File size: 5,669 Bytes
241fc76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d428842
241fc76
 
 
 
 
d428842
 
241fc76
 
 
 
 
d428842
 
241fc76
 
 
 
 
 
d428842
 
241fc76
 
 
 
 
d428842
 
241fc76
 
 
 
 
d428842
 
241fc76
 
 
 
 
 
 
8fae68a
 
8d838e8
241fc76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fae68a
 
 
 
241fc76
 
8fae68a
 
241fc76
 
 
 
 
 
8fae68a
241fc76
 
 
8fae68a
241fc76
 
 
 
8fae68a
241fc76
 
 
 
 
 
d428842
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Exact Match metric."""
import re
import string

import datasets
import numpy as np

import evaluate


_DESCRIPTION = """
Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.
"""

_KWARGS_DESCRIPTION = """
Args:
    predictions: List of predicted texts.
    references: List of reference texts.
    regexes_to_ignore: List, defaults to None. Regex expressions of characters to
        ignore when calculating the exact matches. Note: these regexes are removed
        from the input data before the changes based on the options below (e.g. ignore_case,
        ignore_punctuation, ignore_numbers) are applied.
    ignore_case: Boolean, defaults to False. If true, turns everything
        to lowercase so that capitalization differences are ignored.
    ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
        comparing predictions and references.
    ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
        comparing predictions and references.
Returns:
    exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 1.0, inclusive.
Examples:
    >>> exact_match = evaluate.load("exact_match")
    >>> refs = ["the cat", "theater", "YELLING", "agent007"]
    >>> preds = ["cat?", "theater", "yelling", "agent"]
    >>> results = exact_match.compute(references=refs, predictions=preds)
    >>> print(round(results["exact_match"], 2))
    0.25

    >>> exact_match = evaluate.load("exact_match")
    >>> refs = ["the cat", "theater", "YELLING", "agent007"]
    >>> preds = ["cat?", "theater", "yelling", "agent"]
    >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)
    >>> print(round(results["exact_match"], 2))
    0.5


    >>> exact_match = evaluate.load("exact_match")
    >>> refs = ["the cat", "theater", "YELLING", "agent007"]
    >>> preds = ["cat?", "theater", "yelling", "agent"]
    >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)
    >>> print(round(results["exact_match"], 2))
    0.75

    >>> exact_match = evaluate.load("exact_match")
    >>> refs = ["the cat", "theater", "YELLING", "agent007"]
    >>> preds = ["cat?", "theater", "yelling", "agent"]
    >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
    >>> print(round(results["exact_match"], 2))
    1.0

    >>> exact_match = evaluate.load("exact_match")
    >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It's like comparing oranges and apples."]
    >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It's like comparing apples and oranges."]
    >>> results = exact_match.compute(references=refs, predictions=preds)
    >>> print(round(results["exact_match"], 2))
    0.33
"""

_CITATION = """
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ExactMatch(evaluate.Metric):
    def _info(self):
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "predictions": datasets.Value("string", id="sequence"),
                    "references": datasets.Value("string", id="sequence"),
                }
            ),
            reference_urls=[],
        )

    def _compute(
        self,
        predictions,
        references,
        regexes_to_ignore=None,
        ignore_case=False,
        ignore_punctuation=False,
        ignore_numbers=False,
    ):

        if regexes_to_ignore is not None:
            for s in regexes_to_ignore:
                predictions = np.array([re.sub(s, "", x) for x in predictions])
                references = np.array([re.sub(s, "", x) for x in references])
        else:
            predictions = np.asarray(predictions)
            references = np.asarray(references)

        if ignore_case:
            predictions = np.char.lower(predictions)
            references = np.char.lower(references)

        if ignore_punctuation:
            repl_table = string.punctuation.maketrans("", "", string.punctuation)
            predictions = np.char.translate(predictions, table=repl_table)
            references = np.char.translate(references, table=repl_table)

        if ignore_numbers:
            repl_table = string.digits.maketrans("", "", string.digits)
            predictions = np.char.translate(predictions, table=repl_table)
            references = np.char.translate(references, table=repl_table)

        score_list = predictions == references

        return {"exact_match": np.mean(score_list)}