File size: 7,032 Bytes
8a2f5ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Computes the RL Reliability Metrics."""

import datasets
import numpy as np
from rl_reliability_metrics.evaluation import eval_metrics
from rl_reliability_metrics.metrics import metrics_offline, metrics_online

import evaluate


logger = evaluate.logging.get_logger(__name__)

DEFAULT_EVAL_POINTS = [
    50000,
    150000,
    250000,
    350000,
    450000,
    550000,
    650000,
    750000,
    850000,
    950000,
    1050000,
    1150000,
    1250000,
    1350000,
    1450000,
    1550000,
    1650000,
    1750000,
    1850000,
    1950000,
]

N_RUNS_RECOMMENDED = 10

_CITATION = """\
@conference{rl_reliability_metrics,
  title = {Measuring the Reliability of Reinforcement Learning Algorithms},
  author = {Stephanie CY Chan, Sam Fishman, John Canny, Anoop Korattikara, and Sergio Guadarrama},
  booktitle = {International Conference on Learning Representations, Addis Ababa, Ethiopia},
  year = 2020,
}
"""

_DESCRIPTION = """\
This new module is designed to solve this great NLP task and is crafted with a lot of care.
"""


_KWARGS_DESCRIPTION = """
Computes the RL reliability metrics from a set of experiments. There is an `"online"` and `"offline"` configuration for evaluation.
Args:
    timestamps: list of timestep lists/arrays that serve as index.
    rewards: list of reward lists/arrays of each experiment.
Returns:
    dictionary: a set of reliability metrics
Examples:
    >>> import numpy as np
    >>> rl_reliability = evaluate.load("rl_reliability", "online")
    >>> results = rl_reliability.compute(
    ...     timesteps=[np.linspace(0, 2000000, 1000)],
    ...     rewards=[np.linspace(0, 100, 1000)]
    ...     )
    >>> print(results["LowerCVaROnRaw"].round(4))
    [0.0258]
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class RLReliability(evaluate.EvaluationModule):
    """Computes the RL Reliability Metrics."""

    def _info(self):
        if self.config_name not in ["online", "offline"]:
            raise KeyError("""You should supply a configuration name selected in '["online", "offline"]'""")

        return evaluate.EvaluationModuleInfo(
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "timesteps": datasets.Sequence(datasets.Value("int64")),
                    "rewards": datasets.Sequence(datasets.Value("float")),
                }
            ),
            homepage="https://github.com/google-research/rl-reliability-metrics",
        )

    def _compute(
        self,
        timesteps,
        rewards,
        baseline="default",
        freq_thresh=0.01,
        window_size=100000,
        window_size_trimmed=99000,
        alpha=0.05,
        eval_points=None,
    ):
        if len(timesteps) < N_RUNS_RECOMMENDED:
            logger.warning(
                f"For robust statistics it is recommended to use at least {N_RUNS_RECOMMENDED} runs whereas you provided {len(timesteps)}."
            )

        curves = []
        for timestep, reward in zip(timesteps, rewards):
            curves.append(np.stack([timestep, reward]))

        if self.config_name == "online":
            if baseline == "default":
                baseline = "curve_range"
            if eval_points is None:
                eval_points = DEFAULT_EVAL_POINTS

            metrics = [
                metrics_online.HighFreqEnergyWithinRuns(thresh=freq_thresh),
                metrics_online.IqrWithinRuns(
                    window_size=window_size_trimmed, eval_points=eval_points, baseline=baseline
                ),
                metrics_online.IqrAcrossRuns(
                    lowpass_thresh=freq_thresh, eval_points=eval_points, window_size=window_size, baseline=baseline
                ),
                metrics_online.LowerCVaROnDiffs(baseline=baseline),
                metrics_online.LowerCVaROnDrawdown(baseline=baseline),
                metrics_online.LowerCVaROnAcross(
                    lowpass_thresh=freq_thresh, eval_points=eval_points, window_size=window_size, baseline=baseline
                ),
                metrics_online.LowerCVaROnRaw(alpha=alpha, baseline=baseline),
                metrics_online.MadAcrossRuns(
                    lowpass_thresh=freq_thresh, eval_points=eval_points, window_size=window_size, baseline=baseline
                ),
                metrics_online.MadWithinRuns(
                    eval_points=eval_points, window_size=window_size_trimmed, baseline=baseline
                ),
                metrics_online.MaxDrawdown(),
                metrics_online.StddevAcrossRuns(
                    lowpass_thresh=freq_thresh, eval_points=eval_points, window_size=window_size, baseline=baseline
                ),
                metrics_online.StddevWithinRuns(
                    eval_points=eval_points, window_size=window_size_trimmed, baseline=baseline
                ),
                metrics_online.UpperCVaROnAcross(
                    alpha=alpha,
                    lowpass_thresh=freq_thresh,
                    eval_points=eval_points,
                    window_size=window_size,
                    baseline=baseline,
                ),
                metrics_online.UpperCVaROnDiffs(alpha=alpha, baseline=baseline),
                metrics_online.UpperCVaROnDrawdown(alpha=alpha, baseline=baseline),
                metrics_online.UpperCVaROnRaw(alpha=alpha, baseline=baseline),
                metrics_online.MedianPerfDuringTraining(window_size=window_size, eval_points=eval_points),
            ]
        else:
            if baseline == "default":
                baseline = "median_perf"

            metrics = [
                metrics_offline.MadAcrossRollouts(baseline=baseline),
                metrics_offline.IqrAcrossRollouts(baseline=baseline),
                metrics_offline.StddevAcrossRollouts(baseline=baseline),
                metrics_offline.LowerCVaRAcrossRollouts(alpha=alpha, baseline=baseline),
                metrics_offline.UpperCVaRAcrossRollouts(alpha=alpha, baseline=baseline),
                metrics_offline.MedianPerfAcrossRollouts(baseline=None),
            ]

        evaluator = eval_metrics.Evaluator(metrics=metrics)
        result = evaluator.compute_metrics(curves)
        return result