Spaces:
Sleeping
Sleeping
File size: 20,347 Bytes
c38e466 7eed7bb 6781da9 cf36ac6 6781da9 3d3f535 6781da9 7eed7bb 6781da9 143a483 7eed7bb 143a483 a2c1222 9a91192 143a483 9a91192 143a483 9a91192 143a483 a2c1222 143a483 a2c1222 143a483 a2c1222 9a91192 cf36ac6 9a91192 cf36ac6 9a91192 143a483 59844f8 7eed7bb c38e466 143a483 7eed7bb 143a483 7eed7bb 143a483 a2c1222 143a483 7eed7bb c38e466 56a64f9 7eed7bb 56a64f9 3d3f535 7eed7bb 6781da9 59844f8 7eed7bb 6781da9 7eed7bb b184fdb 6781da9 7eed7bb 56a64f9 7eed7bb 6781da9 7eed7bb 7300eaa 59844f8 f7a4b82 59844f8 56a64f9 00a76be 7eed7bb 56a64f9 7eed7bb 00a76be 56a64f9 7eed7bb 9dc0fd2 59844f8 9dc0fd2 7eed7bb 56a64f9 7300eaa d815415 9a91192 d815415 7eed7bb 9dc0fd2 7eed7bb a2c1222 7eed7bb 6234614 7eed7bb 6234614 7eed7bb cf36ac6 9a91192 7eed7bb 00a76be 7eed7bb 9a91192 cf36ac6 7eed7bb cf36ac6 7eed7bb 59844f8 7eed7bb 59844f8 7eed7bb c38e466 7eed7bb 59844f8 7eed7bb cf36ac6 7eed7bb cf36ac6 7eed7bb 6781da9 c82ab41 cf36ac6 9dc0fd2 cf36ac6 56a64f9 cf36ac6 9dc0fd2 cf36ac6 d815415 cf36ac6 9a91192 d815415 ab23d73 d815415 ab23d73 d815415 9a91192 d815415 7eed7bb 9dc0fd2 7eed7bb 59844f8 7eed7bb 59844f8 56a64f9 7eed7bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
from ultralytics import YOLO
import time
import os
import logging
import tempfile
import av
import cv2
import numpy as np
import streamlit as st
from streamlit_webrtc import WebRtcMode, webrtc_streamer
from utils.download import download_file
from utils.turn import get_ice_servers
from PIL import Image
import requests
from io import BytesIO
# CHANGE CODE BELOW HERE, USE TO REPLACE WITH YOUR WANTED ANALYSIS.
# Update below string to set display title of analysis
ANALYSIS_TITLE = "YOLO-8 Object Detection, Pose Estimation, and Action Detection"
# Load the YOLOv8 models
pose_model = YOLO("yolov8n-pose.pt")
object_model = YOLO("yolov8n.pt")
def detect_action(keypoints, prev_keypoints=None):
keypoint_dict = {
0: "Nose", 1: "Left Eye", 2: "Right Eye", 3: "Left Ear", 4: "Right Ear",
5: "Left Shoulder", 6: "Right Shoulder", 7: "Left Elbow", 8: "Right Elbow",
9: "Left Wrist", 10: "Right Wrist", 11: "Left Hip", 12: "Right Hip",
13: "Left Knee", 14: "Right Knee", 15: "Left Ankle", 16: "Right Ankle"
}
confidence_threshold = 0.5
movement_threshold = 0.05
def get_keypoint(idx):
if idx < len(keypoints[0]):
x, y, conf = keypoints[0][idx]
return np.array([x, y]) if conf > confidence_threshold else None
return None
def calculate_angle(a, b, c):
if a is None or b is None or c is None:
return None
ba = a - b
bc = c - b
cosine_angle = np.dot(ba, bc) / \
(np.linalg.norm(ba) * np.linalg.norm(bc))
angle = np.arccos(cosine_angle)
return np.degrees(angle)
def calculate_movement(current, previous):
if current is None or previous is None:
return None
return np.linalg.norm(current - previous)
nose = get_keypoint(0)
left_shoulder = get_keypoint(5)
right_shoulder = get_keypoint(6)
left_elbow = get_keypoint(7)
right_elbow = get_keypoint(8)
left_wrist = get_keypoint(9)
right_wrist = get_keypoint(10)
left_hip = get_keypoint(11)
right_hip = get_keypoint(12)
left_knee = get_keypoint(13)
right_knee = get_keypoint(14)
left_ankle = get_keypoint(15)
right_ankle = get_keypoint(16)
if all(kp is None for kp in [nose, left_shoulder, right_shoulder, left_hip, right_hip, left_ankle, right_ankle]):
return "waiting"
# Calculate midpoints
shoulder_midpoint = (left_shoulder + right_shoulder) / \
2 if left_shoulder is not None and right_shoulder is not None else None
hip_midpoint = (left_hip + right_hip) / \
2 if left_hip is not None and right_hip is not None else None
ankle_midpoint = (left_ankle + right_ankle) / \
2 if left_ankle is not None and right_ankle is not None else None
# Calculate angles
spine_angle = calculate_angle(
shoulder_midpoint, hip_midpoint, ankle_midpoint)
left_arm_angle = calculate_angle(left_shoulder, left_elbow, left_wrist)
right_arm_angle = calculate_angle(right_shoulder, right_elbow, right_wrist)
left_leg_angle = calculate_angle(left_hip, left_knee, left_ankle)
right_leg_angle = calculate_angle(right_hip, right_knee, right_ankle)
# Calculate movement
movement = None
if prev_keypoints is not None:
prev_ankle_midpoint = ((prev_keypoints[0][15][:2] + prev_keypoints[0][16][:2]) / 2
if len(prev_keypoints[0]) > 16 else None)
movement = calculate_movement(ankle_midpoint, prev_ankle_midpoint)
# Detect actions
if spine_angle is not None:
if spine_angle > 160:
if movement is not None and movement > movement_threshold:
if movement > movement_threshold * 3:
return "running"
else:
return "walking"
return "standing"
elif 70 < spine_angle < 110:
return "sitting"
elif spine_angle < 30:
return "lying"
# Detect pointing
if (left_arm_angle is not None and left_arm_angle > 150) or (right_arm_angle is not None and right_arm_angle > 150):
return "pointing"
# Detect kicking
if (left_leg_angle is not None and left_leg_angle > 120) or (right_leg_angle is not None and right_leg_angle > 120):
return "kicking"
# Detect hitting
if ((left_arm_angle is not None and 80 < left_arm_angle < 120) or
(right_arm_angle is not None and 80 < right_arm_angle < 120)):
if movement is not None and movement > movement_threshold * 2:
return "hitting"
return "waiting"
def analyze_frame(frame: np.ndarray):
start_time = time.time()
img_container["input"] = frame
frame = frame.copy()
detections = []
if show_labels in ["Object Detection", "Both"]:
# Run YOLOv8 object detection on the frame
object_results = object_model(frame, conf=0.5)
for i, box in enumerate(object_results[0].boxes):
class_id = int(box.cls)
detection = {
"label": object_model.names[class_id],
"score": float(box.conf),
"box_coords": [round(value.item(), 2) for value in box.xyxy.flatten()]
}
detections.append(detection)
if show_labels in ["Pose Estimation", "Both"]:
# Run YOLOv8 pose estimation on the frame
pose_results = pose_model(frame, conf=0.5)
for i, box in enumerate(pose_results[0].boxes):
class_id = int(box.cls)
detection = {
"label": pose_model.names[class_id],
"score": float(box.conf),
"box_coords": [round(value.item(), 2) for value in box.xyxy.flatten()]
}
# Get keypoints for this detection if available
try:
if pose_results[0].keypoints is not None:
keypoints = pose_results[0].keypoints[i].data.cpu().numpy()
# Detect action using the keypoints
prev_keypoints = img_container.get("prev_keypoints")
action = detect_action(keypoints, prev_keypoints)
detection["action"] = action
# Store current keypoints for next frame
img_container["prev_keypoints"] = keypoints
# Calculate the average position of visible keypoints
visible_keypoints = keypoints[0][keypoints[0]
[:, 2] > 0.5][:, :2]
if len(visible_keypoints) > 0:
label_x, label_y = np.mean(
visible_keypoints, axis=0).astype(int)
else:
# Fallback to the center of the bounding box if no keypoints are visible
x1, y1, x2, y2 = detection["box_coords"]
label_x = int((x1 + x2) / 2)
label_y = int((y1 + y2) / 2)
else:
detection["action"] = "No keypoint data"
# Use the center of the bounding box for label position
x1, y1, x2, y2 = detection["box_coords"]
label_x = int((x1 + x2) / 2)
label_y = int((y1 + y2) / 2)
except IndexError:
detection["action"] = "Action detection failed"
# Use the center of the bounding box for label position
x1, y1, x2, y2 = detection["box_coords"]
label_x = int((x1 + x2) / 2)
label_y = int((y1 + y2) / 2)
# Only display the action as the label
label = detection.get('action', '')
# Increase font scale and thickness to match box label size
font_scale = 2.0
thickness = 2
# Get text size for label
(label_width, label_height), _ = cv2.getTextSize(
label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)
# Calculate position for centered label
label_y = label_y - 10 # 10 pixels above the calculated position
# Draw yellow background for label
cv2.rectangle(frame, (label_x - label_width // 2 - 5, label_y - label_height - 5),
(label_x + label_width // 2 + 5, label_y + 5), (0, 255, 255), -1)
# Draw black text for label
cv2.putText(frame, label, (label_x - label_width // 2, label_y),
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 0), thickness)
detections.append(detection)
# Draw detections on the frame
if show_labels == "Object Detection":
frame = object_results[0].plot()
elif show_labels == "Pose Estimation":
frame = pose_results[0].plot(boxes=False, labels=False, kpt_line=True)
else: # Both
frame = object_results[0].plot()
frame = pose_results[0].plot(
boxes=False, labels=False, kpt_line=True, img=frame)
end_time = time.time()
execution_time_ms = round((end_time - start_time) * 1000, 2)
img_container["analysis_time"] = execution_time_ms
img_container["detections"] = detections
img_container["analyzed"] = frame
return
#
#
#
# DO NOT TOUCH THE BELOW CODE (NOT NEEDED)
#
#
# Suppress FFmpeg logs
os.environ["FFMPEG_LOG_LEVEL"] = "quiet"
# Suppress Streamlit logs using the logging module
logging.getLogger("streamlit").setLevel(logging.ERROR)
# Container to hold image data and analysis results
img_container = {"input": None, "analyzed": None,
"analysis_time": None, "detections": None}
# Logger for debugging and information
logger = logging.getLogger(__name__)
# Callback function to process video frames
# This function is called for each video frame in the WebRTC stream.
# It converts the frame to a numpy array in RGB format, analyzes the frame,
# and returns the original frame.
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# Convert frame to numpy array in RGB format
img = frame.to_ndarray(format="rgb24")
analyze_frame(img) # Analyze the frame
return frame # Return the original frame
# Get ICE servers for WebRTC
ice_servers = get_ice_servers()
# Streamlit UI configuration
st.set_page_config(layout="wide")
# Custom CSS for the Streamlit page
st.markdown(
"""
<style>
.main {
padding: 2rem;
}
h1, h2, h3 {
font-family: 'Arial', sans-serif;
}
h1 {
font-weight: 700;
font-size: 2.5rem;
}
h2 {
font-weight: 600;
font-size: 2rem;
}
h3 {
font-weight: 500;
font-size: 1.5rem;
}
</style>
""",
unsafe_allow_html=True,
)
# Streamlit page title and subtitle
st.title(ANALYSIS_TITLE)
st.subheader("A Computer Vision Playground")
# Add a link to the README file
st.markdown(
"""
<div style="text-align: left;">
<p>See the <a href="https://huggingface.co/spaces/eusholli/sentiment-analyzer/blob/main/README.md"
target="_blank">README</a> to learn how to use this code to help you start your computer vision exploration.</p>
</div>
""",
unsafe_allow_html=True,
)
# Columns for input and output streams
col1, col2 = st.columns(2)
with col1:
st.header("Input Stream")
input_subheader = st.empty()
input_placeholder = st.empty() # Placeholder for input frame
st.subheader("Input Options")
# WebRTC streamer to get video input from the webcam
webrtc_ctx = webrtc_streamer(
key="input-webcam",
mode=WebRtcMode.SENDONLY,
rtc_configuration=ice_servers,
video_frame_callback=video_frame_callback,
media_stream_constraints={"video": True, "audio": False},
async_processing=True,
)
# File uploader for images
st.subheader("Upload an Image")
uploaded_file = st.file_uploader(
"Choose an image...", type=["jpg", "jpeg", "png"])
# Text input for image URL
st.subheader("Or Enter Image URL")
image_url = st.text_input("Image URL")
# Text input for YouTube URL
st.subheader("Enter a YouTube URL")
youtube_url = st.text_input("YouTube URL")
yt_error = st.empty() # Placeholder for analysis time
# File uploader for videos
st.subheader("Upload a Video")
uploaded_video = st.file_uploader(
"Choose a video...", type=["mp4", "avi", "mov", "mkv"]
)
# Text input for video URL
st.subheader("Or Enter Video Download URL")
video_url = st.text_input("Video URL")
# Streamlit footer
st.markdown(
"""
<div style="text-align: center; margin-top: 2rem;">
<p>If you want to set up your own computer vision playground see <a href="https://huggingface.co/spaces/eusholli/computer-vision-playground/blob/main/README.md" target="_blank">here</a>.</p>
</div>
""",
unsafe_allow_html=True
)
# Function to initialize the analysis UI
# This function sets up the placeholders and UI elements in the analysis section.
# It creates placeholders for input and output frames, analysis time, and detected labels.
def analysis_init():
global progress_bar, status_text, download_button, yt_error, analysis_time, show_labels, labels_placeholder, input_subheader, input_placeholder, output_placeholder
yt_error.empty() # Placeholder for analysis time
with col2:
st.header("Analysis")
input_subheader.subheader("Input Frame")
st.subheader("Output Frame")
output_placeholder = st.empty() # Placeholder for output frame
analysis_time = st.empty() # Placeholder for analysis time
show_labels = st.radio(
"Choose Detection Type",
("Object Detection", "Pose Estimation", "Both"),
index=2 # Set default to "Both" (index 2)
)
# Create a progress bar
progress_bar = st.empty()
status_text = st.empty()
labels_placeholder = st.empty() # Placeholder for labels
download_button = st.empty() # Placeholder for download button
# Function to publish frames and results to the Streamlit UI
# This function retrieves the latest frames and results from the global container and result queue,
# and updates the placeholders in the Streamlit UI with the current input frame, analyzed frame, analysis time, and detected labels.
def publish_frame():
img = img_container["input"]
if img is None:
return
input_placeholder.image(img, channels="RGB") # Display the input frame
analyzed = img_container["analyzed"]
if analyzed is None:
return
# Display the analyzed frame
output_placeholder.image(analyzed, channels="RGB")
time = img_container["analysis_time"]
if time is None:
return
# Display the analysis time
analysis_time.text(f"Analysis Time: {time} ms")
detections = img_container["detections"]
if detections is None:
return
if show_labels:
labels_placeholder.table(
detections
) # Display labels if the checkbox is checked
# If the WebRTC streamer is playing, initialize and publish frames
if webrtc_ctx.state.playing:
analysis_init() # Initialize the analysis UI
while True:
publish_frame() # Publish the frames and results
time.sleep(0.1) # Delay to control frame rate
# If an image is uploaded or a URL is provided, process the image
if uploaded_file is not None or image_url:
analysis_init() # Initialize the analysis UI
if uploaded_file is not None:
image = Image.open(uploaded_file) # Open the uploaded image
img = np.array(image.convert("RGB")) # Convert the image to RGB format
else:
response = requests.get(image_url) # Download the image from the URL
# Open the downloaded image
image = Image.open(BytesIO(response.content))
img = np.array(image.convert("RGB")) # Convert the image to RGB format
analyze_frame(img) # Analyze the image
publish_frame() # Publish the results
# Function to process video files
# This function reads frames from a video file, analyzes each frame for face detection and sentiment analysis,
# and updates the Streamlit UI with the current input frame, analyzed frame, and detected labels.
# Function to process video files
def process_video(video_path):
cap = cv2.VideoCapture(video_path) # Open the video file
# Create a temporary file for the annotated video
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video:
temp_video_path = temp_video.name
# save_annotated_video(video_path, temp_video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(temp_video_path, fourcc, fps, (width, height))
frame_count = 0
while cap.isOpened():
ret, frame = cap.read() # Read a frame from the video
if not ret:
break # Exit the loop if no more frames are available
# Convert the frame from BGR to RGB format
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Analyze the frame for face detection and sentiment analysis
analyze_frame(rgb_frame)
analyzed_frame = img_container["analyzed"]
if analyzed_frame is not None:
out.write(cv2.cvtColor(analyzed_frame, cv2.COLOR_RGB2BGR))
publish_frame() # Publish the results
# Update progress
frame_count += 1
progress = min(100, int(frame_count / total_frames * 100))
progress_bar.progress(progress)
status_text.text(f"Processing video: {progress}% complete")
cap.release() # Release the video capture object
out.release()
# Add download button for annotated video
with open(temp_video_path, "rb") as file:
download_button.download_button(
label="Download Annotated Video",
data=file,
file_name="annotated_video.mp4",
mime="video/mp4"
)
# Clean up the temporary file
os.unlink(temp_video_path)
# Function to get video URL using Cobalt API
def get_cobalt_video_url(youtube_url):
cobalt_api_url = "https://api.cobalt.tools/api/json"
headers = {
"Accept": "application/json",
"Content-Type": "application/json"
}
payload = {
"url": youtube_url,
"vCodec": "h264",
"vQuality": "720",
"aFormat": "mp3",
"isAudioOnly": False
}
try:
response = requests.post(cobalt_api_url, headers=headers, json=payload)
response.raise_for_status()
data = response.json()
if data['status'] == 'stream':
return data['url']
elif data['status'] == 'redirect':
return data['url']
else:
yt_error.error(f"Error: {data['text']}")
return None
except requests.exceptions.RequestException as e:
yt_error.error(f"Error: Unable to process the YouTube URL. {str(e)}")
return None
# If a YouTube URL is provided, process the video
if youtube_url:
analysis_init() # Initialize the analysis UI
stream_url = get_cobalt_video_url(youtube_url)
# stream_url = get_youtube_stream_url(youtube_url)
if stream_url:
process_video(stream_url) # Process the video
else:
yt_error.error(
"Unable to process the YouTube video. Please try a different URL or video format.")
# If a video is uploaded or a URL is provided, process the video
if uploaded_video is not None or video_url:
analysis_init() # Initialize the analysis UI
if uploaded_video is not None:
video_path = uploaded_video.name # Get the name of the uploaded video
with open(video_path, "wb") as f:
# Save the uploaded video to a file
f.write(uploaded_video.getbuffer())
else:
# Download the video from the URL
video_path = download_file(video_url)
process_video(video_path) # Process the video
|