File size: 8,756 Bytes
7c9a0e8
 
 
 
 
 
 
e3d1391
2dfed14
7c9a0e8
 
 
f5334eb
7c9a0e8
 
 
 
 
 
 
 
 
 
 
ea7a920
 
 
7c9a0e8
 
ea7a920
7c9a0e8
 
 
ea7a920
7c9a0e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7a920
 
 
 
 
 
 
 
 
 
 
 
 
 
3879714
 
 
 
 
 
 
ea7a920
3879714
7c9a0e8
 
3879714
 
 
 
 
7c9a0e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7a920
7c9a0e8
ea7a920
 
 
 
 
f9d3bcf
ea7a920
 
 
 
ae8f8a8
ea7a920
ae8f8a8
 
 
 
 
 
 
 
 
 
 
7c9a0e8
 
 
 
 
 
 
 
 
 
 
 
5578aca
7c9a0e8
 
 
 
 
 
 
a8e5aa0
0d22636
2a8cf20
 
 
0d22636
 
7c9a0e8
 
 
 
 
ea7a920
 
ae8f8a8
ea7a920
7c9a0e8
ea7a920
 
ae8f8a8
7c9a0e8
 
 
ae8f8a8
7c9a0e8
 
 
 
 
ae8f8a8
7c9a0e8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import spaces
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from transformers.utils import is_flash_attn_2_available, is_torch_sdpa_available
from transformers.pipelines.audio_utils import ffmpeg_read
import torch
import gradio as gr
import time
import copy
import numpy as np

BATCH_SIZE = 16
MAX_AUDIO_MINS = 30  # maximum audio input in minutes
N_WARMUP = 3

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
attn_implementation = "flash_attention_2" if is_flash_attn_2_available() else "sdpa" if is_torch_sdpa_available() else "eager"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    "openai/whisper-large-v3", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation=attn_implementation
)
distilled_model = AutoModelForSpeechSeq2Seq.from_pretrained(
    "eustlb/distil-large-v3-fr", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation=attn_implementation
)
tiny_model =  AutoModelForSpeechSeq2Seq.from_pretrained(
    "openai/whisper-tiny", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation=attn_implementation
)

processor = AutoProcessor.from_pretrained("openai/whisper-large-v3")
processor_tiny = AutoProcessor.from_pretrained("openai/whisper-tiny")

model.to(device)
distilled_model.to(device)
tiny_model.to(device)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=30,
    torch_dtype=torch_dtype,
    device=device,
    generate_kwargs={"language": "fr", "task": "transcribe"},
    return_timestamps=True
)
pipe_forward = pipe._forward

distil_pipe = pipeline(
    "automatic-speech-recognition",
    model=distilled_model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=25,
    torch_dtype=torch_dtype,
    device=device,
    generate_kwargs={"language": "fr", "task": "transcribe"},
)
distil_pipe_forward = distil_pipe._forward

tiny_pipe = pipeline(
    "automatic-speech-recognition",
    model=tiny_model,
    tokenizer=processor_tiny.tokenizer,
    feature_extractor=processor_tiny.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=30,
    torch_dtype=torch_dtype,
    device=device,
    generate_kwargs={"language": "fr", "task": "transcribe"},
)
tiny_pipe_forward = tiny_pipe._forward


def warmup():
    inputs = np.random.randn(30 * pipe.feature_extractor.sampling_rate) 
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

    for _ in range(N_WARMUP):
        _ = pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"]
        _ = distil_pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"]
        _ = tiny_pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"]

@spaces.GPU
def transcribe(inputs):
    # warmup the gpu 
    print("Warming up...")
    warmup()
    print("Models warmed up!")

    if inputs is None:
        raise gr.Error("No audio file submitted! Please record or upload an audio file before submitting your request.")

    with open(inputs, "rb") as f:
        inputs = f.read()

    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    audio_length_mins = len(inputs) / pipe.feature_extractor.sampling_rate / 60

    if audio_length_mins > MAX_AUDIO_MINS:
        raise gr.Error(
            f"To ensure fair usage of the Space, the maximum audio length permitted is {MAX_AUDIO_MINS} minutes."
            f"Got an audio of length {round(audio_length_mins, 3)} minutes."
        )

    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

    def _forward_distil_time(*args, **kwargs):
        global distil_runtime
        start_time = time.time()
        result = distil_pipe_forward(*args, **kwargs)
        distil_runtime = time.time() - start_time
        distil_runtime = round(distil_runtime, 2)
        return result

    distil_pipe._forward = _forward_distil_time
    distil_text = distil_pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"]
    yield distil_text, distil_runtime, None, None, None, None

    def _forward_tiny_time(*args, **kwargs):
        global tiny_runtime
        start_time = time.time()
        result = tiny_pipe_forward(*args, **kwargs)
        tiny_runtime = time.time() - start_time
        tiny_runtime = round(tiny_runtime, 2)
        return result

    tiny_pipe._forward = _forward_tiny_time
    tiny_text = tiny_pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"]
    yield distil_text, distil_runtime, tiny_text, tiny_runtime, None, None

    def _forward_time(*args, **kwargs):
        global runtime
        start_time = time.time()
        result = pipe_forward(*args, **kwargs)
        runtime = time.time() - start_time
        runtime = round(runtime, 2)
        return result

    pipe._forward = _forward_time
    text = pipe(inputs.copy(), batch_size=BATCH_SIZE)["text"]
    yield distil_text, distil_runtime, tiny_text, tiny_runtime, text, runtime

if __name__ == "__main__":
    with gr.Blocks() as demo:
        gr.HTML(
            """
                <div style="text-align: center; max-width: 700px; margin: 0 auto;">
                  <div
                    style="
                      display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
                    "
                  >
                    <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
                    Whisper vs. distil-large-v3-fr: Speed Comparison 🏎️ 
                    </h1>
                  </div>
                </div>
            """
        )
        gr.HTML(
            f"""
            <p>🚀 <a href="https://huggingface.co/eustlb/distil-large-v3-fr">distil-large-v3-fr</a> is a distilled variant of the <a href="https://huggingface.co/openai/whisper-large-v3">Whisper</a> model by OpenAI. Compared to Whisper, this French ASR distilled model runs 6x faster with 50% fewer parameters, while performing to within 1% word error rate (WER) on out-of-distribution evaluation data. It is also faster than the <a href="https://huggingface.co/openai/whisper-tiny">tiniest version of Whisper</a> while being incomparably more accurate (see <a href="https://huggingface.co/eustlb/distil-large-v3-fr#results">results</a>).</p>

            <p>🛠️ In this demo, we perform a speed comparison between: <a href="https://huggingface.co/openai/whisper-large-v3">Whisper large-v3</a>, <a href="https://huggingface.co/openai/whisper-tiny">Whisper tiny</a> and <a href="https://huggingface.co/eustlb/distil-large-v3-fr">distil-large-3-fr</a> to test this claim. Models use the <a href="https://huggingface.co/distil-whisper/distil-large-v3#chunked-long-form">chunked long-form transcription algorithm</a> in 🤗 Transformers. 
            
            To use <a href="https://huggingface.co/eustlb/distil-large-v3-fr">distil-large-3-fr</a>, check the <a href="https://huggingface.co/eustlb/distil-large-v3-fr#transformers-usage">model card</a>! ⚙️</p>

            <p>⏱️ To ensure fair usage of the Space, we ask that audio file inputs are kept to less than 30 mins.</p>
            """
        )
        audio = gr.components.Audio(type="filepath", label="Audio input")
        button = gr.Button("Transcribe")
        with gr.Row():
            distil_runtime = gr.components.Textbox(label="distil-large-v3 Transcription Time (s)")
            tiny_runtime = gr.components.Textbox(label="whisper-tiny Transcription Time (s)")
            runtime = gr.components.Textbox(label="whisper-largel-v3  Transcription Time (s)")

        with gr.Row():
            distil_transcription = gr.components.Textbox(label="distil-large-v3 Transcription", show_copy_button=True)
            tiny_transcription = gr.components.Textbox(label="whisper-tiny Transcription", show_copy_button=True)
            transcription = gr.components.Textbox(label="whisper-largel-v3 Transcription", show_copy_button=True)
        button.click(
            fn=transcribe,
            inputs=audio,
            outputs=[distil_transcription, distil_runtime, tiny_transcription, tiny_runtime, transcription, runtime],
        )
        gr.Markdown("## Examples")
        gr.Examples(
            [["./assets/example_1.wav"], ["./assets/example_2.wav"]],
            audio,
            outputs=[distil_transcription, distil_runtime, tiny_transcription, tiny_runtime, transcription, runtime],
            fn=transcribe,
            cache_examples=False,
        )
    demo.queue(max_size=10).launch()