# Copyright 2022 The HuggingFace Datasets Authors and the current metric script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """FrugalScore metric.""" from dataclasses import dataclass from typing import Optional import datasets import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer, Trainer, TrainingArguments import evaluate _CITATION = """\ @article{eddine2021frugalscore, title={FrugalScore: Learning Cheaper, Lighter and Faster Evaluation Metrics for Automatic Text Generation}, author={Eddine, Moussa Kamal and Shang, Guokan and Tixier, Antoine J-P and Vazirgiannis, Michalis}, journal={arXiv preprint arXiv:2110.08559}, year={2021} } """ _DESCRIPTION = """\ FrugalScore is a reference-based metric for NLG models evaluation. It is based on a distillation approach that allows to learn a fixed, low cost version of any expensive NLG metric, while retaining most of its original performance. """ _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores. Args: predictions (list of str): list of predictions to score. Each predictions should be a string. references (list of str): list of reference for each prediction. Each reference should be a string. batch_size (int): the batch size for predictions. max_length (int): maximum sequence length. device (str): either gpu or cpu Returns: scores (list of int): list of scores. Examples: >>> frugalscore = evaluate.load("frugalscore") >>> results = frugalscore.compute(predictions=['hello there', 'huggingface'], references=['hello world', 'hugging face']) >>> print([round(s, 3) for s in results["scores"]]) [0.631, 0.645] """ @dataclass class FRUGALSCOREConfig(evaluate.info.Config): name: str = "default" batch_size: int = 32 max_length: int = 128 device: Optional[str] = None @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class FRUGALSCORE(evaluate.Metric): CONFIG_CLASS = FRUGALSCOREConfig ALLOWED_CONFIG_NAMES = ["default"] def _info(self, config): return evaluate.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, config=config, features=datasets.Features( { "predictions": datasets.Value("string"), "references": datasets.Value("string"), } ), homepage="https://github.com/moussaKam/FrugalScore", ) def _download_and_prepare(self, dl_manager): if self.config_name == "default": checkpoint = "moussaKam/frugalscore_tiny_bert-base_bert-score" else: checkpoint = self.config_name self.model = AutoModelForSequenceClassification.from_pretrained(checkpoint) self.tokenizer = AutoTokenizer.from_pretrained(checkpoint) def _compute(self, predictions, references): """Returns the scores""" assert len(predictions) == len( references ), "predictions and references should have the same number of sentences." if self.config.device is not None: assert self.config.device in ["gpu", "cpu"], "device should be either gpu or cpu." device = self.config.device else: device = "gpu" if torch.cuda.is_available() else "cpu" training_args = TrainingArguments( "trainer", fp16=(device == "gpu"), per_device_eval_batch_size=self.config.batch_size, report_to="all", no_cuda=(device == "cpu"), log_level="warning", ) dataset = {"sentence1": predictions, "sentence2": references} raw_datasets = datasets.Dataset.from_dict(dataset) def tokenize_function(data): return self.tokenizer( data["sentence1"], data["sentence2"], max_length=self.config.max_length, truncation=True, padding=True ) tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) tokenized_datasets.remove_columns(["sentence1", "sentence2"]) trainer = Trainer(self.model, training_args, tokenizer=self.tokenizer) predictions = trainer.predict(tokenized_datasets) return {"scores": list(predictions.predictions.squeeze(-1))}