Spaces:
Running
Running
File size: 6,779 Bytes
f0d835e 636d813 e6bffd8 f0d835e eb5ee4e f0d835e e6bffd8 636d813 dd5820d 7779076 636d813 e6bffd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
title: Precision
emoji: 🤗
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 3.19.1
app_file: app.py
pinned: false
tags:
- evaluate
- metric
description: >-
Precision is the fraction of correctly labeled positive examples out of all of the examples that were labeled as positive. It is computed via the equation:
Precision = TP / (TP + FP)
where TP is the True positives (i.e. the examples correctly labeled as positive) and FP is the False positive examples (i.e. the examples incorrectly labeled as positive).
---
# Metric Card for Precision
## Metric Description
Precision is the fraction of correctly labeled positive examples out of all of the examples that were labeled as positive. It is computed via the equation:
Precision = TP / (TP + FP)
where TP is the True positives (i.e. the examples correctly labeled as positive) and FP is the False positive examples (i.e. the examples incorrectly labeled as positive).
## How to Use
At minimum, precision takes as input a list of predicted labels, `predictions`, and a list of output labels, `references`.
```python
>>> precision_metric = evaluate.load("precision")
>>> results = precision_metric.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'precision': 1.0}
```
### Inputs
- **predictions** (`list` of `int`): Predicted class labels.
- **references** (`list` of `int`): Actual class labels.
- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`. If `average` is `None`, it should be the label order. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
- **pos_label** (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
- **average** (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.
- 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.
- 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.
- 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.
- 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
- **sample_weight** (`list` of `float`): Sample weights Defaults to None.
- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .
- 0: Returns 0 when there is a zero division.
- 1: Returns 1 when there is a zero division.
- 'warn': Raises warnings and then returns 0 when there is a zero division.
### Output Values
- **precision**(`float` or `array` of `float`): Precision score or list of precision scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate that fewer negative examples were incorrectly labeled as positive, which means that, generally, higher scores are better.
Output Example(s):
```python
{'precision': 0.2222222222222222}
```
```python
{'precision': array([0.66666667, 0.0, 0.0])}
```
#### Values from Popular Papers
### Examples
Example 1-A simple binary example
```python
>>> precision_metric = evaluate.load("precision")
>>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])
>>> print(results)
{'precision': 0.5}
```
Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.
```python
>>> precision_metric = evaluate.load("precision")
>>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)
>>> print(round(results['precision'], 2))
0.67
```
Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.
```python
>>> precision_metric = evaluate.load("precision")
>>> results = precision_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])
>>> print(results)
{'precision': 0.23529411764705882}
```
Example 4-A multiclass example, with different values for the `average` input.
```python
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = precision_metric.compute(predictions=predictions, references=references, average='macro')
>>> print(results)
{'precision': 0.2222222222222222}
>>> results = precision_metric.compute(predictions=predictions, references=references, average='micro')
>>> print(results)
{'precision': 0.3333333333333333}
>>> results = precision_metric.compute(predictions=predictions, references=references, average='weighted')
>>> print(results)
{'precision': 0.2222222222222222}
>>> results = precision_metric.compute(predictions=predictions, references=references, average=None)
>>> print([round(res, 2) for res in results['precision']])
[0.67, 0.0, 0.0]
```
## Limitations and Bias
[Precision](https://huggingface.co/metrics/precision) and [recall](https://huggingface.co/metrics/recall) are complementary and can be used to measure different aspects of model performance -- using both of them (or an averaged measure like [F1 score](https://huggingface.co/metrics/F1) to better represent different aspects of performance. See [Wikipedia](https://en.wikipedia.org/wiki/Precision_and_recall) for more information.
## Citation(s)
```bibtex
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
```
## Further References
- [Wikipedia -- Precision and recall](https://en.wikipedia.org/wiki/Precision_and_recall)
|