Spaces:
Runtime error
Runtime error
Update Space (evaluate main: 828c6327)
Browse files
README.md
CHANGED
@@ -1,12 +1,126 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: MAE
|
3 |
+
emoji: 🤗
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.0.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
tags:
|
11 |
+
- evaluate
|
12 |
+
- metric
|
13 |
---
|
14 |
|
15 |
+
# Metric Card for MAE
|
16 |
+
|
17 |
+
|
18 |
+
## Metric Description
|
19 |
+
|
20 |
+
Mean Absolute Error (MAE) is the mean of the magnitude of difference between the predicted and actual numeric values:
|
21 |
+
![image](https://user-images.githubusercontent.com/14205986/165824243-e1078dfd-489d-456c-a0da-cbaa28726220.png)
|
22 |
+
|
23 |
+
|
24 |
+
## How to Use
|
25 |
+
|
26 |
+
At minimum, this metric requires predictions and references as inputs.
|
27 |
+
|
28 |
+
```python
|
29 |
+
>>> mae_metric = evaluate.load("mae")
|
30 |
+
>>> predictions = [2.5, 0.0, 2, 8]
|
31 |
+
>>> references = [3, -0.5, 2, 7]
|
32 |
+
>>> results = mae_metric.compute(predictions=predictions, references=references)
|
33 |
+
```
|
34 |
+
|
35 |
+
### Inputs
|
36 |
+
|
37 |
+
Mandatory inputs:
|
38 |
+
- `predictions`: numeric array-like of shape (`n_samples,`) or (`n_samples`, `n_outputs`), representing the estimated target values.
|
39 |
+
- `references`: numeric array-like of shape (`n_samples,`) or (`n_samples`, `n_outputs`), representing the ground truth (correct) target values.
|
40 |
+
|
41 |
+
Optional arguments:
|
42 |
+
- `sample_weight`: numeric array-like of shape (`n_samples,`) representing sample weights. The default is `None`.
|
43 |
+
- `multioutput`: `raw_values`, `uniform_average` or numeric array-like of shape (`n_outputs,`), which defines the aggregation of multiple output values. The default value is `uniform_average`.
|
44 |
+
- `raw_values` returns a full set of errors in case of multioutput input.
|
45 |
+
- `uniform_average` means that the errors of all outputs are averaged with uniform weight.
|
46 |
+
- the array-like value defines weights used to average errors.
|
47 |
+
|
48 |
+
### Output Values
|
49 |
+
This metric outputs a dictionary, containing the mean absolute error score, which is of type:
|
50 |
+
- `float`: if multioutput is `uniform_average` or an ndarray of weights, then the weighted average of all output errors is returned.
|
51 |
+
- numeric array-like of shape (`n_outputs,`): if multioutput is `raw_values`, then the score is returned for each output separately.
|
52 |
+
|
53 |
+
Each MAE `float` value ranges from `0.0` to `1.0`, with the best value being 0.0.
|
54 |
+
|
55 |
+
Output Example(s):
|
56 |
+
```python
|
57 |
+
{'mae': 0.5}
|
58 |
+
```
|
59 |
+
|
60 |
+
If `multioutput="raw_values"`:
|
61 |
+
```python
|
62 |
+
{'mae': array([0.5, 1. ])}
|
63 |
+
```
|
64 |
+
|
65 |
+
#### Values from Popular Papers
|
66 |
+
|
67 |
+
|
68 |
+
### Examples
|
69 |
+
|
70 |
+
Example with the `uniform_average` config:
|
71 |
+
```python
|
72 |
+
>>> mae_metric = evaluate.load("mae")
|
73 |
+
>>> predictions = [2.5, 0.0, 2, 8]
|
74 |
+
>>> references = [3, -0.5, 2, 7]
|
75 |
+
>>> results = mae_metric.compute(predictions=predictions, references=references)
|
76 |
+
>>> print(results)
|
77 |
+
{'mae': 0.5}
|
78 |
+
```
|
79 |
+
|
80 |
+
Example with multi-dimensional lists, and the `raw_values` config:
|
81 |
+
```python
|
82 |
+
>>> mae_metric = evaluate.load("mae", "multilist")
|
83 |
+
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
|
84 |
+
>>> references = [[0, 2], [-1, 2], [8, -5]]
|
85 |
+
>>> results = mae_metric.compute(predictions=predictions, references=references)
|
86 |
+
>>> print(results)
|
87 |
+
{'mae': 0.75}
|
88 |
+
>>> results = mae_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
|
89 |
+
>>> print(results)
|
90 |
+
{'mae': array([0.5, 1. ])}
|
91 |
+
```
|
92 |
+
|
93 |
+
## Limitations and Bias
|
94 |
+
One limitation of MAE is that the relative size of the error is not always obvious, meaning that it can be difficult to tell a big error from a smaller one -- metrics such as Mean Absolute Percentage Error (MAPE) have been proposed to calculate MAE in percentage terms.
|
95 |
+
|
96 |
+
Also, since it calculates the mean, MAE may underestimate the impact of big, but infrequent, errors -- metrics such as the Root Mean Square Error (RMSE) compensate for this by taking the root of error values.
|
97 |
+
|
98 |
+
## Citation(s)
|
99 |
+
```bibtex
|
100 |
+
@article{scikit-learn,
|
101 |
+
title={Scikit-learn: Machine Learning in {P}ython},
|
102 |
+
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
|
103 |
+
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
|
104 |
+
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
|
105 |
+
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
|
106 |
+
journal={Journal of Machine Learning Research},
|
107 |
+
volume={12},
|
108 |
+
pages={2825--2830},
|
109 |
+
year={2011}
|
110 |
+
}
|
111 |
+
```
|
112 |
+
|
113 |
+
```bibtex
|
114 |
+
@article{willmott2005advantages,
|
115 |
+
title={Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance},
|
116 |
+
author={Willmott, Cort J and Matsuura, Kenji},
|
117 |
+
journal={Climate research},
|
118 |
+
volume={30},
|
119 |
+
number={1},
|
120 |
+
pages={79--82},
|
121 |
+
year={2005}
|
122 |
+
}
|
123 |
+
```
|
124 |
+
|
125 |
+
## Further References
|
126 |
+
- [Mean Absolute Error - Wikipedia](https://en.wikipedia.org/wiki/Mean_absolute_error)
|
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
|
4 |
+
|
5 |
+
module = evaluate.load("mae")
|
6 |
+
launch_gradio_widget(module)
|
mae.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""MAE - Mean Absolute Error Metric"""
|
15 |
+
|
16 |
+
import datasets
|
17 |
+
from sklearn.metrics import mean_absolute_error
|
18 |
+
|
19 |
+
import evaluate
|
20 |
+
|
21 |
+
|
22 |
+
_CITATION = """\
|
23 |
+
@article{scikit-learn,
|
24 |
+
title={Scikit-learn: Machine Learning in {P}ython},
|
25 |
+
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
|
26 |
+
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
|
27 |
+
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
|
28 |
+
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
|
29 |
+
journal={Journal of Machine Learning Research},
|
30 |
+
volume={12},
|
31 |
+
pages={2825--2830},
|
32 |
+
year={2011}
|
33 |
+
}
|
34 |
+
"""
|
35 |
+
|
36 |
+
_DESCRIPTION = """\
|
37 |
+
Mean Absolute Error (MAE) is the mean of the magnitude of difference between the predicted and actual
|
38 |
+
values.
|
39 |
+
"""
|
40 |
+
|
41 |
+
|
42 |
+
_KWARGS_DESCRIPTION = """
|
43 |
+
Args:
|
44 |
+
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
|
45 |
+
Estimated target values.
|
46 |
+
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
|
47 |
+
Ground truth (correct) target values.
|
48 |
+
sample_weight: array-like of shape (n_samples,), default=None
|
49 |
+
Sample weights.
|
50 |
+
multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"
|
51 |
+
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
|
52 |
+
|
53 |
+
"raw_values" : Returns a full set of errors in case of multioutput input.
|
54 |
+
|
55 |
+
"uniform_average" : Errors of all outputs are averaged with uniform weight.
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
mae : mean absolute error.
|
59 |
+
If multioutput is "raw_values", then mean absolute error is returned for each output separately. If multioutput is "uniform_average" or an ndarray of weights, then the weighted average of all output errors is returned.
|
60 |
+
MAE output is non-negative floating point. The best value is 0.0.
|
61 |
+
Examples:
|
62 |
+
|
63 |
+
>>> mae_metric = evaluate.load("mae")
|
64 |
+
>>> predictions = [2.5, 0.0, 2, 8]
|
65 |
+
>>> references = [3, -0.5, 2, 7]
|
66 |
+
>>> results = mae_metric.compute(predictions=predictions, references=references)
|
67 |
+
>>> print(results)
|
68 |
+
{'mae': 0.5}
|
69 |
+
|
70 |
+
If you're using multi-dimensional lists, then set the config as follows :
|
71 |
+
|
72 |
+
>>> mae_metric = evaluate.load("mae", "multilist")
|
73 |
+
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
|
74 |
+
>>> references = [[0, 2], [-1, 2], [8, -5]]
|
75 |
+
>>> results = mae_metric.compute(predictions=predictions, references=references)
|
76 |
+
>>> print(results)
|
77 |
+
{'mae': 0.75}
|
78 |
+
>>> results = mae_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
|
79 |
+
>>> print(results)
|
80 |
+
{'mae': array([0.5, 1. ])}
|
81 |
+
"""
|
82 |
+
|
83 |
+
|
84 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
85 |
+
class Mae(evaluate.EvaluationModule):
|
86 |
+
def _info(self):
|
87 |
+
return evaluate.EvaluationModuleInfo(
|
88 |
+
description=_DESCRIPTION,
|
89 |
+
citation=_CITATION,
|
90 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
91 |
+
features=datasets.Features(self._get_feature_types()),
|
92 |
+
reference_urls=[
|
93 |
+
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html"
|
94 |
+
],
|
95 |
+
)
|
96 |
+
|
97 |
+
def _get_feature_types(self):
|
98 |
+
if self.config_name == "multilist":
|
99 |
+
return {
|
100 |
+
"predictions": datasets.Sequence(datasets.Value("float")),
|
101 |
+
"references": datasets.Sequence(datasets.Value("float")),
|
102 |
+
}
|
103 |
+
else:
|
104 |
+
return {
|
105 |
+
"predictions": datasets.Value("float"),
|
106 |
+
"references": datasets.Value("float"),
|
107 |
+
}
|
108 |
+
|
109 |
+
def _compute(self, predictions, references, sample_weight=None, multioutput="uniform_average"):
|
110 |
+
|
111 |
+
mae_score = mean_absolute_error(references, predictions, sample_weight=sample_weight, multioutput=multioutput)
|
112 |
+
|
113 |
+
return {"mae": mae_score}
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO: fix github to release
|
2 |
+
git+https://github.com/huggingface/evaluate.git@b6e6ed7f3e6844b297bff1b43a1b4be0709b9671
|
3 |
+
datasets~=2.0
|
4 |
+
sklearn
|