lvwerra HF staff commited on
Commit
ac1b0eb
·
1 Parent(s): c780d22

Update Space (evaluate main: e4a27243)

Browse files
Files changed (2) hide show
  1. requirements.txt +1 -1
  2. ter.py +23 -9
requirements.txt CHANGED
@@ -1,2 +1,2 @@
1
- git+https://github.com/huggingface/evaluate@80448674f5447a9682afe051db243c4a13bfe4ff
2
  sacrebleu
 
1
+ git+https://github.com/huggingface/evaluate@e4a2724377909fe2aeb4357e3971e5a569673b39
2
  sacrebleu
ter.py CHANGED
@@ -12,6 +12,8 @@
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
  """ TER metric as available in sacrebleu. """
 
 
15
  import datasets
16
  import sacrebleu as scb
17
  from packaging import version
@@ -150,9 +152,24 @@ Examples:
150
  """
151
 
152
 
 
 
 
 
 
 
 
 
 
 
 
153
  @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
154
  class Ter(evaluate.Metric):
155
- def _info(self):
 
 
 
 
156
  if version.parse(scb.__version__) < version.parse("1.4.12"):
157
  raise ImportWarning(
158
  "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
@@ -163,6 +180,7 @@ class Ter(evaluate.Metric):
163
  citation=_CITATION,
164
  homepage="http://www.cs.umd.edu/~snover/tercom/",
165
  inputs_description=_KWARGS_DESCRIPTION,
 
166
  features=[
167
  datasets.Features(
168
  {
@@ -187,10 +205,6 @@ class Ter(evaluate.Metric):
187
  self,
188
  predictions,
189
  references,
190
- normalized: bool = False,
191
- ignore_punct: bool = False,
192
- support_zh_ja_chars: bool = False,
193
- case_sensitive: bool = False,
194
  ):
195
  # if only one reference is provided make sure we still use list of lists
196
  if isinstance(references[0], str):
@@ -202,10 +216,10 @@ class Ter(evaluate.Metric):
202
  transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)]
203
 
204
  sb_ter = TER(
205
- normalized=normalized,
206
- no_punct=ignore_punct,
207
- asian_support=support_zh_ja_chars,
208
- case_sensitive=case_sensitive,
209
  )
210
  output = sb_ter.corpus_score(predictions, transformed_references)
211
 
 
12
  # See the License for the specific language governing permissions and
13
  # limitations under the License.
14
  """ TER metric as available in sacrebleu. """
15
+ from dataclasses import dataclass
16
+
17
  import datasets
18
  import sacrebleu as scb
19
  from packaging import version
 
152
  """
153
 
154
 
155
+ @dataclass
156
+ class TerConfig(evaluate.info.Config):
157
+
158
+ name: str = "default"
159
+
160
+ normalized: bool = False
161
+ ignore_punct: bool = False
162
+ support_zh_ja_chars: bool = False
163
+ case_sensitive: bool = False
164
+
165
+
166
  @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
167
  class Ter(evaluate.Metric):
168
+
169
+ CONFIG_CLASS = TerConfig
170
+ ALLOWED_CONFIG_NAMES = ["default"]
171
+
172
+ def _info(self, config):
173
  if version.parse(scb.__version__) < version.parse("1.4.12"):
174
  raise ImportWarning(
175
  "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
 
180
  citation=_CITATION,
181
  homepage="http://www.cs.umd.edu/~snover/tercom/",
182
  inputs_description=_KWARGS_DESCRIPTION,
183
+ config=config,
184
  features=[
185
  datasets.Features(
186
  {
 
205
  self,
206
  predictions,
207
  references,
 
 
 
 
208
  ):
209
  # if only one reference is provided make sure we still use list of lists
210
  if isinstance(references[0], str):
 
216
  transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)]
217
 
218
  sb_ter = TER(
219
+ normalized=self.config.normalized,
220
+ no_punct=self.config.ignore_punct,
221
+ asian_support=self.config.support_zh_ja_chars,
222
+ case_sensitive=self.config.case_sensitive,
223
  )
224
  output = sb_ter.corpus_score(predictions, transformed_references)
225