f1 / f1.py
mgunther's picture
BUG: scikit learn's metric f1 score now returns a python native float
c35a76f verified
raw
history blame
6.82 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""F1 metric."""
import datasets
import numpy as np
from sklearn.metrics import f1_score
import evaluate
_DESCRIPTION = """
The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:
F1 = 2 * (precision * recall) / (precision + recall)
"""
_KWARGS_DESCRIPTION = """
Args:
predictions (`list` of `int`): Predicted labels.
references (`list` of `int`): Ground truth labels.
labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.
- 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.
- 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.
- 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.
- 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
sample_weight (`list` of `float`): Sample weights Defaults to None.
Returns:
f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.
Examples:
Example 1-A simple binary example
>>> f1_metric = evaluate.load("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])
>>> print(results)
{'f1': 0.5}
Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.
>>> f1_metric = evaluate.load("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)
>>> print(round(results['f1'], 2))
0.67
Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.
>>> f1_metric = evaluate.load("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])
>>> print(round(results['f1'], 2))
0.35
Example 4-A multiclass example, with different values for the `average` input.
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")
>>> print(round(results['f1'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")
>>> print(round(results['f1'], 2))
0.33
>>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")
>>> print(round(results['f1'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{'f1': array([0.8, 0. , 0. ])}
Example 5-A multi-label example
>>> f1_metric = evaluate.load("f1", "multilabel")
>>> results = f1_metric.compute(predictions=[[0, 1, 1], [1, 1, 0]], references=[[0, 1, 1], [0, 1, 0]], average="macro")
>>> print(round(results['f1'], 2))
0.67
"""
_CITATION = """
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class F1(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("int32")),
"references": datasets.Sequence(datasets.Value("int32")),
}
if self.config_name == "multilabel"
else {
"predictions": datasets.Value("int32"),
"references": datasets.Value("int32"),
}
),
reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"],
)
def _compute(self, predictions, references, labels=None, pos_label=1, average="binary", sample_weight=None):
score = f1_score(
references, predictions, labels=labels, pos_label=pos_label, average=average, sample_weight=sample_weight
)
score=np.array(score)
return {"f1": float(score) if score.size == 1 else score}