lvwerra HF staff commited on
Commit
1853628
1 Parent(s): 8959218

Update Space (evaluate main: 828c6327)

Browse files
Files changed (4) hide show
  1. README.md +123 -4
  2. app.py +6 -0
  3. requirements.txt +4 -0
  4. spearmanr.py +124 -0
README.md CHANGED
@@ -1,12 +1,131 @@
1
  ---
2
- title: Spearmanr
3
- emoji: 💩
4
  colorFrom: blue
5
- colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 3.0.2
8
  app_file: app.py
9
  pinned: false
 
 
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ title: Spearman Correlation Coefficient Metric
3
+ emoji: 🤗
4
  colorFrom: blue
5
+ colorTo: red
6
  sdk: gradio
7
  sdk_version: 3.0.2
8
  app_file: app.py
9
  pinned: false
10
+ tags:
11
+ - evaluate
12
+ - metric
13
  ---
14
 
15
+ # Metric Card for Spearman Correlation Coefficient Metric (spearmanr)
16
+
17
+
18
+ ## Metric Description
19
+ The Spearman rank-order correlation coefficient is a measure of the
20
+ relationship between two datasets. Like other correlation coefficients,
21
+ this one varies between -1 and +1 with 0 implying no correlation.
22
+ Positive correlations imply that as data in dataset x increases, so
23
+ does data in dataset y. Negative correlations imply that as x increases,
24
+ y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
25
+
26
+ Unlike the Pearson correlation, the Spearman correlation does not
27
+ assume that both datasets are normally distributed.
28
+
29
+ The p-value roughly indicates the probability of an uncorrelated system
30
+ producing datasets that have a Spearman correlation at least as extreme
31
+ as the one computed from these datasets. The p-values are not entirely
32
+ reliable but are probably reasonable for datasets larger than 500 or so.
33
+
34
+
35
+ ## How to Use
36
+ At minimum, this metric only requires a `list` of predictions and a `list` of references:
37
+
38
+ ```python
39
+ >>> spearmanr_metric = evaluate.load("spearmanr")
40
+ >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
41
+ >>> print(results)
42
+ {'spearmanr': -0.7}
43
+ ```
44
+
45
+ ### Inputs
46
+ - **`predictions`** (`list` of `float`): Predicted labels, as returned by a model.
47
+ - **`references`** (`list` of `float`): Ground truth labels.
48
+ - **`return_pvalue`** (`bool`): If `True`, returns the p-value. If `False`, returns
49
+ only the spearmanr score. Defaults to `False`.
50
+
51
+ ### Output Values
52
+ - **`spearmanr`** (`float`): Spearman correlation coefficient.
53
+ - **`p-value`** (`float`): p-value. **Note**: is only returned
54
+ if `return_pvalue=True` is input.
55
+
56
+ If `return_pvalue=False`, the output is a `dict` with one value, as below:
57
+ ```python
58
+ {'spearmanr': -0.7}
59
+ ```
60
+
61
+ Otherwise, if `return_pvalue=True`, the output is a `dict` containing a the `spearmanr` value as well as the corresponding `pvalue`:
62
+ ```python
63
+ {'spearmanr': -0.7, 'spearmanr_pvalue': 0.1881204043741873}
64
+ ```
65
+
66
+ Spearman rank-order correlations can take on any value from `-1` to `1`, inclusive.
67
+
68
+ The p-values can take on any value from `0` to `1`, inclusive.
69
+
70
+ #### Values from Popular Papers
71
+
72
+
73
+ ### Examples
74
+ A basic example:
75
+ ```python
76
+ >>> spearmanr_metric = evaluate.load("spearmanr")
77
+ >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
78
+ >>> print(results)
79
+ {'spearmanr': -0.7}
80
+ ```
81
+
82
+ The same example, but that also returns the pvalue:
83
+ ```python
84
+ >>> spearmanr_metric = evaluate.load("spearmanr")
85
+ >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4], return_pvalue=True)
86
+ >>> print(results)
87
+ {'spearmanr': -0.7, 'spearmanr_pvalue': 0.1881204043741873
88
+ >>> print(results['spearmanr'])
89
+ -0.7
90
+ >>> print(results['spearmanr_pvalue'])
91
+ 0.1881204043741873
92
+ ```
93
+
94
+ ## Limitations and Bias
95
+
96
+
97
+ ## Citation
98
+ ```bibtex
99
+ @book{kokoska2000crc,
100
+ title={CRC standard probability and statistics tables and formulae},
101
+ author={Kokoska, Stephen and Zwillinger, Daniel},
102
+ year={2000},
103
+ publisher={Crc Press}
104
+ }
105
+ @article{2020SciPy-NMeth,
106
+ author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
107
+ Haberland, Matt and Reddy, Tyler and Cournapeau, David and
108
+ Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
109
+ Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
110
+ Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
111
+ Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
112
+ Kern, Robert and Larson, Eric and Carey, C J and
113
+ Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
114
+ {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
115
+ Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
116
+ Harris, Charles R. and Archibald, Anne M. and
117
+ Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
118
+ {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
119
+ title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
120
+ Computing in Python}},
121
+ journal = {Nature Methods},
122
+ year = {2020},
123
+ volume = {17},
124
+ pages = {261--272},
125
+ adsurl = {https://rdcu.be/b08Wh},
126
+ doi = {10.1038/s41592-019-0686-2},
127
+ }
128
+ ```
129
+
130
+ ## Further References
131
+ *Add any useful further references.*
app.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import evaluate
2
+ from evaluate.utils import launch_gradio_widget
3
+
4
+
5
+ module = evaluate.load("spearmanr")
6
+ launch_gradio_widget(module)
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # TODO: fix github to release
2
+ git+https://github.com/huggingface/evaluate.git@b6e6ed7f3e6844b297bff1b43a1b4be0709b9671
3
+ datasets~=2.0
4
+ scipy
spearmanr.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """Spearman correlation coefficient metric."""
15
+
16
+ import datasets
17
+ from scipy.stats import spearmanr
18
+
19
+ import evaluate
20
+
21
+
22
+ _DESCRIPTION = """
23
+ The Spearman rank-order correlation coefficient is a measure of the
24
+ relationship between two datasets. Like other correlation coefficients,
25
+ this one varies between -1 and +1 with 0 implying no correlation.
26
+ Positive correlations imply that as data in dataset x increases, so
27
+ does data in dataset y. Negative correlations imply that as x increases,
28
+ y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
29
+
30
+ Unlike the Pearson correlation, the Spearman correlation does not
31
+ assume that both datasets are normally distributed.
32
+
33
+ The p-value roughly indicates the probability of an uncorrelated system
34
+ producing datasets that have a Spearman correlation at least as extreme
35
+ as the one computed from these datasets. The p-values are not entirely
36
+ reliable but are probably reasonable for datasets larger than 500 or so.
37
+ """
38
+
39
+ _KWARGS_DESCRIPTION = """
40
+ Args:
41
+ predictions (`List[float]`): Predicted labels, as returned by a model.
42
+ references (`List[float]`): Ground truth labels.
43
+ return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
44
+ only the spearmanr score. Defaults to `False`.
45
+ Returns:
46
+ spearmanr (`float`): Spearman correlation coefficient.
47
+ p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
48
+ Examples:
49
+ Example 1:
50
+ >>> spearmanr_metric = evaluate.load("spearmanr")
51
+ >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
52
+ >>> print(results)
53
+ {'spearmanr': -0.7}
54
+
55
+ Example 2:
56
+ >>> spearmanr_metric = evaluate.load("spearmanr")
57
+ >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
58
+ ... predictions=[10, 9, 2.5, 6, 4],
59
+ ... return_pvalue=True)
60
+ >>> print(results['spearmanr'])
61
+ -0.7
62
+ >>> print(round(results['spearmanr_pvalue'], 2))
63
+ 0.19
64
+ """
65
+
66
+ _CITATION = r"""\
67
+ @book{kokoska2000crc,
68
+ title={CRC standard probability and statistics tables and formulae},
69
+ author={Kokoska, Stephen and Zwillinger, Daniel},
70
+ year={2000},
71
+ publisher={Crc Press}
72
+ }
73
+ @article{2020SciPy-NMeth,
74
+ author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
75
+ Haberland, Matt and Reddy, Tyler and Cournapeau, David and
76
+ Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
77
+ Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
78
+ Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
79
+ Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
80
+ Kern, Robert and Larson, Eric and Carey, C J and
81
+ Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
82
+ {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
83
+ Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
84
+ Harris, Charles R. and Archibald, Anne M. and
85
+ Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
86
+ {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
87
+ title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
88
+ Computing in Python}},
89
+ journal = {Nature Methods},
90
+ year = {2020},
91
+ volume = {17},
92
+ pages = {261--272},
93
+ adsurl = {https://rdcu.be/b08Wh},
94
+ doi = {10.1038/s41592-019-0686-2},
95
+ }
96
+ """
97
+
98
+
99
+ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
100
+ class Spearmanr(evaluate.EvaluationModule):
101
+ def _info(self):
102
+ return evaluate.EvaluationModuleInfo(
103
+ description=_DESCRIPTION,
104
+ citation=_CITATION,
105
+ inputs_description=_KWARGS_DESCRIPTION,
106
+ features=datasets.Features(
107
+ {
108
+ "predictions": datasets.Value("float"),
109
+ "references": datasets.Value("float"),
110
+ }
111
+ ),
112
+ reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"],
113
+ )
114
+
115
+ def _compute(self, predictions, references, return_pvalue=False):
116
+ if return_pvalue:
117
+ return {
118
+ "spearmanr": spearmanr(references, predictions)[0],
119
+ "spearmanr_pvalue": spearmanr(references, predictions)[1],
120
+ }
121
+ else:
122
+ return {
123
+ "spearmanr": spearmanr(references, predictions)[0],
124
+ }