lvwerra HF staff commited on
Commit
87bf795
·
1 Parent(s): d606e52

Update Space (evaluate main: 828c6327)

Browse files
Files changed (4) hide show
  1. README.md +106 -5
  2. app.py +6 -0
  3. requirements.txt +4 -0
  4. sacrebleu.py +166 -0
README.md CHANGED
@@ -1,12 +1,113 @@
1
  ---
2
- title: Sacrebleu
3
- emoji: 👁
4
- colorFrom: indigo
5
- colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 3.0.2
8
  app_file: app.py
9
  pinned: false
 
 
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: SacreBLEU
3
+ emoji: 🤗
4
+ colorFrom: blue
5
+ colorTo: red
6
  sdk: gradio
7
  sdk_version: 3.0.2
8
  app_file: app.py
9
  pinned: false
10
+ tags:
11
+ - evaluate
12
+ - metric
13
  ---
14
 
15
+ # Metric Card for SacreBLEU
16
+
17
+
18
+ ## Metric Description
19
+ SacreBLEU provides hassle-free computation of shareable, comparable, and reproducible BLEU scores. Inspired by Rico Sennrich's `multi-bleu-detok.perl`, it produces the official Workshop on Machine Translation (WMT) scores but works with plain text. It also knows all the standard test sets and handles downloading, processing, and tokenization.
20
+
21
+ See the [README.md] file at https://github.com/mjpost/sacreBLEU for more information.
22
+
23
+ ## How to Use
24
+ This metric takes a set of predictions and a set of references as input, along with various optional parameters.
25
+
26
+
27
+ ```python
28
+ >>> predictions = ["hello there general kenobi", "foo bar foobar"]
29
+ >>> references = [["hello there general kenobi", "hello there !"],
30
+ ... ["foo bar foobar", "foo bar foobar"]]
31
+ >>> sacrebleu = evaluate.load("sacrebleu")
32
+ >>> results = sacrebleu.compute(predictions=predictions,
33
+ ... references=references)
34
+ >>> print(list(results.keys()))
35
+ ['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len']
36
+ >>> print(round(results["score"], 1))
37
+ 100.0
38
+ ```
39
+
40
+ ### Inputs
41
+ - **`predictions`** (`list` of `str`): list of translations to score. Each translation should be tokenized into a list of tokens.
42
+ - **`references`** (`list` of `list` of `str`): A list of lists of references. The contents of the first sub-list are the references for the first prediction, the contents of the second sub-list are for the second prediction, etc. Note that there must be the same number of references for each prediction (i.e. all sub-lists must be of the same length).
43
+ - **`smooth_method`** (`str`): The smoothing method to use, defaults to `'exp'`. Possible values are:
44
+ - `'none'`: no smoothing
45
+ - `'floor'`: increment zero counts
46
+ - `'add-k'`: increment num/denom by k for n>1
47
+ - `'exp'`: exponential decay
48
+ - **`smooth_value`** (`float`): The smoothing value. Only valid when `smooth_method='floor'` (in which case `smooth_value` defaults to `0.1`) or `smooth_method='add-k'` (in which case `smooth_value` defaults to `1`).
49
+ - **`tokenize`** (`str`): Tokenization method to use for BLEU. If not provided, defaults to `'zh'` for Chinese, `'ja-mecab'` for Japanese and `'13a'` (mteval) otherwise. Possible values are:
50
+ - `'none'`: No tokenization.
51
+ - `'zh'`: Chinese tokenization.
52
+ - `'13a'`: mimics the `mteval-v13a` script from Moses.
53
+ - `'intl'`: International tokenization, mimics the `mteval-v14` script from Moses
54
+ - `'char'`: Language-agnostic character-level tokenization.
55
+ - `'ja-mecab'`: Japanese tokenization. Uses the [MeCab tokenizer](https://pypi.org/project/mecab-python3).
56
+ - **`lowercase`** (`bool`): If `True`, lowercases the input, enabling case-insensitivity. Defaults to `False`.
57
+ - **`force`** (`bool`): If `True`, insists that your tokenized input is actually detokenized. Defaults to `False`.
58
+ - **`use_effective_order`** (`bool`): If `True`, stops including n-gram orders for which precision is 0. This should be `True`, if sentence-level BLEU will be computed. Defaults to `False`.
59
+
60
+ ### Output Values
61
+ - `score`: BLEU score
62
+ - `counts`: Counts
63
+ - `totals`: Totals
64
+ - `precisions`: Precisions
65
+ - `bp`: Brevity penalty
66
+ - `sys_len`: predictions length
67
+ - `ref_len`: reference length
68
+
69
+ The output is in the following format:
70
+ ```python
71
+ {'score': 39.76353643835252, 'counts': [6, 4, 2, 1], 'totals': [10, 8, 6, 4], 'precisions': [60.0, 50.0, 33.333333333333336, 25.0], 'bp': 1.0, 'sys_len': 10, 'ref_len': 7}
72
+ ```
73
+ The score can take any value between `0.0` and `100.0`, inclusive.
74
+
75
+ #### Values from Popular Papers
76
+
77
+
78
+ ### Examples
79
+
80
+ ```python
81
+ >>> predictions = ["hello there general kenobi",
82
+ ... "on our way to ankh morpork"]
83
+ >>> references = [["hello there general kenobi", "hello there !"],
84
+ ... ["goodbye ankh morpork", "ankh morpork"]]
85
+ >>> sacrebleu = evaluate.load("sacrebleu")
86
+ >>> results = sacrebleu.compute(predictions=predictions,
87
+ ... references=references)
88
+ >>> print(list(results.keys()))
89
+ ['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len']
90
+ >>> print(round(results["score"], 1))
91
+ 39.8
92
+ ```
93
+
94
+ ## Limitations and Bias
95
+ Because what this metric calculates is BLEU scores, it has the same limitations as that metric, except that sacreBLEU is more easily reproducible.
96
+
97
+ ## Citation
98
+ ```bibtex
99
+ @inproceedings{post-2018-call,
100
+ title = "A Call for Clarity in Reporting {BLEU} Scores",
101
+ author = "Post, Matt",
102
+ booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
103
+ month = oct,
104
+ year = "2018",
105
+ address = "Belgium, Brussels",
106
+ publisher = "Association for Computational Linguistics",
107
+ url = "https://www.aclweb.org/anthology/W18-6319",
108
+ pages = "186--191",
109
+ }
110
+ ```
111
+
112
+ ## Further References
113
+ - See the [sacreBLEU README.md file](https://github.com/mjpost/sacreBLEU) for more information.
app.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import evaluate
2
+ from evaluate.utils import launch_gradio_widget
3
+
4
+
5
+ module = evaluate.load("sacrebleu")
6
+ launch_gradio_widget(module)
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # TODO: fix github to release
2
+ git+https://github.com/huggingface/evaluate.git@b6e6ed7f3e6844b297bff1b43a1b4be0709b9671
3
+ datasets~=2.0
4
+ sacrebleu
sacrebleu.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Evaluate Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """ SACREBLEU metric. """
15
+
16
+ import datasets
17
+ import sacrebleu as scb
18
+ from packaging import version
19
+
20
+ import evaluate
21
+
22
+
23
+ _CITATION = """\
24
+ @inproceedings{post-2018-call,
25
+ title = "A Call for Clarity in Reporting {BLEU} Scores",
26
+ author = "Post, Matt",
27
+ booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
28
+ month = oct,
29
+ year = "2018",
30
+ address = "Belgium, Brussels",
31
+ publisher = "Association for Computational Linguistics",
32
+ url = "https://www.aclweb.org/anthology/W18-6319",
33
+ pages = "186--191",
34
+ }
35
+ """
36
+
37
+ _DESCRIPTION = """\
38
+ SacreBLEU provides hassle-free computation of shareable, comparable, and reproducible BLEU scores.
39
+ Inspired by Rico Sennrich's `multi-bleu-detok.perl`, it produces the official WMT scores but works with plain text.
40
+ It also knows all the standard test sets and handles downloading, processing, and tokenization for you.
41
+
42
+ See the [README.md] file at https://github.com/mjpost/sacreBLEU for more information.
43
+ """
44
+
45
+ _KWARGS_DESCRIPTION = """
46
+ Produces BLEU scores along with its sufficient statistics
47
+ from a source against one or more references.
48
+
49
+ Args:
50
+ predictions (`list` of `str`): list of translations to score. Each translation should be tokenized into a list of tokens.
51
+ references (`list` of `list` of `str`): A list of lists of references. The contents of the first sub-list are the references for the first prediction, the contents of the second sub-list are for the second prediction, etc. Note that there must be the same number of references for each prediction (i.e. all sub-lists must be of the same length).
52
+ smooth_method (`str`): The smoothing method to use, defaults to `'exp'`. Possible values are:
53
+ - `'none'`: no smoothing
54
+ - `'floor'`: increment zero counts
55
+ - `'add-k'`: increment num/denom by k for n>1
56
+ - `'exp'`: exponential decay
57
+ smooth_value (`float`): The smoothing value. Only valid when `smooth_method='floor'` (in which case `smooth_value` defaults to `0.1`) or `smooth_method='add-k'` (in which case `smooth_value` defaults to `1`).
58
+ tokenize (`str`): Tokenization method to use for BLEU. If not provided, defaults to `'zh'` for Chinese, `'ja-mecab'` for Japanese and `'13a'` (mteval) otherwise. Possible values are:
59
+ - `'none'`: No tokenization.
60
+ - `'zh'`: Chinese tokenization.
61
+ - `'13a'`: mimics the `mteval-v13a` script from Moses.
62
+ - `'intl'`: International tokenization, mimics the `mteval-v14` script from Moses
63
+ - `'char'`: Language-agnostic character-level tokenization.
64
+ - `'ja-mecab'`: Japanese tokenization. Uses the [MeCab tokenizer](https://pypi.org/project/mecab-python3).
65
+ lowercase (`bool`): If `True`, lowercases the input, enabling case-insensitivity. Defaults to `False`.
66
+ force (`bool`): If `True`, insists that your tokenized input is actually detokenized. Defaults to `False`.
67
+ use_effective_order (`bool`): If `True`, stops including n-gram orders for which precision is 0. This should be `True`, if sentence-level BLEU will be computed. Defaults to `False`.
68
+
69
+ Returns:
70
+ 'score': BLEU score,
71
+ 'counts': Counts,
72
+ 'totals': Totals,
73
+ 'precisions': Precisions,
74
+ 'bp': Brevity penalty,
75
+ 'sys_len': predictions length,
76
+ 'ref_len': reference length,
77
+
78
+ Examples:
79
+
80
+ Example 1:
81
+ >>> predictions = ["hello there general kenobi", "foo bar foobar"]
82
+ >>> references = [["hello there general kenobi", "hello there !"], ["foo bar foobar", "foo bar foobar"]]
83
+ >>> sacrebleu = evaluate.load("sacrebleu")
84
+ >>> results = sacrebleu.compute(predictions=predictions, references=references)
85
+ >>> print(list(results.keys()))
86
+ ['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len']
87
+ >>> print(round(results["score"], 1))
88
+ 100.0
89
+
90
+ Example 2:
91
+ >>> predictions = ["hello there general kenobi",
92
+ ... "on our way to ankh morpork"]
93
+ >>> references = [["hello there general kenobi", "hello there !"],
94
+ ... ["goodbye ankh morpork", "ankh morpork"]]
95
+ >>> sacrebleu = evaluate.load("sacrebleu")
96
+ >>> results = sacrebleu.compute(predictions=predictions,
97
+ ... references=references)
98
+ >>> print(list(results.keys()))
99
+ ['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len']
100
+ >>> print(round(results["score"], 1))
101
+ 39.8
102
+ """
103
+
104
+
105
+ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
106
+ class Sacrebleu(evaluate.EvaluationModule):
107
+ def _info(self):
108
+ if version.parse(scb.__version__) < version.parse("1.4.12"):
109
+ raise ImportWarning(
110
+ "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
111
+ 'You can install it with `pip install "sacrebleu>=1.4.12"`.'
112
+ )
113
+ return evaluate.EvaluationModuleInfo(
114
+ description=_DESCRIPTION,
115
+ citation=_CITATION,
116
+ homepage="https://github.com/mjpost/sacreBLEU",
117
+ inputs_description=_KWARGS_DESCRIPTION,
118
+ features=datasets.Features(
119
+ {
120
+ "predictions": datasets.Value("string", id="sequence"),
121
+ "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"),
122
+ }
123
+ ),
124
+ codebase_urls=["https://github.com/mjpost/sacreBLEU"],
125
+ reference_urls=[
126
+ "https://github.com/mjpost/sacreBLEU",
127
+ "https://en.wikipedia.org/wiki/BLEU",
128
+ "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
129
+ ],
130
+ )
131
+
132
+ def _compute(
133
+ self,
134
+ predictions,
135
+ references,
136
+ smooth_method="exp",
137
+ smooth_value=None,
138
+ force=False,
139
+ lowercase=False,
140
+ tokenize=None,
141
+ use_effective_order=False,
142
+ ):
143
+ references_per_prediction = len(references[0])
144
+ if any(len(refs) != references_per_prediction for refs in references):
145
+ raise ValueError("Sacrebleu requires the same number of references for each prediction")
146
+ transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)]
147
+ output = scb.corpus_bleu(
148
+ predictions,
149
+ transformed_references,
150
+ smooth_method=smooth_method,
151
+ smooth_value=smooth_value,
152
+ force=force,
153
+ lowercase=lowercase,
154
+ use_effective_order=use_effective_order,
155
+ **(dict(tokenize=tokenize) if tokenize else {}),
156
+ )
157
+ output_dict = {
158
+ "score": output.score,
159
+ "counts": output.counts,
160
+ "totals": output.totals,
161
+ "precisions": output.precisions,
162
+ "bp": output.bp,
163
+ "sys_len": output.sys_len,
164
+ "ref_len": output.ref_len,
165
+ }
166
+ return output_dict