Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- requirements.txt +22 -0
- typhoon_analysis.py +1445 -0
requirements.txt
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dash==2.17.1
|
2 |
+
plotly==5.22.0
|
3 |
+
pandas==2.2.2
|
4 |
+
numpy==1.26.4
|
5 |
+
scipy==1.13.1
|
6 |
+
scikit-learn==1.5.1
|
7 |
+
cachetools==5.3.3
|
8 |
+
tropycal==1.3
|
9 |
+
pyshp==2.3.1
|
10 |
+
gitpython==3.1.30
|
11 |
+
requests==2.32.3
|
12 |
+
matplotlib==3.8.4
|
13 |
+
networkx==3.3
|
14 |
+
xarray==2024.6.0
|
15 |
+
shapely==2.0.4
|
16 |
+
pyproj==3.6.1
|
17 |
+
dash-core-components==2.0.0
|
18 |
+
dash-html-components==2.0.0
|
19 |
+
dash-table==5.0.0
|
20 |
+
Cartopy==0.23.0
|
21 |
+
statsmodels==0.14.1
|
22 |
+
schedule==1.2.0
|
typhoon_analysis.py
ADDED
@@ -0,0 +1,1445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dash
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
import plotly.express as px
|
4 |
+
import pickle
|
5 |
+
import tropycal.tracks as tracks
|
6 |
+
import pandas as pd
|
7 |
+
import numpy as np
|
8 |
+
import cachetools
|
9 |
+
import functools
|
10 |
+
import hashlib
|
11 |
+
import os
|
12 |
+
import argparse
|
13 |
+
from dash import dcc, html
|
14 |
+
from dash.dependencies import Input, Output, State
|
15 |
+
from dash.exceptions import PreventUpdate
|
16 |
+
from plotly.subplots import make_subplots
|
17 |
+
from datetime import datetime, timedelta
|
18 |
+
from datetime import date, datetime
|
19 |
+
from scipy import stats
|
20 |
+
from scipy.optimize import minimize, curve_fit
|
21 |
+
from sklearn.linear_model import LinearRegression
|
22 |
+
from sklearn.cluster import KMeans
|
23 |
+
from scipy.interpolate import interp1d
|
24 |
+
from fractions import Fraction
|
25 |
+
from concurrent.futures import ThreadPoolExecutor
|
26 |
+
from sklearn.metrics import mean_squared_error
|
27 |
+
import statsmodels.api as sm
|
28 |
+
import schedule
|
29 |
+
import time
|
30 |
+
import threading
|
31 |
+
import requests
|
32 |
+
from io import StringIO
|
33 |
+
import tempfile
|
34 |
+
import csv
|
35 |
+
from collections import defaultdict
|
36 |
+
import shutil
|
37 |
+
import filecmp
|
38 |
+
|
39 |
+
# Add command-line argument parsing
|
40 |
+
parser = argparse.ArgumentParser(description='Typhoon Analysis Dashboard')
|
41 |
+
parser.add_argument('--data_path', type=str, default=os.getcwd(), help='Path to the data directory')
|
42 |
+
args = parser.parse_args()
|
43 |
+
|
44 |
+
# Use the command-line argument for data path
|
45 |
+
DATA_PATH = args.data_path
|
46 |
+
|
47 |
+
ONI_DATA_PATH = os.path.join(DATA_PATH, 'oni_data.csv')
|
48 |
+
TYPHOON_DATA_PATH = os.path.join(DATA_PATH, 'processed_typhoon_data.csv')
|
49 |
+
LOCAL_iBtrace_PATH = os.path.join(DATA_PATH, 'ibtracs.WP.list.v04r01.csv')
|
50 |
+
iBtrace_uri = 'https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-ibtracs/v04r01/access/csv/ibtracs.WP.list.v04r01.csv'
|
51 |
+
|
52 |
+
CACHE_FILE = 'ibtracs_cache.pkl'
|
53 |
+
CACHE_EXPIRY_DAYS = 1
|
54 |
+
last_oni_update = None
|
55 |
+
|
56 |
+
|
57 |
+
def should_update_oni():
|
58 |
+
today = datetime.now()
|
59 |
+
# Beginning of the month: 1st day
|
60 |
+
if today.day == 1:
|
61 |
+
return True
|
62 |
+
# Middle of the month: 15th day
|
63 |
+
if today.day == 15:
|
64 |
+
return True
|
65 |
+
# End of the month: last day
|
66 |
+
if today.day == (today.replace(day=1, month=today.month%12+1) - timedelta(days=1)).day:
|
67 |
+
return True
|
68 |
+
return False
|
69 |
+
|
70 |
+
color_map = {
|
71 |
+
'C5 Super Typhoon': 'rgb(255, 0, 0)', # Red
|
72 |
+
'C4 Very Strong Typhoon': 'rgb(255, 63, 0)', # Red-Orange
|
73 |
+
'C3 Strong Typhoon': 'rgb(255, 127, 0)', # Orange
|
74 |
+
'C2 Typhoon': 'rgb(255, 191, 0)', # Orange-Yellow
|
75 |
+
'C1 Typhoon': 'rgb(255, 255, 0)', # Yellow
|
76 |
+
'Tropical Storm': 'rgb(0, 255, 255)', # Cyan
|
77 |
+
'Tropical Depression': 'rgb(173, 216, 230)' # Light Blue
|
78 |
+
}
|
79 |
+
|
80 |
+
def convert_typhoondata(input_file, output_file):
|
81 |
+
with open(input_file, 'r') as infile:
|
82 |
+
# Skip the title and the unit line.
|
83 |
+
next(infile)
|
84 |
+
next(infile)
|
85 |
+
|
86 |
+
reader = csv.reader(infile)
|
87 |
+
|
88 |
+
# Used for storing data for each SID
|
89 |
+
sid_data = defaultdict(list)
|
90 |
+
|
91 |
+
for row in reader:
|
92 |
+
if not row: # Skip the blank lines
|
93 |
+
continue
|
94 |
+
|
95 |
+
sid = row[0]
|
96 |
+
iso_time = row[6]
|
97 |
+
sid_data[sid].append((row, iso_time))
|
98 |
+
|
99 |
+
with open(output_file, 'w', newline='') as outfile:
|
100 |
+
fieldnames = ['SID', 'ISO_TIME', 'LAT', 'LON', 'SEASON', 'NAME', 'WMO_WIND', 'WMO_PRES', 'USA_WIND', 'USA_PRES', 'START_DATE', 'END_DATE']
|
101 |
+
writer = csv.DictWriter(outfile, fieldnames=fieldnames)
|
102 |
+
|
103 |
+
writer.writeheader()
|
104 |
+
|
105 |
+
for sid, data in sid_data.items():
|
106 |
+
start_date = min(data, key=lambda x: x[1])[1]
|
107 |
+
end_date = max(data, key=lambda x: x[1])[1]
|
108 |
+
|
109 |
+
for row, iso_time in data:
|
110 |
+
writer.writerow({
|
111 |
+
'SID': row[0],
|
112 |
+
'ISO_TIME': iso_time,
|
113 |
+
'LAT': row[8],
|
114 |
+
'LON': row[9],
|
115 |
+
'SEASON': row[1],
|
116 |
+
'NAME': row[5],
|
117 |
+
'WMO_WIND': row[10].strip() or ' ',
|
118 |
+
'WMO_PRES': row[11].strip() or ' ',
|
119 |
+
'USA_WIND': row[23].strip() or ' ',
|
120 |
+
'USA_PRES': row[24].strip() or ' ',
|
121 |
+
'START_DATE': start_date,
|
122 |
+
'END_DATE': end_date
|
123 |
+
})
|
124 |
+
|
125 |
+
|
126 |
+
def download_oni_file(url, filename):
|
127 |
+
print(f"Downloading file from {url}...")
|
128 |
+
try:
|
129 |
+
response = requests.get(url)
|
130 |
+
response.raise_for_status() # Raises an exception for non-200 status codes
|
131 |
+
with open(filename, 'wb') as f:
|
132 |
+
f.write(response.content)
|
133 |
+
print(f"File successfully downloaded and saved as {filename}")
|
134 |
+
return True
|
135 |
+
except requests.RequestException as e:
|
136 |
+
print(f"Download failed. Error: {e}")
|
137 |
+
return False
|
138 |
+
|
139 |
+
|
140 |
+
def convert_oni_ascii_to_csv(input_file, output_file):
|
141 |
+
data = defaultdict(lambda: [''] * 12)
|
142 |
+
season_to_month = {
|
143 |
+
'DJF': 12, 'JFM': 1, 'FMA': 2, 'MAM': 3, 'AMJ': 4, 'MJJ': 5,
|
144 |
+
'JJA': 6, 'JAS': 7, 'ASO': 8, 'SON': 9, 'OND': 10, 'NDJ': 11
|
145 |
+
}
|
146 |
+
|
147 |
+
print(f"Attempting to read file: {input_file}")
|
148 |
+
try:
|
149 |
+
with open(input_file, 'r') as f:
|
150 |
+
lines = f.readlines()
|
151 |
+
print(f"Successfully read {len(lines)} lines")
|
152 |
+
|
153 |
+
if len(lines) <= 1:
|
154 |
+
print("Error: File is empty or contains only header")
|
155 |
+
return
|
156 |
+
|
157 |
+
for line in lines[1:]: # Skip header
|
158 |
+
parts = line.split()
|
159 |
+
if len(parts) >= 4:
|
160 |
+
season, year = parts[0], parts[1]
|
161 |
+
anom = parts[-1]
|
162 |
+
|
163 |
+
if season in season_to_month:
|
164 |
+
month = season_to_month[season]
|
165 |
+
|
166 |
+
if season == 'DJF':
|
167 |
+
year = str(int(year) - 1)
|
168 |
+
|
169 |
+
data[year][month-1] = anom
|
170 |
+
else:
|
171 |
+
print(f"Warning: Unknown season: {season}")
|
172 |
+
else:
|
173 |
+
print(f"Warning: Skipping invalid line: {line.strip()}")
|
174 |
+
|
175 |
+
print(f"Processed data for {len(data)} years")
|
176 |
+
except Exception as e:
|
177 |
+
print(f"Error reading file: {e}")
|
178 |
+
return
|
179 |
+
|
180 |
+
print(f"Attempting to write file: {output_file}")
|
181 |
+
try:
|
182 |
+
with open(output_file, 'w', newline='') as f:
|
183 |
+
writer = csv.writer(f)
|
184 |
+
writer.writerow(['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
|
185 |
+
|
186 |
+
for year in sorted(data.keys()):
|
187 |
+
row = [year] + data[year]
|
188 |
+
writer.writerow(row)
|
189 |
+
|
190 |
+
print(f"Successfully wrote {len(data)} rows of data")
|
191 |
+
except Exception as e:
|
192 |
+
print(f"Error writing file: {e}")
|
193 |
+
return
|
194 |
+
|
195 |
+
print(f"Conversion complete. Data saved to {output_file}")
|
196 |
+
|
197 |
+
def update_oni_data():
|
198 |
+
global last_oni_update
|
199 |
+
current_date = date.today()
|
200 |
+
|
201 |
+
# Check if already updated today
|
202 |
+
if last_oni_update == current_date:
|
203 |
+
print("ONI data already checked today. Skipping update.")
|
204 |
+
return
|
205 |
+
|
206 |
+
url = "https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt"
|
207 |
+
temp_file = os.path.join(DATA_PATH, "temp_oni.ascii.txt")
|
208 |
+
input_file = os.path.join(DATA_PATH, "oni.ascii.txt")
|
209 |
+
output_file = ONI_DATA_PATH
|
210 |
+
|
211 |
+
if download_oni_file(url, temp_file):
|
212 |
+
if not os.path.exists(input_file) or not filecmp.cmp(temp_file, input_file, shallow=False):
|
213 |
+
# File doesn't exist or has been updated
|
214 |
+
os.replace(temp_file, input_file)
|
215 |
+
print("New ONI data detected. Converting to CSV.")
|
216 |
+
convert_oni_ascii_to_csv(input_file, output_file)
|
217 |
+
print("ONI data updated successfully.")
|
218 |
+
else:
|
219 |
+
print("ONI data is up to date. No conversion needed.")
|
220 |
+
os.remove(temp_file) # Remove temporary file
|
221 |
+
|
222 |
+
last_oni_update = current_date
|
223 |
+
else:
|
224 |
+
print("Failed to download ONI data.")
|
225 |
+
if os.path.exists(temp_file):
|
226 |
+
os.remove(temp_file) # Ensure cleanup of temporary file
|
227 |
+
|
228 |
+
def load_ibtracs_data():
|
229 |
+
if os.path.exists(CACHE_FILE):
|
230 |
+
cache_time = datetime.fromtimestamp(os.path.getmtime(CACHE_FILE))
|
231 |
+
if datetime.now() - cache_time < timedelta(days=CACHE_EXPIRY_DAYS):
|
232 |
+
print("Loading data from cache...")
|
233 |
+
with open(CACHE_FILE, 'rb') as f:
|
234 |
+
return pickle.load(f)
|
235 |
+
|
236 |
+
if os.path.exists(LOCAL_iBtrace_PATH):
|
237 |
+
print("Using local IBTrACS file...")
|
238 |
+
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
239 |
+
else:
|
240 |
+
print("Local IBTrACS file not found. Fetching data from remote server...")
|
241 |
+
try:
|
242 |
+
response = requests.get(iBtrace_uri)
|
243 |
+
response.raise_for_status()
|
244 |
+
|
245 |
+
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
|
246 |
+
temp_file.write(response.text)
|
247 |
+
temp_file_path = temp_file.name
|
248 |
+
|
249 |
+
# Save the downloaded data as the local file
|
250 |
+
shutil.move(temp_file_path, LOCAL_iBtrace_PATH)
|
251 |
+
print(f"Downloaded data saved to {LOCAL_iBtrace_PATH}")
|
252 |
+
|
253 |
+
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
254 |
+
except requests.RequestException as e:
|
255 |
+
print(f"Error downloading data: {e}")
|
256 |
+
print("No local file available and download failed. Unable to load IBTrACS data.")
|
257 |
+
return None
|
258 |
+
|
259 |
+
with open(CACHE_FILE, 'wb') as f:
|
260 |
+
pickle.dump(ibtracs, f)
|
261 |
+
|
262 |
+
return ibtracs
|
263 |
+
|
264 |
+
def update_ibtracs_data():
|
265 |
+
global ibtracs
|
266 |
+
print("Checking for IBTrACS data updates...")
|
267 |
+
|
268 |
+
try:
|
269 |
+
# Get the last-modified time of the remote file
|
270 |
+
response = requests.head(iBtrace_uri)
|
271 |
+
remote_last_modified = datetime.strptime(response.headers['Last-Modified'], '%a, %d %b %Y %H:%M:%S GMT')
|
272 |
+
|
273 |
+
# Get the last-modified time of the local file
|
274 |
+
if os.path.exists(LOCAL_iBtrace_PATH):
|
275 |
+
local_last_modified = datetime.fromtimestamp(os.path.getmtime(LOCAL_iBtrace_PATH))
|
276 |
+
else:
|
277 |
+
local_last_modified = datetime.min
|
278 |
+
|
279 |
+
# Compare the modification times
|
280 |
+
if remote_last_modified <= local_last_modified:
|
281 |
+
print("Local IBTrACS data is up to date. No update needed.")
|
282 |
+
if os.path.exists(CACHE_FILE):
|
283 |
+
# Update the cache file's timestamp to extend its validity
|
284 |
+
os.utime(CACHE_FILE, None)
|
285 |
+
print("Cache file timestamp updated.")
|
286 |
+
return
|
287 |
+
|
288 |
+
print("Remote data is newer. Updating IBTrACS data...")
|
289 |
+
|
290 |
+
# Download the new data
|
291 |
+
response = requests.get(iBtrace_uri)
|
292 |
+
response.raise_for_status()
|
293 |
+
|
294 |
+
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.csv') as temp_file:
|
295 |
+
temp_file.write(response.text)
|
296 |
+
temp_file_path = temp_file.name
|
297 |
+
|
298 |
+
# Save the downloaded data as the local file
|
299 |
+
shutil.move(temp_file_path, LOCAL_iBtrace_PATH)
|
300 |
+
print(f"Downloaded data saved to {LOCAL_iBtrace_PATH}")
|
301 |
+
|
302 |
+
# Update the last modified time of the local file to match the remote file
|
303 |
+
os.utime(LOCAL_iBtrace_PATH, (remote_last_modified.timestamp(), remote_last_modified.timestamp()))
|
304 |
+
|
305 |
+
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
306 |
+
|
307 |
+
with open(CACHE_FILE, 'wb') as f:
|
308 |
+
pickle.dump(ibtracs, f)
|
309 |
+
print("IBTrACS data updated and cache refreshed.")
|
310 |
+
|
311 |
+
except requests.RequestException as e:
|
312 |
+
print(f"Error checking or downloading data: {e}")
|
313 |
+
if os.path.exists(LOCAL_iBtrace_PATH):
|
314 |
+
print("Using existing local file.")
|
315 |
+
ibtracs = tracks.TrackDataset(basin='west_pacific', source='ibtracs', ibtracs_url=LOCAL_iBtrace_PATH)
|
316 |
+
if os.path.exists(CACHE_FILE):
|
317 |
+
# Update the cache file's timestamp even when using existing local file
|
318 |
+
os.utime(CACHE_FILE, None)
|
319 |
+
print("Cache file timestamp updated.")
|
320 |
+
else:
|
321 |
+
print("No local file available. Update failed.")
|
322 |
+
|
323 |
+
def run_schedule():
|
324 |
+
while True:
|
325 |
+
schedule.run_pending()
|
326 |
+
time.sleep(1)
|
327 |
+
|
328 |
+
def analyze_typhoon_generation(merged_data, start_date, end_date):
|
329 |
+
filtered_data = merged_data[
|
330 |
+
(merged_data['ISO_TIME'] >= start_date) &
|
331 |
+
(merged_data['ISO_TIME'] <= end_date)
|
332 |
+
]
|
333 |
+
|
334 |
+
filtered_data['ENSO_Phase'] = filtered_data['ONI'].apply(classify_enso_phases)
|
335 |
+
|
336 |
+
typhoon_counts = filtered_data['ENSO_Phase'].value_counts().to_dict()
|
337 |
+
|
338 |
+
month_counts = filtered_data.groupby(['ENSO_Phase', filtered_data['ISO_TIME'].dt.month]).size().unstack(fill_value=0)
|
339 |
+
concentrated_months = month_counts.idxmax(axis=1).to_dict()
|
340 |
+
|
341 |
+
return typhoon_counts, concentrated_months
|
342 |
+
|
343 |
+
def cache_key_generator(*args, **kwargs):
|
344 |
+
key = hashlib.md5()
|
345 |
+
for arg in args:
|
346 |
+
key.update(str(arg).encode())
|
347 |
+
for k, v in sorted(kwargs.items()):
|
348 |
+
key.update(str(k).encode())
|
349 |
+
key.update(str(v).encode())
|
350 |
+
return key.hexdigest()
|
351 |
+
|
352 |
+
def categorize_typhoon(wind_speed):
|
353 |
+
wind_speed_kt = wind_speed / 2 # Convert kt to m/s
|
354 |
+
|
355 |
+
# Add category classification
|
356 |
+
if wind_speed_kt >= 137/2.35:
|
357 |
+
return 'C5 Super Typhoon'
|
358 |
+
elif wind_speed_kt >= 113/2.35:
|
359 |
+
return 'C4 Very Strong Typhoon'
|
360 |
+
elif wind_speed_kt >= 96/2.35:
|
361 |
+
return 'C3 Strong Typhoon'
|
362 |
+
elif wind_speed_kt >= 83/2.35:
|
363 |
+
return 'C2 Typhoon'
|
364 |
+
elif wind_speed_kt >= 64/2.35:
|
365 |
+
return 'C1 Typhoon'
|
366 |
+
elif wind_speed_kt >= 34/2.35:
|
367 |
+
return 'Tropical Storm'
|
368 |
+
else:
|
369 |
+
return 'Tropical Depression'
|
370 |
+
|
371 |
+
@functools.lru_cache(maxsize=None)
|
372 |
+
def process_oni_data_cached(oni_data_hash):
|
373 |
+
return process_oni_data(oni_data)
|
374 |
+
|
375 |
+
def process_oni_data(oni_data):
|
376 |
+
oni_long = oni_data.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
377 |
+
oni_long['Month'] = oni_long['Month'].map({
|
378 |
+
'Jan': '01', 'Feb': '02', 'Mar': '03', 'Apr': '04', 'May': '05', 'Jun': '06',
|
379 |
+
'Jul': '07', 'Aug': '08', 'Sep': '09', 'Oct': '10', 'Nov': '11', 'Dec': '12'
|
380 |
+
})
|
381 |
+
oni_long['Date'] = pd.to_datetime(oni_long['Year'].astype(str) + '-' + oni_long['Month'] + '-01')
|
382 |
+
oni_long['ONI'] = pd.to_numeric(oni_long['ONI'], errors='coerce')
|
383 |
+
return oni_long
|
384 |
+
|
385 |
+
def process_oni_data_with_cache(oni_data):
|
386 |
+
oni_data_hash = cache_key_generator(oni_data.to_json())
|
387 |
+
return process_oni_data_cached(oni_data_hash)
|
388 |
+
|
389 |
+
@functools.lru_cache(maxsize=None)
|
390 |
+
def process_typhoon_data_cached(typhoon_data_hash):
|
391 |
+
return process_typhoon_data(typhoon_data)
|
392 |
+
|
393 |
+
def process_typhoon_data(typhoon_data):
|
394 |
+
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
395 |
+
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
|
396 |
+
typhoon_data['USA_PRES'] = pd.to_numeric(typhoon_data['USA_PRES'], errors='coerce')
|
397 |
+
typhoon_data['LON'] = pd.to_numeric(typhoon_data['LON'], errors='coerce')
|
398 |
+
|
399 |
+
typhoon_max = typhoon_data.groupby('SID').agg({
|
400 |
+
'USA_WIND': 'max',
|
401 |
+
'USA_PRES': 'min',
|
402 |
+
'ISO_TIME': 'first',
|
403 |
+
'SEASON': 'first',
|
404 |
+
'NAME': 'first',
|
405 |
+
'LAT': 'first',
|
406 |
+
'LON': 'first'
|
407 |
+
}).reset_index()
|
408 |
+
|
409 |
+
typhoon_max['Month'] = typhoon_max['ISO_TIME'].dt.strftime('%m')
|
410 |
+
typhoon_max['Year'] = typhoon_max['ISO_TIME'].dt.year
|
411 |
+
typhoon_max['Category'] = typhoon_max['USA_WIND'].apply(categorize_typhoon)
|
412 |
+
return typhoon_max
|
413 |
+
|
414 |
+
def process_typhoon_data_with_cache(typhoon_data):
|
415 |
+
typhoon_data_hash = cache_key_generator(typhoon_data.to_json())
|
416 |
+
return process_typhoon_data_cached(typhoon_data_hash)
|
417 |
+
|
418 |
+
def merge_data(oni_long, typhoon_max):
|
419 |
+
return pd.merge(typhoon_max, oni_long, on=['Year', 'Month'])
|
420 |
+
|
421 |
+
def calculate_logistic_regression(merged_data):
|
422 |
+
data = merged_data.dropna(subset=['USA_WIND', 'ONI'])
|
423 |
+
|
424 |
+
# Create binary outcome for severe typhoons
|
425 |
+
data['severe_typhoon'] = (data['USA_WIND'] >= 51).astype(int)
|
426 |
+
|
427 |
+
# Create binary predictor for El Niño
|
428 |
+
data['el_nino'] = (data['ONI'] >= 0.5).astype(int)
|
429 |
+
|
430 |
+
X = data['el_nino']
|
431 |
+
X = sm.add_constant(X) # Add constant term
|
432 |
+
y = data['severe_typhoon']
|
433 |
+
|
434 |
+
model = sm.Logit(y, X).fit()
|
435 |
+
|
436 |
+
beta_1 = model.params['el_nino']
|
437 |
+
exp_beta_1 = np.exp(beta_1)
|
438 |
+
p_value = model.pvalues['el_nino']
|
439 |
+
|
440 |
+
return beta_1, exp_beta_1, p_value
|
441 |
+
|
442 |
+
@cachetools.cached(cache={})
|
443 |
+
def fetch_oni_data_from_csv(file_path):
|
444 |
+
df = pd.read_csv(file_path, sep=',', header=0, na_values='-99.90')
|
445 |
+
df.columns = ['Year', 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
446 |
+
df = df.melt(id_vars=['Year'], var_name='Month', value_name='ONI')
|
447 |
+
df['Date'] = pd.to_datetime(df['Year'].astype(str) + df['Month'], format='%Y%b')
|
448 |
+
df = df.set_index('Date')
|
449 |
+
return df
|
450 |
+
|
451 |
+
def classify_enso_phases(oni_value):
|
452 |
+
if isinstance(oni_value, pd.Series):
|
453 |
+
oni_value = oni_value.iloc[0]
|
454 |
+
if oni_value >= 0.5:
|
455 |
+
return 'El Nino'
|
456 |
+
elif oni_value <= -0.5:
|
457 |
+
return 'La Nina'
|
458 |
+
else:
|
459 |
+
return 'Neutral'
|
460 |
+
|
461 |
+
def load_data(oni_data_path, typhoon_data_path):
|
462 |
+
oni_data = pd.read_csv(oni_data_path)
|
463 |
+
typhoon_data = pd.read_csv(typhoon_data_path, low_memory=False)
|
464 |
+
|
465 |
+
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
466 |
+
|
467 |
+
typhoon_data = typhoon_data.dropna(subset=['ISO_TIME'])
|
468 |
+
|
469 |
+
print(f"Typhoon data shape after cleaning: {typhoon_data.shape}")
|
470 |
+
print(f"Year range: {typhoon_data['ISO_TIME'].dt.year.min()} - {typhoon_data['ISO_TIME'].dt.year.max()}")
|
471 |
+
|
472 |
+
return oni_data, typhoon_data
|
473 |
+
|
474 |
+
def preprocess_data(oni_data, typhoon_data):
|
475 |
+
typhoon_data['USA_WIND'] = pd.to_numeric(typhoon_data['USA_WIND'], errors='coerce')
|
476 |
+
typhoon_data['WMO_PRES'] = pd.to_numeric(typhoon_data['WMO_PRES'], errors='coerce')
|
477 |
+
typhoon_data['ISO_TIME'] = pd.to_datetime(typhoon_data['ISO_TIME'], errors='coerce')
|
478 |
+
typhoon_data['Year'] = typhoon_data['ISO_TIME'].dt.year
|
479 |
+
typhoon_data['Month'] = typhoon_data['ISO_TIME'].dt.month
|
480 |
+
|
481 |
+
monthly_max_wind_speed = typhoon_data.groupby(['Year', 'Month'])['USA_WIND'].max().reset_index()
|
482 |
+
|
483 |
+
oni_data_long = pd.melt(oni_data, id_vars=['Year'], var_name='Month', value_name='ONI')
|
484 |
+
oni_data_long['Month'] = oni_data_long['Month'].apply(lambda x: pd.to_datetime(x, format='%b').month)
|
485 |
+
|
486 |
+
merged_data = pd.merge(monthly_max_wind_speed, oni_data_long, on=['Year', 'Month'])
|
487 |
+
|
488 |
+
return merged_data
|
489 |
+
|
490 |
+
def calculate_max_wind_min_pressure(typhoon_data):
|
491 |
+
max_wind_speed = typhoon_data['USA_WIND'].max()
|
492 |
+
min_pressure = typhoon_data['WMO_PRES'].min()
|
493 |
+
return max_wind_speed, min_pressure
|
494 |
+
|
495 |
+
@functools.lru_cache(maxsize=None)
|
496 |
+
def get_storm_data(storm_id):
|
497 |
+
return ibtracs.get_storm(storm_id)
|
498 |
+
|
499 |
+
def filter_west_pacific_coordinates(lons, lats):
|
500 |
+
mask = (100 <= lons) & (lons <= 180) & (0 <= lats) & (lats <= 40)
|
501 |
+
return lons[mask], lats[mask]
|
502 |
+
|
503 |
+
def polynomial_exp(x, a, b, c, d):
|
504 |
+
return a * x**2 + b * x + c + d * np.exp(x)
|
505 |
+
|
506 |
+
def exponential(x, a, b, c):
|
507 |
+
return a * np.exp(b * x) + c
|
508 |
+
|
509 |
+
def generate_cluster_equations(cluster_center):
|
510 |
+
X = cluster_center[:, 0] # Longitudes
|
511 |
+
y = cluster_center[:, 1] # Latitudes
|
512 |
+
|
513 |
+
x_min = X.min()
|
514 |
+
x_max = X.max()
|
515 |
+
|
516 |
+
equations = []
|
517 |
+
|
518 |
+
# Fourier Series (up to 4th order)
|
519 |
+
def fourier_series(x, a0, a1, b1, a2, b2, a3, b3, a4, b4):
|
520 |
+
return (a0 + a1*np.cos(x) + b1*np.sin(x) +
|
521 |
+
a2*np.cos(2*x) + b2*np.sin(2*x) +
|
522 |
+
a3*np.cos(3*x) + b3*np.sin(3*x) +
|
523 |
+
a4*np.cos(4*x) + b4*np.sin(4*x))
|
524 |
+
|
525 |
+
# Normalize X to the range [0, 2π]
|
526 |
+
X_normalized = 2 * np.pi * (X - x_min) / (x_max - x_min)
|
527 |
+
|
528 |
+
params, _ = curve_fit(fourier_series, X_normalized, y)
|
529 |
+
a0, a1, b1, a2, b2, a3, b3, a4, b4 = params
|
530 |
+
|
531 |
+
# Create the equation string
|
532 |
+
fourier_eq = (f"y = {a0:.4f} + {a1:.4f}*cos(x) + {b1:.4f}*sin(x) + "
|
533 |
+
f"{a2:.4f}*cos(2x) + {b2:.4f}*sin(2x) + "
|
534 |
+
f"{a3:.4f}*cos(3x) + {b3:.4f}*sin(3x) + "
|
535 |
+
f"{a4:.4f}*cos(4x) + {b4:.4f}*sin(4x)")
|
536 |
+
|
537 |
+
equations.append(("Fourier Series", fourier_eq))
|
538 |
+
equations.append(("X Range", f"x goes from 0 to {2*np.pi:.4f}"))
|
539 |
+
equations.append(("Longitude Range", f"Longitude goes from {x_min:.4f}°E to {x_max:.4f}°E"))
|
540 |
+
|
541 |
+
return equations, (x_min, x_max)
|
542 |
+
|
543 |
+
#oni_df = fetch_oni_data_from_csv(ONI_DATA_PATH)
|
544 |
+
#ibtracs = load_ibtracs_data()
|
545 |
+
#oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
|
546 |
+
#oni_long = process_oni_data_with_cache(oni_data)
|
547 |
+
#typhoon_max = process_typhoon_data_with_cache(typhoon_data)
|
548 |
+
#merged_data = merge_data(oni_long, typhoon_max)
|
549 |
+
#data = preprocess_data(oni_data, typhoon_data)
|
550 |
+
#max_wind_speed, min_pressure = calculate_max_wind_min_pressure(typhoon_data)
|
551 |
+
#
|
552 |
+
## Schedule the update to run daily at 1:00 AM
|
553 |
+
#schedule.every().day.at("01:00").do(update_ibtracs_data)
|
554 |
+
#
|
555 |
+
## Run the scheduler in a separate thread
|
556 |
+
#scheduler_thread = threading.Thread(target=run_schedule)
|
557 |
+
#scheduler_thread.start()
|
558 |
+
|
559 |
+
|
560 |
+
app = dash.Dash(__name__)
|
561 |
+
|
562 |
+
# First, add the classification standards
|
563 |
+
atlantic_standard = {
|
564 |
+
'C5 Super Typhoon': {'wind_speed': 137, 'color': 'rgb(255, 0, 0)'},
|
565 |
+
'C4 Very Strong Typhoon': {'wind_speed': 113, 'color': 'rgb(255, 63, 0)'},
|
566 |
+
'C3 Strong Typhoon': {'wind_speed': 96, 'color': 'rgb(255, 127, 0)'},
|
567 |
+
'C2 Typhoon': {'wind_speed': 83, 'color': 'rgb(255, 191, 0)'},
|
568 |
+
'C1 Typhoon': {'wind_speed': 64, 'color': 'rgb(255, 255, 0)'},
|
569 |
+
'Tropical Storm': {'wind_speed': 34, 'color': 'rgb(0, 255, 255)'},
|
570 |
+
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'}
|
571 |
+
}
|
572 |
+
|
573 |
+
taiwan_standard = {
|
574 |
+
'Strong Typhoon': {'wind_speed': 51.0, 'color': 'rgb(255, 0, 0)'}, # >= 51.0 m/s
|
575 |
+
'Medium Typhoon': {'wind_speed': 33.7, 'color': 'rgb(255, 127, 0)'}, # 33.7-50.9 m/s
|
576 |
+
'Mild Typhoon': {'wind_speed': 17.2, 'color': 'rgb(255, 255, 0)'}, # 17.2-33.6 m/s
|
577 |
+
'Tropical Depression': {'wind_speed': 0, 'color': 'rgb(173, 216, 230)'} # < 17.2 m/s
|
578 |
+
}
|
579 |
+
|
580 |
+
app.layout = html.Div([
|
581 |
+
html.H1("Typhoon Analysis Dashboard"),
|
582 |
+
|
583 |
+
html.Div([
|
584 |
+
dcc.Input(id='start-year', type='number', placeholder='Start Year', value=2000, min=1900, max=2024, step=1),
|
585 |
+
dcc.Input(id='start-month', type='number', placeholder='Start Month', value=1, min=1, max=12, step=1),
|
586 |
+
dcc.Input(id='end-year', type='number', placeholder='End Year', value=2024, min=1900, max=2024, step=1),
|
587 |
+
dcc.Input(id='end-month', type='number', placeholder='End Month', value=6, min=1, max=12, step=1),
|
588 |
+
dcc.Dropdown(
|
589 |
+
id='enso-dropdown',
|
590 |
+
options=[
|
591 |
+
{'label': 'All Years', 'value': 'all'},
|
592 |
+
{'label': 'El Niño Years', 'value': 'el_nino'},
|
593 |
+
{'label': 'La Niña Years', 'value': 'la_nina'},
|
594 |
+
{'label': 'Neutral Years', 'value': 'neutral'}
|
595 |
+
],
|
596 |
+
value='all'
|
597 |
+
),
|
598 |
+
html.Button('Analyze', id='analyze-button', n_clicks=0),
|
599 |
+
]),
|
600 |
+
|
601 |
+
html.Div([
|
602 |
+
dcc.Input(id='typhoon-search', type='text', placeholder='Search Typhoon Name'),
|
603 |
+
html.Button('Find Typhoon', id='find-typhoon-button', n_clicks=0),
|
604 |
+
]),
|
605 |
+
|
606 |
+
html.Div([
|
607 |
+
html.Div(id='correlation-coefficient'),
|
608 |
+
html.Div(id='max-wind-speed'),
|
609 |
+
html.Div(id='min-pressure'),
|
610 |
+
]),
|
611 |
+
|
612 |
+
dcc.Graph(id='typhoon-tracks-graph'),
|
613 |
+
html.Div([
|
614 |
+
html.P("Number of Clusters"),
|
615 |
+
dcc.Input(id='n-clusters', type='number', placeholder='Number of Clusters', value=5, min=1, max=20, step=1),
|
616 |
+
html.Button('Show Clusters', id='show-clusters-button', n_clicks=0),
|
617 |
+
html.Button('Show Typhoon Routes', id='show-routes-button', n_clicks=0),
|
618 |
+
]),
|
619 |
+
|
620 |
+
dcc.Graph(id='typhoon-routes-graph'),
|
621 |
+
|
622 |
+
html.Div([
|
623 |
+
html.Button('Fourier Series', id='fourier-series-button', n_clicks=0),
|
624 |
+
]),
|
625 |
+
html.Div(id='cluster-equation-results'),
|
626 |
+
|
627 |
+
html.Div([
|
628 |
+
html.Button('Wind Speed Logistic Regression', id='wind-regression-button', n_clicks=0),
|
629 |
+
html.Button('Pressure Logistic Regression', id='pressure-regression-button', n_clicks=0),
|
630 |
+
html.Button('Longitude Logistic Regression', id='longitude-regression-button', n_clicks=0),
|
631 |
+
]),
|
632 |
+
html.Div(id='logistic-regression-results'),
|
633 |
+
|
634 |
+
html.H2("Typhoon Path Analysis"),
|
635 |
+
html.Div([
|
636 |
+
dcc.Dropdown(
|
637 |
+
id='year-dropdown',
|
638 |
+
options=[{'label': str(year), 'value': year} for year in range(1950, 2025)],
|
639 |
+
value=2024,
|
640 |
+
style={'width': '200px'}
|
641 |
+
),
|
642 |
+
dcc.Dropdown(
|
643 |
+
id='typhoon-dropdown',
|
644 |
+
style={'width': '300px'}
|
645 |
+
),
|
646 |
+
dcc.Dropdown(
|
647 |
+
id='classification-standard',
|
648 |
+
options=[
|
649 |
+
{'label': 'Atlantic Standard', 'value': 'atlantic'},
|
650 |
+
{'label': 'Taiwan Standard', 'value': 'taiwan'}
|
651 |
+
],
|
652 |
+
value='atlantic',
|
653 |
+
style={'width': '200px'}
|
654 |
+
)
|
655 |
+
], style={'display': 'flex', 'gap': '10px'}),
|
656 |
+
|
657 |
+
dcc.Graph(id='typhoon-path-animation'),
|
658 |
+
dcc.Graph(id='all-years-regression-graph'),
|
659 |
+
dcc.Graph(id='wind-oni-scatter-plot'),
|
660 |
+
dcc.Graph(id='pressure-oni-scatter'),
|
661 |
+
|
662 |
+
html.Div(id='regression-graphs'),
|
663 |
+
html.Div(id='slopes'),
|
664 |
+
html.Div([
|
665 |
+
html.H3("Correlation Analysis"),
|
666 |
+
html.Div(id='wind-oni-correlation'),
|
667 |
+
html.Div(id='pressure-oni-correlation'),
|
668 |
+
]),
|
669 |
+
html.Div([
|
670 |
+
html.H3("Typhoon Generation Analysis"),
|
671 |
+
html.Div(id='typhoon-count-analysis'),
|
672 |
+
html.Div(id='concentrated-months-analysis'),
|
673 |
+
]),
|
674 |
+
html.Div(id='cluster-info'),
|
675 |
+
|
676 |
+
html.Div([
|
677 |
+
dcc.Dropdown(
|
678 |
+
id='classification-standard',
|
679 |
+
options=[
|
680 |
+
{'label': 'Atlantic Standard', 'value': 'atlantic'},
|
681 |
+
{'label': 'Taiwan Standard', 'value': 'taiwan'}
|
682 |
+
],
|
683 |
+
value='atlantic',
|
684 |
+
style={'width': '200px'}
|
685 |
+
)
|
686 |
+
], style={'margin': '10px'}),
|
687 |
+
|
688 |
+
], style={'font-family': 'Arial, sans-serif'})
|
689 |
+
|
690 |
+
@app.callback(
|
691 |
+
Output('year-dropdown', 'options'),
|
692 |
+
Input('typhoon-tracks-graph', 'figure')
|
693 |
+
)
|
694 |
+
def initialize_year_dropdown(_):
|
695 |
+
try:
|
696 |
+
years = typhoon_data['ISO_TIME'].dt.year.unique()
|
697 |
+
years = years[~np.isnan(years)]
|
698 |
+
years = sorted(years)
|
699 |
+
|
700 |
+
options = [{'label': str(int(year)), 'value': int(year)} for year in years]
|
701 |
+
print(f"Generated options: {options[:5]}...")
|
702 |
+
return options
|
703 |
+
except Exception as e:
|
704 |
+
print(f"Error in initialize_year_dropdown: {str(e)}")
|
705 |
+
return [{'label': 'Error', 'value': 'error'}]
|
706 |
+
|
707 |
+
@app.callback(
|
708 |
+
[Output('typhoon-dropdown', 'options'),
|
709 |
+
Output('typhoon-dropdown', 'value')],
|
710 |
+
[Input('year-dropdown', 'value')]
|
711 |
+
)
|
712 |
+
def update_typhoon_dropdown(selected_year):
|
713 |
+
if not selected_year:
|
714 |
+
raise PreventUpdate
|
715 |
+
|
716 |
+
selected_year = int(selected_year)
|
717 |
+
|
718 |
+
season = ibtracs.get_season(selected_year)
|
719 |
+
storm_summary = season.summary()
|
720 |
+
|
721 |
+
typhoon_options = []
|
722 |
+
for i in range(storm_summary['season_storms']):
|
723 |
+
storm_id = storm_summary['id'][i]
|
724 |
+
storm_name = storm_summary['name'][i]
|
725 |
+
typhoon_options.append({'label': f"{storm_name} ({storm_id})", 'value': storm_id})
|
726 |
+
|
727 |
+
selected_typhoon = typhoon_options[0]['value'] if typhoon_options else None
|
728 |
+
return typhoon_options, selected_typhoon
|
729 |
+
|
730 |
+
@app.callback(
|
731 |
+
Output('typhoon-path-animation', 'figure'),
|
732 |
+
[Input('year-dropdown', 'value'),
|
733 |
+
Input('typhoon-dropdown', 'value'),
|
734 |
+
Input('classification-standard', 'value')]
|
735 |
+
)
|
736 |
+
def update_typhoon_path(selected_year, selected_sid, standard):
|
737 |
+
if not selected_year or not selected_sid:
|
738 |
+
raise PreventUpdate
|
739 |
+
|
740 |
+
storm = ibtracs.get_storm(selected_sid)
|
741 |
+
return create_typhoon_path_figure(storm, selected_year, standard)
|
742 |
+
|
743 |
+
def create_typhoon_path_figure(storm, selected_year, standard='atlantic'):
|
744 |
+
fig = go.Figure()
|
745 |
+
|
746 |
+
fig.add_trace(
|
747 |
+
go.Scattergeo(
|
748 |
+
lon=storm.lon,
|
749 |
+
lat=storm.lat,
|
750 |
+
mode='lines',
|
751 |
+
line=dict(width=2, color='gray'),
|
752 |
+
name='Path',
|
753 |
+
showlegend=False,
|
754 |
+
)
|
755 |
+
)
|
756 |
+
|
757 |
+
fig.add_trace(
|
758 |
+
go.Scattergeo(
|
759 |
+
lon=[storm.lon[0]],
|
760 |
+
lat=[storm.lat[0]],
|
761 |
+
mode='markers',
|
762 |
+
marker=dict(size=10, color='green', symbol='star'),
|
763 |
+
name='Starting Point',
|
764 |
+
text=storm.time[0].strftime('%Y-%m-%d %H:%M'),
|
765 |
+
hoverinfo='text+name',
|
766 |
+
)
|
767 |
+
)
|
768 |
+
|
769 |
+
frames = []
|
770 |
+
for i in range(len(storm.time)):
|
771 |
+
category, color = categorize_typhoon_by_standard(storm.vmax[i], standard)
|
772 |
+
|
773 |
+
r34_ne = storm.dict['USA_R34_NE'][i] if 'USA_R34_NE' in storm.dict else None
|
774 |
+
r34_se = storm.dict['USA_R34_SE'][i] if 'USA_R34_SE' in storm.dict else None
|
775 |
+
r34_sw = storm.dict['USA_R34_SW'][i] if 'USA_R34_SW' in storm.dict else None
|
776 |
+
r34_nw = storm.dict['USA_R34_NW'][i] if 'USA_R34_NW' in storm.dict else None
|
777 |
+
rmw = storm.dict['USA_RMW'][i] if 'USA_RMW' in storm.dict else None
|
778 |
+
eye_diameter = storm.dict['USA_EYE'][i] if 'USA_EYE' in storm.dict else None
|
779 |
+
|
780 |
+
radius_info = f"R34: NE={r34_ne}, SE={r34_se}, SW={r34_sw}, NW={r34_nw}<br>"
|
781 |
+
radius_info += f"RMW: {rmw}<br>"
|
782 |
+
radius_info += f"Eye Diameter: {eye_diameter}"
|
783 |
+
|
784 |
+
frame_data = [
|
785 |
+
go.Scattergeo(
|
786 |
+
lon=storm.lon[:i+1],
|
787 |
+
lat=storm.lat[:i+1],
|
788 |
+
mode='lines',
|
789 |
+
line=dict(width=2, color='blue'),
|
790 |
+
name='Path Traveled',
|
791 |
+
showlegend=False,
|
792 |
+
),
|
793 |
+
go.Scattergeo(
|
794 |
+
lon=[storm.lon[i]],
|
795 |
+
lat=[storm.lat[i]],
|
796 |
+
mode='markers+text',
|
797 |
+
marker=dict(size=10, color=color, symbol='star'),
|
798 |
+
text=category,
|
799 |
+
textposition="top center",
|
800 |
+
textfont=dict(size=12, color=color),
|
801 |
+
name='Current Location',
|
802 |
+
hovertext=f"{storm.time[i].strftime('%Y-%m-%d %H:%M')}<br>"
|
803 |
+
f"Category: {category}<br>"
|
804 |
+
f"Wind Speed: {storm.vmax[i]:.1f} m/s<br>"
|
805 |
+
f"{radius_info}",
|
806 |
+
hoverinfo='text',
|
807 |
+
),
|
808 |
+
]
|
809 |
+
frames.append(go.Frame(data=frame_data, name=f"frame{i}"))
|
810 |
+
|
811 |
+
fig.frames = frames
|
812 |
+
|
813 |
+
fig.update_layout(
|
814 |
+
title=f"{selected_year} Year {storm.name} Typhoon Path",
|
815 |
+
showlegend=False,
|
816 |
+
geo=dict(
|
817 |
+
projection_type='natural earth',
|
818 |
+
showland=True,
|
819 |
+
landcolor='rgb(243, 243, 243)',
|
820 |
+
countrycolor='rgb(204, 204, 204)',
|
821 |
+
coastlinecolor='rgb(100, 100, 100)',
|
822 |
+
showocean=True,
|
823 |
+
oceancolor='rgb(230, 250, 255)',
|
824 |
+
),
|
825 |
+
updatemenus=[{
|
826 |
+
"buttons": [
|
827 |
+
{
|
828 |
+
"args": [None, {"frame": {"duration": 100, "redraw": True},
|
829 |
+
"fromcurrent": True,
|
830 |
+
"transition": {"duration": 0}}],
|
831 |
+
"label": "Play",
|
832 |
+
"method": "animate"
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"args": [[None], {"frame": {"duration": 0, "redraw": True},
|
836 |
+
"mode": "immediate",
|
837 |
+
"transition": {"duration": 0}}],
|
838 |
+
"label": "Pause",
|
839 |
+
"method": "animate"
|
840 |
+
}
|
841 |
+
],
|
842 |
+
"direction": "left",
|
843 |
+
"pad": {"r": 10, "t": 87},
|
844 |
+
"showactive": False,
|
845 |
+
"type": "buttons",
|
846 |
+
"x": 0.1,
|
847 |
+
"xanchor": "right",
|
848 |
+
"y": 0,
|
849 |
+
"yanchor": "top"
|
850 |
+
}],
|
851 |
+
sliders=[{
|
852 |
+
"active": 0,
|
853 |
+
"yanchor": "top",
|
854 |
+
"xanchor": "left",
|
855 |
+
"currentvalue": {
|
856 |
+
"font": {"size": 20},
|
857 |
+
"prefix": "Time: ",
|
858 |
+
"visible": True,
|
859 |
+
"xanchor": "right"
|
860 |
+
},
|
861 |
+
"transition": {"duration": 100, "easing": "cubic-in-out"},
|
862 |
+
"pad": {"b": 10, "t": 50},
|
863 |
+
"len": 0.9,
|
864 |
+
"x": 0.1,
|
865 |
+
"y": 0,
|
866 |
+
"steps": [
|
867 |
+
{
|
868 |
+
"args": [[f"frame{k}"],
|
869 |
+
{"frame": {"duration": 100, "redraw": True},
|
870 |
+
"mode": "immediate",
|
871 |
+
"transition": {"duration": 0}}
|
872 |
+
],
|
873 |
+
"label": storm.time[k].strftime('%Y-%m-%d %H:%M'),
|
874 |
+
"method": "animate"
|
875 |
+
}
|
876 |
+
for k in range(len(storm.time))
|
877 |
+
]
|
878 |
+
}]
|
879 |
+
)
|
880 |
+
|
881 |
+
return fig
|
882 |
+
|
883 |
+
@app.callback(
|
884 |
+
[Output('typhoon-routes-graph', 'figure'),
|
885 |
+
Output('cluster-equation-results', 'children')],
|
886 |
+
[Input('analyze-button', 'n_clicks'),
|
887 |
+
Input('show-clusters-button', 'n_clicks'),
|
888 |
+
Input('show-routes-button', 'n_clicks'),
|
889 |
+
Input('fourier-series-button', 'n_clicks')],
|
890 |
+
[State('start-year', 'value'),
|
891 |
+
State('start-month', 'value'),
|
892 |
+
State('end-year', 'value'),
|
893 |
+
State('end-month', 'value'),
|
894 |
+
State('n-clusters', 'value'),
|
895 |
+
State('enso-dropdown', 'value')]
|
896 |
+
)
|
897 |
+
|
898 |
+
def update_route_clusters(analyze_clicks, show_clusters_clicks, show_routes_clicks,
|
899 |
+
fourier_clicks, start_year, start_month, end_year, end_month,
|
900 |
+
n_clusters, enso_value):
|
901 |
+
ctx = dash.callback_context
|
902 |
+
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
|
903 |
+
|
904 |
+
start_date = datetime(start_year, start_month, 1)
|
905 |
+
end_date = datetime(end_year, end_month, 28)
|
906 |
+
|
907 |
+
filtered_oni_df = oni_df[(oni_df.index >= start_date) & (oni_df.index <= end_date)]
|
908 |
+
|
909 |
+
fig_routes = go.Figure()
|
910 |
+
|
911 |
+
clusters = np.array([]) # Initialize as empty NumPy array
|
912 |
+
cluster_equations = []
|
913 |
+
|
914 |
+
# Clustering analysis
|
915 |
+
west_pacific_storms = []
|
916 |
+
for year in range(start_year, end_year + 1):
|
917 |
+
season = ibtracs.get_season(year)
|
918 |
+
for storm_id in season.summary()['id']:
|
919 |
+
storm = get_storm_data(storm_id)
|
920 |
+
storm_date = storm.time[0]
|
921 |
+
storm_oni = oni_df.loc[storm_date.strftime('%Y-%b')]['ONI']
|
922 |
+
if isinstance(storm_oni, pd.Series):
|
923 |
+
storm_oni = storm_oni.iloc[0]
|
924 |
+
storm_phase = classify_enso_phases(storm_oni)
|
925 |
+
|
926 |
+
if enso_value == 'all' or \
|
927 |
+
(enso_value == 'el_nino' and storm_phase == 'El Nino') or \
|
928 |
+
(enso_value == 'la_nina' and storm_phase == 'La Nina') or \
|
929 |
+
(enso_value == 'neutral' and storm_phase == 'Neutral'):
|
930 |
+
lons, lats = filter_west_pacific_coordinates(np.array(storm.lon), np.array(storm.lat))
|
931 |
+
if len(lons) > 1: # Ensure the storm has a valid path in West Pacific
|
932 |
+
west_pacific_storms.append((lons, lats))
|
933 |
+
|
934 |
+
max_length = max(len(storm[0]) for storm in west_pacific_storms)
|
935 |
+
standardized_routes = []
|
936 |
+
|
937 |
+
for lons, lats in west_pacific_storms:
|
938 |
+
if len(lons) < 2: # Skip if not enough points
|
939 |
+
continue
|
940 |
+
t = np.linspace(0, 1, len(lons))
|
941 |
+
t_new = np.linspace(0, 1, max_length)
|
942 |
+
lon_interp = interp1d(t, lons, kind='linear')(t_new)
|
943 |
+
lat_interp = interp1d(t, lats, kind='linear')(t_new)
|
944 |
+
route_vector = np.column_stack((lon_interp, lat_interp)).flatten()
|
945 |
+
standardized_routes.append(route_vector)
|
946 |
+
|
947 |
+
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
|
948 |
+
clusters = kmeans.fit_predict(standardized_routes)
|
949 |
+
|
950 |
+
# Count the number of typhoons in each cluster
|
951 |
+
cluster_counts = np.bincount(clusters)
|
952 |
+
|
953 |
+
for lons, lats in west_pacific_storms:
|
954 |
+
fig_routes.add_trace(go.Scattergeo(
|
955 |
+
lon=lons, lat=lats,
|
956 |
+
mode='lines',
|
957 |
+
line=dict(width=1, color='lightgray'),
|
958 |
+
showlegend=False,
|
959 |
+
hoverinfo='none',
|
960 |
+
visible=(button_id == 'show-routes-button')
|
961 |
+
))
|
962 |
+
|
963 |
+
equations_output = []
|
964 |
+
for i in range(n_clusters):
|
965 |
+
cluster_center = kmeans.cluster_centers_[i].reshape(-1, 2)
|
966 |
+
cluster_equations, (lon_min, lon_max) = generate_cluster_equations(cluster_center)
|
967 |
+
|
968 |
+
#equations_output.append(html.H4(f"Cluster {i+1} (Typhoons: {cluster_counts[i]})"))
|
969 |
+
equations_output.append(html.H4([
|
970 |
+
f"Cluster {i+1} (Typhoons: ",
|
971 |
+
html.Span(f"{cluster_counts[i]}", style={'color': 'blue'}),
|
972 |
+
")"
|
973 |
+
]))
|
974 |
+
for name, eq in cluster_equations:
|
975 |
+
equations_output.append(html.P(f"{name}: {eq}"))
|
976 |
+
|
977 |
+
equations_output.append(html.P("To use in GeoGebra:"))
|
978 |
+
equations_output.append(html.P(f"1. Set x-axis from 0 to {2*np.pi:.4f}"))
|
979 |
+
equations_output.append(html.P(f"2. Use the equation as is"))
|
980 |
+
equations_output.append(html.P(f"3. To convert x back to longitude: lon = {lon_min:.4f} + x * {(lon_max - lon_min) / (2*np.pi):.4f}"))
|
981 |
+
equations_output.append(html.Hr())
|
982 |
+
|
983 |
+
fig_routes.add_trace(go.Scattergeo(
|
984 |
+
lon=cluster_center[:, 0],
|
985 |
+
lat=cluster_center[:, 1],
|
986 |
+
mode='lines',
|
987 |
+
name=f'Cluster {i+1} (n={cluster_counts[i]})',
|
988 |
+
line=dict(width=3),
|
989 |
+
visible=(button_id == 'show-clusters-button')
|
990 |
+
))
|
991 |
+
|
992 |
+
enso_phase_text = {
|
993 |
+
'all': 'All Years',
|
994 |
+
'el_nino': 'El Niño Years',
|
995 |
+
'la_nina': 'La Niña Years',
|
996 |
+
'neutral': 'Neutral Years'
|
997 |
+
}
|
998 |
+
fig_routes.update_layout(
|
999 |
+
title=f'Typhoon Routes Clustering in West Pacific ({start_year}-{end_year}) - {enso_phase_text[enso_value]}',
|
1000 |
+
geo=dict(
|
1001 |
+
projection_type='mercator',
|
1002 |
+
showland=True,
|
1003 |
+
landcolor='rgb(243, 243, 243)',
|
1004 |
+
countrycolor='rgb(204, 204, 204)',
|
1005 |
+
coastlinecolor='rgb(100, 100, 100)',
|
1006 |
+
showocean=True,
|
1007 |
+
oceancolor='rgb(230, 250, 255)',
|
1008 |
+
lataxis={'range': [0, 40]},
|
1009 |
+
lonaxis={'range': [100, 180]},
|
1010 |
+
center={'lat': 20, 'lon': 140},
|
1011 |
+
),
|
1012 |
+
legend_title='Clusters'
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
return fig_routes, html.Div(equations_output)
|
1016 |
+
|
1017 |
+
@app.callback(
|
1018 |
+
[Output('typhoon-tracks-graph', 'figure'),
|
1019 |
+
Output('all-years-regression-graph', 'figure'),
|
1020 |
+
Output('regression-graphs', 'children'),
|
1021 |
+
Output('slopes', 'children'),
|
1022 |
+
Output('wind-oni-scatter-plot', 'figure'),
|
1023 |
+
Output('pressure-oni-scatter', 'figure'),
|
1024 |
+
Output('correlation-coefficient', 'children'),
|
1025 |
+
Output('max-wind-speed', 'children'),
|
1026 |
+
Output('min-pressure', 'children'),
|
1027 |
+
Output('wind-oni-correlation', 'children'),
|
1028 |
+
Output('pressure-oni-correlation', 'children'),
|
1029 |
+
Output('typhoon-count-analysis', 'children'),
|
1030 |
+
Output('concentrated-months-analysis', 'children')],
|
1031 |
+
[Input('analyze-button', 'n_clicks'),
|
1032 |
+
Input('find-typhoon-button', 'n_clicks')],
|
1033 |
+
[State('start-year', 'value'),
|
1034 |
+
State('start-month', 'value'),
|
1035 |
+
State('end-year', 'value'),
|
1036 |
+
State('end-month', 'value'),
|
1037 |
+
State('enso-dropdown', 'value'),
|
1038 |
+
State('typhoon-search', 'value')]
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
def update_graphs(analyze_clicks, find_typhoon_clicks,
|
1042 |
+
start_year, start_month, end_year, end_month,
|
1043 |
+
enso_value, typhoon_search):
|
1044 |
+
ctx = dash.callback_context
|
1045 |
+
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
|
1046 |
+
|
1047 |
+
start_date = datetime(start_year, start_month, 1)
|
1048 |
+
end_date = datetime(end_year, end_month, 28)
|
1049 |
+
|
1050 |
+
filtered_oni_df = oni_df[(oni_df.index >= start_date) & (oni_df.index <= end_date)]
|
1051 |
+
|
1052 |
+
|
1053 |
+
regression_data = {'El Nino': {'longitudes': [], 'oni_values': [], 'names': []},
|
1054 |
+
'La Nina': {'longitudes': [], 'oni_values': [], 'names': []},
|
1055 |
+
'Neutral': {'longitudes': [], 'oni_values': [], 'names': []},
|
1056 |
+
'All': {'longitudes': [], 'oni_values': [], 'names': []}}
|
1057 |
+
|
1058 |
+
fig_tracks = go.Figure()
|
1059 |
+
|
1060 |
+
def process_storm(year, storm_id):
|
1061 |
+
storm = get_storm_data(storm_id)
|
1062 |
+
storm_dates = storm.time
|
1063 |
+
if any(start_date <= date <= end_date for date in storm_dates):
|
1064 |
+
storm_oni = filtered_oni_df.loc[storm_dates[0].strftime('%Y-%b')]['ONI']
|
1065 |
+
if isinstance(storm_oni, pd.Series):
|
1066 |
+
storm_oni = storm_oni.iloc[0]
|
1067 |
+
phase = classify_enso_phases(storm_oni)
|
1068 |
+
|
1069 |
+
regression_data[phase]['longitudes'].append(storm.lon[0])
|
1070 |
+
regression_data[phase]['oni_values'].append(storm_oni)
|
1071 |
+
regression_data[phase]['names'].append(f'{storm.name} ({year})')
|
1072 |
+
regression_data['All']['longitudes'].append(storm.lon[0])
|
1073 |
+
regression_data['All']['oni_values'].append(storm_oni)
|
1074 |
+
regression_data['All']['names'].append(f'{storm.name} ({year})')
|
1075 |
+
|
1076 |
+
if (enso_value == 'all' or
|
1077 |
+
(enso_value == 'el_nino' and phase == 'El Nino') or
|
1078 |
+
(enso_value == 'la_nina' and phase == 'La Nina') or
|
1079 |
+
(enso_value == 'neutral' and phase == 'Neutral')):
|
1080 |
+
color = {'El Nino': 'red', 'La Nina': 'blue', 'Neutral': 'green'}[phase]
|
1081 |
+
return go.Scattergeo(
|
1082 |
+
lon=storm.lon,
|
1083 |
+
lat=storm.lat,
|
1084 |
+
mode='lines',
|
1085 |
+
name=storm.name,
|
1086 |
+
text=f'{storm.name} ({year})',
|
1087 |
+
hoverinfo='text',
|
1088 |
+
line=dict(width=2, color=color)
|
1089 |
+
)
|
1090 |
+
return None
|
1091 |
+
|
1092 |
+
with ThreadPoolExecutor() as executor:
|
1093 |
+
futures = []
|
1094 |
+
for year in range(start_year, end_year + 1):
|
1095 |
+
season = ibtracs.get_season(year)
|
1096 |
+
for storm_id in season.summary()['id']:
|
1097 |
+
futures.append(executor.submit(process_storm, year, storm_id))
|
1098 |
+
|
1099 |
+
for future in futures:
|
1100 |
+
result = future.result()
|
1101 |
+
if result:
|
1102 |
+
fig_tracks.add_trace(result)
|
1103 |
+
|
1104 |
+
fig_tracks.update_layout(
|
1105 |
+
title=f'Typhoon Tracks from {start_year}-{start_month} to {end_year}-{end_month}',
|
1106 |
+
geo=dict(
|
1107 |
+
projection_type='natural earth',
|
1108 |
+
showland=True,
|
1109 |
+
)
|
1110 |
+
)
|
1111 |
+
|
1112 |
+
regression_figs = []
|
1113 |
+
slopes = []
|
1114 |
+
all_years_fig = go.Figure() # Initialize with an empty figure
|
1115 |
+
|
1116 |
+
for phase in ['El Nino', 'La Nina', 'Neutral', 'All']:
|
1117 |
+
df = pd.DataFrame({
|
1118 |
+
'Longitude': regression_data[phase]['longitudes'],
|
1119 |
+
'ONI': regression_data[phase]['oni_values'],
|
1120 |
+
'Name': regression_data[phase]['names']
|
1121 |
+
})
|
1122 |
+
|
1123 |
+
if not df.empty and len(df) > 1: # Ensure there's enough data for regression
|
1124 |
+
try:
|
1125 |
+
fig = px.scatter(df, x='Longitude', y='ONI', hover_data=['Name'],
|
1126 |
+
labels={'Longitude': 'Longitude of Typhoon Generation', 'ONI': 'ONI Value'},
|
1127 |
+
title=f'Typhoon Generation Location vs. ONI ({phase})')
|
1128 |
+
|
1129 |
+
X = np.array(df['Longitude']).reshape(-1, 1)
|
1130 |
+
y = df['ONI']
|
1131 |
+
model = LinearRegression()
|
1132 |
+
model.fit(X, y)
|
1133 |
+
y_pred = model.predict(X)
|
1134 |
+
slope = model.coef_[0]
|
1135 |
+
intercept = model.intercept_
|
1136 |
+
fraction_slope = Fraction(slope).limit_denominator()
|
1137 |
+
equation = f'ONI = {fraction_slope} * Longitude + {Fraction(intercept).limit_denominator()}'
|
1138 |
+
|
1139 |
+
fig.add_trace(go.Scatter(x=df['Longitude'], y=y_pred, mode='lines', name='Regression Line'))
|
1140 |
+
fig.add_annotation(x=df['Longitude'].mean(), y=y_pred.mean(),
|
1141 |
+
text=equation, showarrow=False, yshift=10)
|
1142 |
+
|
1143 |
+
if phase == 'All':
|
1144 |
+
all_years_fig = fig
|
1145 |
+
else:
|
1146 |
+
regression_figs.append(dcc.Graph(figure=fig))
|
1147 |
+
|
1148 |
+
correlation_coef = np.corrcoef(df['Longitude'], df['ONI'])[0, 1]
|
1149 |
+
slopes.append(html.P(f'{phase} Regression Slope: {slope:.4f}, Correlation Coefficient: {correlation_coef:.4f}'))
|
1150 |
+
except Exception as e:
|
1151 |
+
print(f"Error in regression analysis for {phase}: {str(e)}")
|
1152 |
+
if phase != 'All':
|
1153 |
+
regression_figs.append(html.Div(f"Error in analysis for {phase}"))
|
1154 |
+
slopes.append(html.P(f'{phase} Regression: Error in analysis'))
|
1155 |
+
else:
|
1156 |
+
if phase != 'All':
|
1157 |
+
regression_figs.append(html.Div(f"Insufficient data for {phase}"))
|
1158 |
+
slopes.append(html.P(f'{phase} Regression: Insufficient data'))
|
1159 |
+
|
1160 |
+
if all_years_fig.data == ():
|
1161 |
+
all_years_fig = go.Figure()
|
1162 |
+
all_years_fig.add_annotation(text="No data available for regression analysis",
|
1163 |
+
xref="paper", yref="paper",
|
1164 |
+
x=0.5, y=0.5, showarrow=False)
|
1165 |
+
|
1166 |
+
if button_id == 'find-typhoon-button' and typhoon_search:
|
1167 |
+
for trace in fig_tracks.data:
|
1168 |
+
if typhoon_search.lower() in trace.name.lower():
|
1169 |
+
trace.line.width = 5
|
1170 |
+
trace.line.color = 'yellow'
|
1171 |
+
|
1172 |
+
filtered_data = merged_data[
|
1173 |
+
(merged_data['Year'] >= start_year) &
|
1174 |
+
(merged_data['Year'] <= end_year) &
|
1175 |
+
(merged_data['Month'].astype(int) >= start_month) &
|
1176 |
+
(merged_data['Month'].astype(int) <= end_month)
|
1177 |
+
]
|
1178 |
+
|
1179 |
+
wind_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_WIND', color='Category',
|
1180 |
+
hover_data=['NAME', 'Year','Category'],
|
1181 |
+
title='Wind Speed vs ONI',
|
1182 |
+
labels={'ONI': 'ONI Value', 'USA_WIND': 'Maximum Wind Speed (knots)'},
|
1183 |
+
color_discrete_map=color_map)
|
1184 |
+
wind_oni_scatter.update_traces(hovertemplate='<b>%{customdata[0]} (%{customdata[1]})</b><br>Category: %{customdata[2]}<br>ONI: %{x}<br>Wind Speed: %{y} knots')
|
1185 |
+
|
1186 |
+
pressure_oni_scatter = px.scatter(filtered_data, x='ONI', y='USA_PRES',color='Category',
|
1187 |
+
hover_data=['NAME', 'Year','Category'],
|
1188 |
+
title='Pressure vs ONI',
|
1189 |
+
labels={'ONI': 'ONI Value', 'USA_PRES': 'Minimum Pressure (hPa)'},
|
1190 |
+
color_discrete_map=color_map)
|
1191 |
+
pressure_oni_scatter.update_traces(hovertemplate='<b>%{customdata[0]} (%{customdata[1]})</b><br>Category: %{customdata[2]}<br>ONI: %{x}<br>Pressure: %{y} hPa')
|
1192 |
+
|
1193 |
+
if typhoon_search:
|
1194 |
+
for fig in [wind_oni_scatter, pressure_oni_scatter]:
|
1195 |
+
mask = filtered_data['NAME'].str.contains(typhoon_search, case=False, na=False)
|
1196 |
+
fig.add_trace(go.Scatter(
|
1197 |
+
x=filtered_data.loc[mask, 'ONI'],
|
1198 |
+
y=filtered_data.loc[mask, 'USA_WIND' if 'Wind' in fig.layout.title.text else 'USA_PRES'],
|
1199 |
+
mode='markers',
|
1200 |
+
marker=dict(size=10, color='red', symbol='star'),
|
1201 |
+
name=f'Matched: {typhoon_search}',
|
1202 |
+
hovertemplate='<b>%{text}</b><br>Category: %{customdata}<br>ONI: %{x}<br>Value: %{y}',
|
1203 |
+
text=filtered_data.loc[mask, 'NAME'] + ' (' + filtered_data.loc[mask, 'Year'].astype(str) + ')',
|
1204 |
+
customdata=filtered_data.loc[mask, 'Category']
|
1205 |
+
))
|
1206 |
+
|
1207 |
+
|
1208 |
+
start_date = datetime(start_year, start_month, 1)
|
1209 |
+
end_date = datetime(end_year, end_month, 28)
|
1210 |
+
typhoon_counts, concentrated_months = analyze_typhoon_generation(merged_data, start_date, end_date)
|
1211 |
+
|
1212 |
+
month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
|
1213 |
+
count_analysis = [html.P(f"{phase}: {count} typhoons") for phase, count in typhoon_counts.items()]
|
1214 |
+
month_analysis = [html.P(f"{phase}: Most concentrated in {month_names[month-1]}") for phase, month in concentrated_months.items()]
|
1215 |
+
|
1216 |
+
max_wind_speed = filtered_data['USA_WIND'].max()
|
1217 |
+
min_pressure = typhoon_data[(typhoon_data['ISO_TIME'].dt.year >= start_year) &
|
1218 |
+
(typhoon_data['ISO_TIME'].dt.year <= end_year)]['WMO_PRES'].min()
|
1219 |
+
|
1220 |
+
correlation_text = f"Logistic Regression Results: see below"
|
1221 |
+
max_wind_speed_text = f"Maximum Wind Speed: {max_wind_speed:.2f} knots"
|
1222 |
+
min_pressure_text = f"Minimum Pressure: {min_pressure:.2f} hPa"
|
1223 |
+
|
1224 |
+
|
1225 |
+
return (fig_tracks, all_years_fig, regression_figs, slopes,
|
1226 |
+
wind_oni_scatter, pressure_oni_scatter,
|
1227 |
+
correlation_text, max_wind_speed_text, min_pressure_text,
|
1228 |
+
"Wind-ONI correlation: See logistic regression results",
|
1229 |
+
"Pressure-ONI correlation: See logistic regression results",
|
1230 |
+
count_analysis, month_analysis)
|
1231 |
+
|
1232 |
+
@app.callback(
|
1233 |
+
Output('logistic-regression-results', 'children'),
|
1234 |
+
[Input('wind-regression-button', 'n_clicks'),
|
1235 |
+
Input('pressure-regression-button', 'n_clicks'),
|
1236 |
+
Input('longitude-regression-button', 'n_clicks')],
|
1237 |
+
[State('start-year', 'value'),
|
1238 |
+
State('start-month', 'value'),
|
1239 |
+
State('end-year', 'value'),
|
1240 |
+
State('end-month', 'value')]
|
1241 |
+
)
|
1242 |
+
def update_logistic_regression(wind_clicks, pressure_clicks, longitude_clicks,
|
1243 |
+
start_year, start_month, end_year, end_month):
|
1244 |
+
ctx = dash.callback_context
|
1245 |
+
if not ctx.triggered:
|
1246 |
+
return "Click a button to see logistic regression results."
|
1247 |
+
|
1248 |
+
button_id = ctx.triggered[0]['prop_id'].split('.')[0]
|
1249 |
+
|
1250 |
+
start_date = datetime(start_year, start_month, 1)
|
1251 |
+
end_date = datetime(end_year, end_month, 28)
|
1252 |
+
|
1253 |
+
filtered_data = merged_data[
|
1254 |
+
(merged_data['ISO_TIME'] >= start_date) &
|
1255 |
+
(merged_data['ISO_TIME'] <= end_date)
|
1256 |
+
]
|
1257 |
+
|
1258 |
+
if button_id == 'wind-regression-button':
|
1259 |
+
return calculate_wind_logistic_regression(filtered_data)
|
1260 |
+
elif button_id == 'pressure-regression-button':
|
1261 |
+
return calculate_pressure_logistic_regression(filtered_data)
|
1262 |
+
elif button_id == 'longitude-regression-button':
|
1263 |
+
return calculate_longitude_logistic_regression(filtered_data)
|
1264 |
+
|
1265 |
+
def calculate_wind_logistic_regression(data):
|
1266 |
+
data['severe_typhoon'] = (data['USA_WIND'] >= 64).astype(int) # 64 knots threshold for severe typhoons
|
1267 |
+
X = sm.add_constant(data['ONI'])
|
1268 |
+
y = data['severe_typhoon']
|
1269 |
+
model = sm.Logit(y, X).fit()
|
1270 |
+
|
1271 |
+
beta_1 = model.params['ONI']
|
1272 |
+
exp_beta_1 = np.exp(beta_1)
|
1273 |
+
p_value = model.pvalues['ONI']
|
1274 |
+
|
1275 |
+
el_nino_data = data[data['ONI'] >= 0.5]
|
1276 |
+
la_nina_data = data[data['ONI'] <= -0.5]
|
1277 |
+
neutral_data = data[(data['ONI'] > -0.5) & (data['ONI'] < 0.5)]
|
1278 |
+
|
1279 |
+
el_nino_severe = el_nino_data['severe_typhoon'].mean()
|
1280 |
+
la_nina_severe = la_nina_data['severe_typhoon'].mean()
|
1281 |
+
neutral_severe = neutral_data['severe_typhoon'].mean()
|
1282 |
+
|
1283 |
+
return html.Div([
|
1284 |
+
html.H3("Wind Speed Logistic Regression Results"),
|
1285 |
+
html.P(f"β1 (ONI coefficient): {beta_1:.4f}"),
|
1286 |
+
html.P(f"exp(β1) (Odds Ratio): {exp_beta_1:.4f}"),
|
1287 |
+
html.P(f"P-value: {p_value:.4f}"),
|
1288 |
+
html.P("Interpretation:"),
|
1289 |
+
html.Ul([
|
1290 |
+
html.Li(f"For each unit increase in ONI, the odds of a severe typhoon are "
|
1291 |
+
f"{'increased' if exp_beta_1 > 1 else 'decreased'} by a factor of {exp_beta_1:.2f}."),
|
1292 |
+
html.Li(f"This effect is {'statistically significant' if p_value < 0.05 else 'not statistically significant'} "
|
1293 |
+
f"at the 0.05 level.")
|
1294 |
+
]),
|
1295 |
+
html.P("Proportion of severe typhoons:"),
|
1296 |
+
html.Ul([
|
1297 |
+
html.Li(f"El Niño conditions: {el_nino_severe:.2%}"),
|
1298 |
+
html.Li(f"La Niña conditions: {la_nina_severe:.2%}"),
|
1299 |
+
html.Li(f"Neutral conditions: {neutral_severe:.2%}")
|
1300 |
+
])
|
1301 |
+
])
|
1302 |
+
|
1303 |
+
def calculate_pressure_logistic_regression(data):
|
1304 |
+
data['intense_typhoon'] = (data['USA_PRES'] <= 950).astype(int) # 950 hPa threshold for intense typhoons
|
1305 |
+
X = sm.add_constant(data['ONI'])
|
1306 |
+
y = data['intense_typhoon']
|
1307 |
+
model = sm.Logit(y, X).fit()
|
1308 |
+
|
1309 |
+
beta_1 = model.params['ONI']
|
1310 |
+
exp_beta_1 = np.exp(beta_1)
|
1311 |
+
p_value = model.pvalues['ONI']
|
1312 |
+
|
1313 |
+
el_nino_data = data[data['ONI'] >= 0.5]
|
1314 |
+
la_nina_data = data[data['ONI'] <= -0.5]
|
1315 |
+
neutral_data = data[(data['ONI'] > -0.5) & (data['ONI'] < 0.5)]
|
1316 |
+
|
1317 |
+
el_nino_intense = el_nino_data['intense_typhoon'].mean()
|
1318 |
+
la_nina_intense = la_nina_data['intense_typhoon'].mean()
|
1319 |
+
neutral_intense = neutral_data['intense_typhoon'].mean()
|
1320 |
+
|
1321 |
+
return html.Div([
|
1322 |
+
html.H3("Pressure Logistic Regression Results"),
|
1323 |
+
html.P(f"β1 (ONI coefficient): {beta_1:.4f}"),
|
1324 |
+
html.P(f"exp(β1) (Odds Ratio): {exp_beta_1:.4f}"),
|
1325 |
+
html.P(f"P-value: {p_value:.4f}"),
|
1326 |
+
html.P("Interpretation:"),
|
1327 |
+
html.Ul([
|
1328 |
+
html.Li(f"For each unit increase in ONI, the odds of an intense typhoon (pressure <= 950 hPa) are "
|
1329 |
+
f"{'increased' if exp_beta_1 > 1 else 'decreased'} by a factor of {exp_beta_1:.2f}."),
|
1330 |
+
html.Li(f"This effect is {'statistically significant' if p_value < 0.05 else 'not statistically significant'} "
|
1331 |
+
f"at the 0.05 level.")
|
1332 |
+
]),
|
1333 |
+
html.P("Proportion of intense typhoons:"),
|
1334 |
+
html.Ul([
|
1335 |
+
html.Li(f"El Niño conditions: {el_nino_intense:.2%}"),
|
1336 |
+
html.Li(f"La Niña conditions: {la_nina_intense:.2%}"),
|
1337 |
+
html.Li(f"Neutral conditions: {neutral_intense:.2%}")
|
1338 |
+
])
|
1339 |
+
])
|
1340 |
+
|
1341 |
+
def calculate_longitude_logistic_regression(data):
|
1342 |
+
# Use only the data points where longitude is available
|
1343 |
+
data = data.dropna(subset=['LON'])
|
1344 |
+
|
1345 |
+
if len(data) == 0:
|
1346 |
+
return html.Div("Insufficient data for longitude analysis")
|
1347 |
+
|
1348 |
+
data['western_typhoon'] = (data['LON'] <= 140).astype(int) # 140°E as threshold for western typhoons
|
1349 |
+
X = sm.add_constant(data['ONI'])
|
1350 |
+
y = data['western_typhoon']
|
1351 |
+
model = sm.Logit(y, X).fit()
|
1352 |
+
|
1353 |
+
beta_1 = model.params['ONI']
|
1354 |
+
exp_beta_1 = np.exp(beta_1)
|
1355 |
+
p_value = model.pvalues['ONI']
|
1356 |
+
|
1357 |
+
el_nino_data = data[data['ONI'] >= 0.5]
|
1358 |
+
la_nina_data = data[data['ONI'] <= -0.5]
|
1359 |
+
neutral_data = data[(data['ONI'] > -0.5) & (data['ONI'] < 0.5)]
|
1360 |
+
|
1361 |
+
el_nino_western = el_nino_data['western_typhoon'].mean()
|
1362 |
+
la_nina_western = la_nina_data['western_typhoon'].mean()
|
1363 |
+
neutral_western = neutral_data['western_typhoon'].mean()
|
1364 |
+
|
1365 |
+
return html.Div([
|
1366 |
+
html.H3("Longitude Logistic Regression Results"),
|
1367 |
+
html.P(f"β1 (ONI coefficient): {beta_1:.4f}"),
|
1368 |
+
html.P(f"exp(β1) (Odds Ratio): {exp_beta_1:.4f}"),
|
1369 |
+
html.P(f"P-value: {p_value:.4f}"),
|
1370 |
+
html.P("Interpretation:"),
|
1371 |
+
html.Ul([
|
1372 |
+
html.Li(f"For each unit increase in ONI, the odds of a typhoon forming west of 140°E are "
|
1373 |
+
f"{'increased' if exp_beta_1 > 1 else 'decreased'} by a factor of {exp_beta_1:.2f}."),
|
1374 |
+
html.Li(f"This effect is {'statistically significant' if p_value < 0.05 else 'not statistically significant'} "
|
1375 |
+
f"at the 0.05 level.")
|
1376 |
+
]),
|
1377 |
+
html.P("Proportion of typhoons forming west of 140°E:"),
|
1378 |
+
html.Ul([
|
1379 |
+
html.Li(f"El Niño conditions: {el_nino_western:.2%}"),
|
1380 |
+
html.Li(f"La Niña conditions: {la_nina_western:.2%}"),
|
1381 |
+
html.Li(f"Neutral conditions: {neutral_western:.2%}")
|
1382 |
+
])
|
1383 |
+
])
|
1384 |
+
|
1385 |
+
def categorize_typhoon_by_standard(wind_speed, standard='atlantic'):
|
1386 |
+
"""
|
1387 |
+
Categorize typhoon based on wind speed and chosen standard
|
1388 |
+
wind_speed is in knots
|
1389 |
+
"""
|
1390 |
+
if standard == 'taiwan':
|
1391 |
+
# Convert knots to m/s for Taiwan standard
|
1392 |
+
wind_speed_ms = wind_speed * 0.514444
|
1393 |
+
|
1394 |
+
if wind_speed_ms >= 51.0:
|
1395 |
+
return 'Strong Typhoon', taiwan_standard['Strong Typhoon']['color']
|
1396 |
+
elif wind_speed_ms >= 33.7:
|
1397 |
+
return 'Medium Typhoon', taiwan_standard['Medium Typhoon']['color']
|
1398 |
+
elif wind_speed_ms >= 17.2:
|
1399 |
+
return 'Mild Typhoon', taiwan_standard['Mild Typhoon']['color']
|
1400 |
+
else:
|
1401 |
+
return 'Tropical Depression', taiwan_standard['Tropical Depression']['color']
|
1402 |
+
else:
|
1403 |
+
# Atlantic standard uses knots
|
1404 |
+
if wind_speed >= 137:
|
1405 |
+
return 'C5 Super Typhoon', atlantic_standard['C5 Super Typhoon']['color']
|
1406 |
+
elif wind_speed >= 113:
|
1407 |
+
return 'C4 Very Strong Typhoon', atlantic_standard['C4 Very Strong Typhoon']['color']
|
1408 |
+
elif wind_speed >= 96:
|
1409 |
+
return 'C3 Strong Typhoon', atlantic_standard['C3 Strong Typhoon']['color']
|
1410 |
+
elif wind_speed >= 83:
|
1411 |
+
return 'C2 Typhoon', atlantic_standard['C2 Typhoon']['color']
|
1412 |
+
elif wind_speed >= 64:
|
1413 |
+
return 'C1 Typhoon', atlantic_standard['C1 Typhoon']['color']
|
1414 |
+
elif wind_speed >= 34:
|
1415 |
+
return 'Tropical Storm', atlantic_standard['Tropical Storm']['color']
|
1416 |
+
else:
|
1417 |
+
return 'Tropical Depression', atlantic_standard['Tropical Depression']['color']
|
1418 |
+
|
1419 |
+
if __name__ == "__main__":
|
1420 |
+
print(f"Using data path: {DATA_PATH}")
|
1421 |
+
# Update ONI data before starting the application
|
1422 |
+
update_oni_data()
|
1423 |
+
oni_df = fetch_oni_data_from_csv(ONI_DATA_PATH)
|
1424 |
+
ibtracs = load_ibtracs_data()
|
1425 |
+
convert_typhoondata(LOCAL_iBtrace_PATH, TYPHOON_DATA_PATH)
|
1426 |
+
oni_data, typhoon_data = load_data(ONI_DATA_PATH, TYPHOON_DATA_PATH)
|
1427 |
+
oni_long = process_oni_data_with_cache(oni_data)
|
1428 |
+
typhoon_max = process_typhoon_data_with_cache(typhoon_data)
|
1429 |
+
merged_data = merge_data(oni_long, typhoon_max)
|
1430 |
+
data = preprocess_data(oni_data, typhoon_data)
|
1431 |
+
max_wind_speed, min_pressure = calculate_max_wind_min_pressure(typhoon_data)
|
1432 |
+
|
1433 |
+
|
1434 |
+
# Schedule IBTrACS data update daily
|
1435 |
+
schedule.every().day.at("01:00").do(update_ibtracs_data)
|
1436 |
+
|
1437 |
+
# Schedule ONI data check daily, but only update on specified dates
|
1438 |
+
schedule.every().day.at("00:00").do(lambda: update_oni_data() if should_update_oni() else None)
|
1439 |
+
|
1440 |
+
# Run the scheduler in a separate thread
|
1441 |
+
scheduler_thread = threading.Thread(target=run_schedule)
|
1442 |
+
scheduler_thread.start()
|
1443 |
+
|
1444 |
+
|
1445 |
+
app.run_server(debug=True, host='127.0.0.1', port=8050)
|