File size: 6,252 Bytes
e42b19b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f96e55e
2e592e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f96e55e
e42b19b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright 2020 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" IndicGLUE benchmark metric. """

import datasets
import numpy as np
from scipy.spatial.distance import cdist
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import f1_score

import evaluate


_CITATION = """\
    @inproceedings{kakwani2020indicnlpsuite,
    title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},
    author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},
    year={2020},
    booktitle={Findings of EMNLP},
}
"""

_DESCRIPTION = """\
    IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide
    variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.
"""

_KWARGS_DESCRIPTION = """
Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset.
Args:
    predictions: list of predictions to score (as int64),
        except for 'cvit-mkb-clsr' where each prediction is a vector (of float32).
    references: list of ground truth labels corresponding to the predictions (as int64),
        except for 'cvit-mkb-clsr' where each reference is a vector (of float32).
Returns: depending on the IndicGLUE subset, one or several of:
    "accuracy": Accuracy
    "f1": F1 score
    "precision": Precision@10
Examples:

    >>> indic_glue_metric = evaluate.load('indic_glue', 'wnli')  # 'wnli' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]
    >>> references = [0, 1]
    >>> predictions = [0, 1]
    >>> results = indic_glue_metric.compute(predictions=predictions, references=references)
    >>> print(results)
    {'accuracy': 1.0}

    >>> indic_glue_metric = evaluate.load('indic_glue', 'wiki-ner')
    >>> references = [0, 1]
    >>> predictions = [0, 1]
    >>> results = indic_glue_metric.compute(predictions=predictions, references=references)
    >>> print(results)
    {'accuracy': 1.0, 'f1': 1.0}

    >>> indic_glue_metric = evaluate.load('indic_glue', 'cvit-mkb-clsr')
    >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]
    >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]
    >>> results = indic_glue_metric.compute(predictions=predictions, references=references)
    >>> print(results)
    {'precision@10': 1.0}

"""


def simple_accuracy(preds, labels):
    return float((preds == labels).mean())


def acc_and_f1(preds, labels):
    acc = simple_accuracy(preds, labels)
    f1 = float(f1_score(y_true=labels, y_pred=preds))
    return {
        "accuracy": acc,
        "f1": f1,
    }


def precision_at_10(en_sentvecs, in_sentvecs):
    en_sentvecs = np.array(en_sentvecs)
    in_sentvecs = np.array(in_sentvecs)
    n = en_sentvecs.shape[0]

    # mean centering
    en_sentvecs = en_sentvecs - np.mean(en_sentvecs, axis=0)
    in_sentvecs = in_sentvecs - np.mean(in_sentvecs, axis=0)

    sim = cdist(en_sentvecs, in_sentvecs, "cosine")
    actual = np.array(range(n))
    preds = sim.argsort(axis=1)[:, :10]
    matches = np.any(preds == actual[:, None], axis=1)
    return float(matches.mean())


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class IndicGlue(evaluate.Metric):
    def _info(self):
        if self.config_name not in [
            "wnli",
            "copa",
            "sna",
            "csqa",
            "wstp",
            "inltkh",
            "bbca",
            "cvit-mkb-clsr",
            "iitp-mr",
            "iitp-pr",
            "actsa-sc",
            "md",
            "wiki-ner",
        ]:
            raise KeyError(
                "You should supply a configuration name selected in "
                '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", '
                '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", '
                '"wiki-ner"]'
            )
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "predictions": datasets.Value("int64")
                    if self.config_name != "cvit-mkb-clsr"
                    else datasets.Sequence(datasets.Value("float32")),
                    "references": datasets.Value("int64")
                    if self.config_name != "cvit-mkb-clsr"
                    else datasets.Sequence(datasets.Value("float32")),
                }
            ),
            codebase_urls=[],
            reference_urls=[],
            format="numpy" if self.config_name != "cvit-mkb-clsr" else None,
        )

    def _compute(self, predictions, references):
        if self.config_name == "cvit-mkb-clsr":
            return {"precision@10": precision_at_10(predictions, references)}
        elif self.config_name in ["wiki-ner"]:
            return acc_and_f1(predictions, references)
        elif self.config_name in [
            "wnli",
            "copa",
            "sna",
            "csqa",
            "wstp",
            "inltkh",
            "bbca",
            "iitp-mr",
            "iitp-pr",
            "actsa-sc",
            "md",
        ]:
            return {"accuracy": simple_accuracy(predictions, references)}
        else:
            raise KeyError(
                "You should supply a configuration name selected in "
                '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", '
                '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", '
                '"wiki-ner"]'
            )