if frame < len(winds) and not pd.isna(winds[frame]) else 0 category, color = categorize_typhoon_by_standard(wind_speed, standard) point.set_color(color) dt_str = pd.to_datetime(times[frame]).strftime('%Y-%m-%d %H:%M') date_text.set_text(dt_str) info_str = (f"Name: {storm_name}\nBasin: {basin}\nDate: {dt_str}\nWind: {wind_speed:.1f} kt\nCategory: {category}") storm_info_text.set_text(info_str) return line, point, date_text, storm_info_text ani = animation.FuncAnimation(fig, update, init_func=init, frames=len(times), interval=200, blit=True, repeat=True) # Create animation file temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4', dir=DATA_PATH) try: writer = animation.FFMpegWriter(fps=5, bitrate=1800) ani.save(temp_file.name, writer=writer) plt.close(fig) return temp_file.name except Exception as e: logging.error(f"Error creating animation: {e}") plt.close(fig) return None def simplified_track_video(year, basin, typhoon, standard): """Simplified track video function""" if not typhoon: return None storm_id = typhoon.split('(')[-1].strip(')') return generate_track_video_from_csv(year, storm_id, standard) # ----------------------------- # Update Typhoon Options Function # ----------------------------- def update_typhoon_options_fixed(year, basin): """Fixed version of update_typhoon_options""" try: # Use the typhoon_data already loaded if typhoon_data is None or typhoon_data.empty: logging.error("No typhoon data available") return gr.update(choices=[], value=None) # Filter by year if 'ISO_TIME' in typhoon_data.columns: year_data = typhoon_data[typhoon_data['ISO_TIME'].dt.year == int(year)].copy() elif 'SEASON' in typhoon_data.columns: year_data = typhoon_data[typhoon_data['SEASON'] == int(year)].copy() else: # Fallback: use all data year_data = typhoon_data.copy() if basin != "All Basins": # Extract basin code basin_code = basin.split(' - ')[0] if ' - ' in basin else basin[:2] # Filter by basin if 'SID' in year_data.columns: year_data = year_data[year_data['SID'].str.startswith(basin_code, na=False)] elif 'BASIN' in year_data.columns: year_data = year_data[year_data['BASIN'] == basin_code] if year_data.empty: logging.warning(f"No storms found for year {year} and basin {basin}") return gr.update(choices=[], value=None) # Get unique storms and create options storms = year_data.groupby('SID').first().reset_index() options = [] for _, storm in storms.iterrows(): name = storm.get('NAME', 'UNNAMED') if pd.isna(name) or name == '' or name == 'UNNAMED': name = 'UNNAMED' sid = storm['SID'] options.append(f"{name} ({sid})") if not options: return gr.update(choices=[], value=None) return gr.update(choices=sorted(options), value=options[0]) except Exception as e: logging.error(f"Error in update_typhoon_options_fixed: {e}") return gr.update(choices=[], value=None) # ----------------------------- # Load & Process Data # ----------------------------- # Global variables initialization oni_data = None typhoon_data = None merged_data = None def initialize_data(): """Initialize all data safely""" global oni_data, typhoon_data, merged_data try: logging.info("Starting data loading process...") update_oni_data() oni_data, typhoon_data = load_data_fixed(ONI_DATA_PATH, TYPHOON_DATA_PATH) if oni_data is not None and typhoon_data is not None: oni_long = process_oni_data(oni_data) typhoon_max = process_typhoon_data(typhoon_data) merged_data = merge_data(oni_long, typhoon_max) logging.info("Data loading complete.") else: logging.error("Failed to load required data") # Create minimal fallback data oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0], 'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0], 'Oct': [0], 'Nov': [0], 'Dec': [0]}) typhoon_data = create_fallback_typhoon_data() oni_long = process_oni_data(oni_data) typhoon_max = process_typhoon_data(typhoon_data) merged_data = merge_data(oni_long, typhoon_max) except Exception as e: logging.error(f"Error during data initialization: {e}") # Create minimal fallback data oni_data = pd.DataFrame({'Year': [2000], 'Jan': [0], 'Feb': [0], 'Mar': [0], 'Apr': [0], 'May': [0], 'Jun': [0], 'Jul': [0], 'Aug': [0], 'Sep': [0], 'Oct': [0], 'Nov': [0], 'Dec': [0]}) typhoon_data = create_fallback_typhoon_data() oni_long = process_oni_data(oni_data) typhoon_max = process_typhoon_data(typhoon_data) merged_data = merge_data(oni_long, typhoon_max) # Initialize data initialize_data() # ----------------------------- # Simplified Gradio Interface # ----------------------------- def create_interface(): """Create the Gradio interface with error handling""" try: # Initialize components with safe defaults with gr.Blocks() as demo: gr.Markdown("# Typhoon Analysis Dashboard") with gr.Tab("Overview"): gr.Markdown(f""" ## Welcome to the Typhoon Analysis Dashboard This dashboard allows you to analyze typhoon data in relation to ENSO phases. ### Features: - **Track Visualization**: View typhoon tracks by time period and ENSO phase. - **Wind Analysis**: Examine wind speed vs ONI relationships. - **Pressure Analysis**: Analyze pressure vs ONI relationships. - **Longitude Analysis**: Study typhoon generation longitude vs ONI. - **Path Animation**: View animated storm tracks on a world map. ### Data Status: - **ONI Data**: {len(oni_data)} years loaded - **Typhoon Data**: {len(typhoon_data)} records loaded - **Merged Data**: {len(merged_data)} typhoons with ONI values """) with gr.Tab("Track Visualization"): with gr.Row(): start_year = gr.Number(label="Start Year", value=2000) start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) end_year = gr.Number(label="End Year", value=2024) end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') typhoon_search = gr.Textbox(label="Typhoon Search") analyze_btn = gr.Button("Generate Tracks") tracks_plot = gr.Plot() typhoon_count = gr.Textbox(label="Number of Typhoons Displayed") analyze_btn.click( fn=get_full_tracks, inputs=[start_year, start_month, end_year, end_month, enso_phase, typhoon_search], outputs=[tracks_plot, typhoon_count] ) with gr.Tab("Wind Analysis"): with gr.Row(): wind_start_year = gr.Number(label="Start Year", value=2000) wind_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) wind_end_year = gr.Number(label="End Year", value=2024) wind_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) wind_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') wind_typhoon_search = gr.Textbox(label="Typhoon Search") wind_analyze_btn = gr.Button("Generate Wind Analysis") wind_scatter = gr.Plot() wind_regression_results = gr.Textbox(label="Wind Regression Results") wind_analyze_btn.click( fn=get_wind_analysis, inputs=[wind_start_year, wind_start_month, wind_end_year, wind_end_month, wind_enso_phase, wind_typhoon_search], outputs=[wind_scatter, wind_regression_results] ) with gr.Tab("Pressure Analysis"): with gr.Row(): pressure_start_year = gr.Number(label="Start Year", value=2000) pressure_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) pressure_end_year = gr.Number(label="End Year", value=2024) pressure_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) pressure_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') pressure_typhoon_search = gr.Textbox(label="Typhoon Search") pressure_analyze_btn = gr.Button("Generate Pressure Analysis") pressure_scatter = gr.Plot() pressure_regression_results = gr.Textbox(label="Pressure Regression Results") pressure_analyze_btn.click( fn=get_pressure_analysis, inputs=[pressure_start_year, pressure_start_month, pressure_end_year, pressure_end_month, pressure_enso_phase, pressure_typhoon_search], outputs=[pressure_scatter, pressure_regression_results] ) with gr.Tab("Longitude Analysis"): with gr.Row(): lon_start_year = gr.Number(label="Start Year", value=2000) lon_start_month = gr.Dropdown(label="Start Month", choices=list(range(1, 13)), value=1) lon_end_year = gr.Number(label="End Year", value=2000) lon_end_month = gr.Dropdown(label="End Month", choices=list(range(1, 13)), value=6) lon_enso_phase = gr.Dropdown(label="ENSO Phase", choices=['all', 'El Nino', 'La Nina', 'Neutral'], value='all') lon_typhoon_search = gr.Textbox(label="Typhoon Search (Optional)") lon_analyze_btn = gr.Button("Generate Longitude Analysis") regression_plot = gr.Plot() slopes_text = gr.Textbox(label="Regression Slopes") lon_regression_results = gr.Textbox(label="Longitude Regression Results") lon_analyze_btn.click( fn=get_longitude_analysis, inputs=[lon_start_year, lon_start_month, lon_end_year, lon_end_month, lon_enso_phase, lon_typhoon_search], outputs=[regression_plot, slopes_text, lon_regression_results] ) with gr.Tab("Tropical Cyclone Path Animation"): with gr.Row(): year_dropdown = gr.Dropdown(label="Year", choices=[str(y) for y in range(1950, 2025)], value="2000") basin_constant = gr.Textbox(value="All Basins", visible=False) with gr.Row(): typhoon_dropdown = gr.Dropdown(label="Tropical Cyclone") standard_dropdown = gr.Dropdown(label="Classification Standard", choices=['atlantic', 'taiwan'], value='atlantic') animate_btn = gr.Button("Generate Animation") path_video = gr.Video() animation_info = gr.Markdown(""" ### Animation Instructions 1. Select a year. 2. Choose a tropical cyclone from the populated list. 3. Select a classification standard (Atlantic or Taiwan). 4. Click "Generate Animation". 5. The animation displays the storm track on a world map with dynamic sidebar information. """) # Update typhoon dropdown year_dropdown.change( fn=update_typhoon_options_fixed, inputs=[year_dropdown, basin_constant], outputs=typhoon_dropdown ) animate_btn.click( fn=simplified_track_video, inputs=[year_dropdown, basin_constant, typhoon_dropdown, standard_dropdown], outputs=path_video ) return demo except Exception as e: logging.error(f"Error creating Gradio interface: {e}") # Create a minimal fallback interface with gr.Blocks() as demo: gr.Markdown("# Typhoon Analysis Dashboard") gr.Markdown("**Error**: Could not load full interface. Please check logs.") return demo # Create and launch the interface demo = create_interface() if __name__ == "__main__": demo.launch()