Spaces:
Running
Running
File size: 5,098 Bytes
0a46441 5802112 78ad12e 0a46441 5802112 0a46441 ee1e24f 0a46441 5802112 78ad12e 4fede74 fa4b1ff 78ad12e 5802112 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
title: SQuAD
emoji: 🤗
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 3.19.1
app_file: app.py
pinned: false
tags:
- evaluate
- metric
description: >-
This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by
crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,
from the corresponding reading passage, or the question might be unanswerable.
---
# Metric Card for SQuAD
## Metric description
This metric wraps the official scoring script for version 1 of the [Stanford Question Answering Dataset (SQuAD)](https://huggingface.co/datasets/squad).
SQuAD is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
## How to use
The metric takes two files or two lists of question-answers dictionaries as inputs : one with the predictions of the model and the other with the references to be compared to:
```python
from evaluate import load
squad_metric = load("squad")
results = squad_metric.compute(predictions=predictions, references=references)
```
## Output values
This metric outputs a dictionary with two values: the average exact match score and the average [F1 score](https://huggingface.co/metrics/f1).
```
{'exact_match': 100.0, 'f1': 100.0}
```
The range of `exact_match` is 0-100, where 0.0 means no answers were matched and 100.0 means all answers were matched.
The range of `f1` is 0-1 -- its lowest possible value is 0, if either the precision or the recall is 0, and its highest possible value is 1.0, which means perfect precision and recall.
### Values from popular papers
The [original SQuAD paper](https://nlp.stanford.edu/pubs/rajpurkar2016squad.pdf) reported an F1 score of 51.0% and an Exact Match score of 40.0%. They also report that human performance on the dataset represents an F1 score of 90.5% and an Exact Match score of 80.3%.
For more recent model performance, see the [dataset leaderboard](https://paperswithcode.com/dataset/squad).
## Examples
Maximal values for both exact match and F1 (perfect match):
```python
from evaluate import load
squad_metric = load("squad")
predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]
references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]
results = squad_metric.compute(predictions=predictions, references=references)
results
{'exact_match': 100.0, 'f1': 100.0}
```
Minimal values for both exact match and F1 (no match):
```python
from evaluate import load
squad_metric = load("squad")
predictions = [{'prediction_text': '1999', 'id': '56e10a3be3433e1400422b22'}]
references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]
results = squad_metric.compute(predictions=predictions, references=references)
results
{'exact_match': 0.0, 'f1': 0.0}
```
Partial match (2 out of 3 answers correct) :
```python
from evaluate import load
squad_metric = load("squad")
predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}, {'prediction_text': 'Beyonce', 'id': '56d2051ce7d4791d0090260b'}, {'prediction_text': 'climate change', 'id': '5733b5344776f419006610e1'}]
references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}, {'answers': {'answer_start': [233], 'text': ['Beyoncé and Bruno Mars']}, 'id': '56d2051ce7d4791d0090260b'}, {'answers': {'answer_start': [891], 'text': ['climate change']}, 'id': '5733b5344776f419006610e1'}]
results = squad_metric.compute(predictions=predictions, references=references)
results
{'exact_match': 66.66666666666667, 'f1': 66.66666666666667}
```
## Limitations and bias
This metric works only with datasets that have the same format as [SQuAD v.1 dataset](https://huggingface.co/datasets/squad).
The SQuAD dataset does contain a certain amount of noise, such as duplicate questions as well as missing answers, but these represent a minority of the 100,000 question-answer pairs. Also, neither exact match nor F1 score reflect whether models do better on certain types of questions (e.g. who questions) or those that cover a certain gender or geographical area -- carrying out more in-depth error analysis can complement these numbers.
## Citation
@inproceedings{Rajpurkar2016SQuAD10,
title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},
author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},
booktitle={EMNLP},
year={2016}
}
## Further References
- [The Stanford Question Answering Dataset: Background, Challenges, Progress (blog post)](https://rajpurkar.github.io/mlx/qa-and-squad/)
- [Hugging Face Course -- Question Answering](https://huggingface.co/course/chapter7/7)
|