File size: 5,534 Bytes
99711f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NLTK's NIST implementation on both the sentence and corpus level"""
from typing import Dict, Optional

import datasets
import nltk
from datasets import Sequence, Value


try:
    nltk.data.find("perluniprops")
except LookupError:
    nltk.download("perluniprops", quiet=True)  # NISTTokenizer requirement

from nltk.tokenize.nist import NISTTokenizer
from nltk.translate.nist_score import corpus_nist, sentence_nist

import evaluate


_CITATION = """\
@inproceedings{10.5555/1289189.1289273,
    author = {Doddington, George},
    title = {Automatic Evaluation of Machine Translation Quality Using N-Gram Co-Occurrence Statistics},
    year = {2002},
    publisher = {Morgan Kaufmann Publishers Inc.},
    address = {San Francisco, CA, USA},
    booktitle = {Proceedings of the Second International Conference on Human Language Technology Research},
    pages = {138–145},
    numpages = {8},
    location = {San Diego, California},
    series = {HLT '02}
}
"""

_DESCRIPTION = """\
DARPA commissioned NIST to develop an MT evaluation facility based on the BLEU
score. The official script used by NIST to compute BLEU and NIST score is
mteval-14.pl. The main differences are:

 - BLEU uses geometric mean of the ngram precisions, NIST uses arithmetic mean.
 - NIST has a different brevity penalty
 - NIST score from mteval-14.pl has a self-contained tokenizer (in the Hugging Face implementation we rely on NLTK's
implementation of the NIST-specific tokenizer)
"""


_KWARGS_DESCRIPTION = """
Computes NIST score of translated segments against one or more references.
Args:
    predictions: predictions to score (list of str)
    references: potentially multiple references for each prediction (list of str or list of list of str)
    n: highest n-gram order
    lowercase: whether to lowercase the data (only applicable if 'western_lang' is True)
    western_lang: whether the current language is a Western language, which will enable some specific tokenization
 rules with respect to, e.g., punctuation

Returns:
    'nist_mt': nist_mt score
Examples:
    >>> nist_mt = evaluate.load("nist_mt")
    >>> hypothesis = "It is a guide to action which ensures that the military always obeys the commands of the party"
    >>> reference1 = "It is a guide to action that ensures that the military will forever heed Party commands"
    >>> reference2 = "It is the guiding principle which guarantees the military forces always being under the command of the Party"
    >>> reference3 = "It is the practical guide for the army always to heed the directions of the party"
    >>> nist_mt.compute(predictions=[hypothesis], references=[[reference1, reference2, reference3]])
    {'nist_mt': 3.3709935957649324}
    >>> nist_mt.compute(predictions=[hypothesis], references=[reference1])
    {'nist_mt': 2.4477124183006533}
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class NistMt(evaluate.Metric):
    """A wrapper around NLTK's NIST implementation."""

    def _info(self):
        return evaluate.MetricInfo(
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=[
                datasets.Features(
                    {
                        "predictions": Value("string", id="prediction"),
                        "references": Sequence(Value("string", id="reference"), id="references"),
                    }
                ),
                datasets.Features(
                    {
                        "predictions": Value("string", id="prediction"),
                        "references": Value("string", id="reference"),
                    }
                ),
            ],
            homepage="https://www.nltk.org/api/nltk.translate.nist_score.html",
            codebase_urls=["https://github.com/nltk/nltk/blob/develop/nltk/translate/nist_score.py"],
            reference_urls=["https://en.wikipedia.org/wiki/NIST_(metric)"],
        )

    def _compute(self, predictions, references, n: int = 5, lowercase=False, western_lang=True):
        tokenizer = NISTTokenizer()

        # Account for single reference cases: references always need to have one more dimension than predictions
        if isinstance(references[0], str):
            references = [[ref] for ref in references]

        predictions = [
            tokenizer.tokenize(pred, return_str=False, lowercase=lowercase, western_lang=western_lang)
            for pred in predictions
        ]
        references = [
            [
                tokenizer.tokenize(ref, return_str=False, lowercase=lowercase, western_lang=western_lang)
                for ref in ref_sentences
            ]
            for ref_sentences in references
        ]
        return {"nist_mt": corpus_nist(list_of_references=references, hypotheses=predictions, n=n)}