# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Label Distribution Measurement.""" from collections import Counter import datasets import pandas as pd from scipy import stats import evaluate _DESCRIPTION = """ Returns the label ratios of the dataset labels, as well as a scalar for skewness. """ _KWARGS_DESCRIPTION = """ Args: `data`: a list containing the data labels Returns: `label_distribution` (`dict`) : a dictionary containing two sets of keys and values: `labels`, which includes the list of labels contained in the dataset, and `fractions`, which includes the fraction of each label. `label_skew` (`scalar`) : the asymmetry of the label distribution. Examples: >>> data = [1, 0, 1, 1, 0, 1, 0] >>> distribution = evaluate.load("label_distribution") >>> results = distribution.compute(data=data) >>> print(results) {'label_distribution': {'labels': [1, 0], 'fractions': [0.5714285714285714, 0.42857142857142855]}, 'label_skew': -0.2886751345948127} """ _CITATION = """\ @ARTICLE{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class LabelDistribution(evaluate.Measurement): def _info(self): return evaluate.MeasurementInfo( module_type="measurement", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=[ datasets.Features({"data": datasets.Value("int32")}), datasets.Features({"data": datasets.Value("string")}), ], ) def _compute(self, data): """Returns the fraction of each label present in the data""" c = Counter(data) label_distribution = {"labels": [k for k in c.keys()], "fractions": [f / len(data) for f in c.values()]} if isinstance(data[0], str): label2id = {label: id for id, label in enumerate(label_distribution["labels"])} data = [label2id[d] for d in data] skew = stats.skew(data) return {"label_distribution": label_distribution, "label_skew": skew}