Spaces:
Running
Running
Update Space (evaluate main: e4a27243)
Browse files- requirements.txt +1 -1
- rouge.py +36 -9
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
git+https://github.com/huggingface/evaluate@
|
2 |
absl-py
|
3 |
nltk
|
4 |
rouge_score>=0.1.2
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@e4a2724377909fe2aeb4357e3971e5a569673b39
|
2 |
absl-py
|
3 |
nltk
|
4 |
rouge_score>=0.1.2
|
rouge.py
CHANGED
@@ -14,6 +14,9 @@
|
|
14 |
""" ROUGE metric from Google Research github repo. """
|
15 |
|
16 |
# The dependencies in https://github.com/google-research/google-research/blob/master/rouge/requirements.txt
|
|
|
|
|
|
|
17 |
import absl # Here to have a nice missing dependency error message early on
|
18 |
import datasets
|
19 |
import nltk # Here to have a nice missing dependency error message early on
|
@@ -90,13 +93,29 @@ class Tokenizer:
|
|
90 |
return self.tokenizer_func(text)
|
91 |
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
94 |
class Rouge(evaluate.Metric):
|
95 |
-
|
|
|
|
|
|
|
|
|
96 |
return evaluate.MetricInfo(
|
97 |
description=_DESCRIPTION,
|
98 |
citation=_CITATION,
|
99 |
inputs_description=_KWARGS_DESCRIPTION,
|
|
|
100 |
features=[
|
101 |
datasets.Features(
|
102 |
{
|
@@ -119,18 +138,26 @@ class Rouge(evaluate.Metric):
|
|
119 |
)
|
120 |
|
121 |
def _compute(
|
122 |
-
self,
|
|
|
|
|
123 |
):
|
124 |
-
if rouge_types is None:
|
125 |
rouge_types = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
|
|
|
|
|
126 |
|
127 |
multi_ref = isinstance(references[0], list)
|
128 |
|
129 |
-
if tokenizer is not None:
|
130 |
-
tokenizer = Tokenizer(tokenizer)
|
|
|
|
|
131 |
|
132 |
-
scorer = rouge_scorer.RougeScorer(
|
133 |
-
|
|
|
|
|
134 |
aggregator = scoring.BootstrapAggregator()
|
135 |
else:
|
136 |
scores = []
|
@@ -140,12 +167,12 @@ class Rouge(evaluate.Metric):
|
|
140 |
score = scorer.score_multi(ref, pred)
|
141 |
else:
|
142 |
score = scorer.score(ref, pred)
|
143 |
-
if use_aggregator:
|
144 |
aggregator.add_scores(score)
|
145 |
else:
|
146 |
scores.append(score)
|
147 |
|
148 |
-
if use_aggregator:
|
149 |
result = aggregator.aggregate()
|
150 |
for key in result:
|
151 |
result[key] = result[key].mid.fmeasure
|
|
|
14 |
""" ROUGE metric from Google Research github repo. """
|
15 |
|
16 |
# The dependencies in https://github.com/google-research/google-research/blob/master/rouge/requirements.txt
|
17 |
+
from dataclasses import dataclass
|
18 |
+
from typing import Callable, List, Optional
|
19 |
+
|
20 |
import absl # Here to have a nice missing dependency error message early on
|
21 |
import datasets
|
22 |
import nltk # Here to have a nice missing dependency error message early on
|
|
|
93 |
return self.tokenizer_func(text)
|
94 |
|
95 |
|
96 |
+
@dataclass
|
97 |
+
class RougeConfig(evaluate.info.Config):
|
98 |
+
|
99 |
+
name: str = "default"
|
100 |
+
|
101 |
+
rouge_types: Optional[List[str]] = None
|
102 |
+
use_aggregator: bool = True
|
103 |
+
use_stemmer: bool = False
|
104 |
+
tokenizer: Optional[Callable] = None
|
105 |
+
|
106 |
+
|
107 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
108 |
class Rouge(evaluate.Metric):
|
109 |
+
|
110 |
+
CONFIG_CLASS = RougeConfig
|
111 |
+
ALLOWED_CONFIG_NAMES = ["default"]
|
112 |
+
|
113 |
+
def _info(self, config):
|
114 |
return evaluate.MetricInfo(
|
115 |
description=_DESCRIPTION,
|
116 |
citation=_CITATION,
|
117 |
inputs_description=_KWARGS_DESCRIPTION,
|
118 |
+
config=config,
|
119 |
features=[
|
120 |
datasets.Features(
|
121 |
{
|
|
|
138 |
)
|
139 |
|
140 |
def _compute(
|
141 |
+
self,
|
142 |
+
predictions,
|
143 |
+
references,
|
144 |
):
|
145 |
+
if self.config.rouge_types is None:
|
146 |
rouge_types = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
|
147 |
+
else:
|
148 |
+
rouge_types = self.config.rouge_types
|
149 |
|
150 |
multi_ref = isinstance(references[0], list)
|
151 |
|
152 |
+
if self.config.tokenizer is not None:
|
153 |
+
tokenizer = Tokenizer(self.config.tokenizer)
|
154 |
+
else:
|
155 |
+
tokenizer = self.config.tokenizer
|
156 |
|
157 |
+
scorer = rouge_scorer.RougeScorer(
|
158 |
+
rouge_types=rouge_types, use_stemmer=self.config.use_stemmer, tokenizer=tokenizer
|
159 |
+
)
|
160 |
+
if self.config.use_aggregator:
|
161 |
aggregator = scoring.BootstrapAggregator()
|
162 |
else:
|
163 |
scores = []
|
|
|
167 |
score = scorer.score_multi(ref, pred)
|
168 |
else:
|
169 |
score = scorer.score(ref, pred)
|
170 |
+
if self.config.use_aggregator:
|
171 |
aggregator.add_scores(score)
|
172 |
else:
|
173 |
scores.append(score)
|
174 |
|
175 |
+
if self.config.use_aggregator:
|
176 |
result = aggregator.aggregate()
|
177 |
for key in result:
|
178 |
result[key] = result[key].mid.fmeasure
|