salsarra's picture
Update app.py
2aa6546 verified
raw
history blame
23.6 kB
import os
import openai
import torch
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering
import gradio as gr
import re
# Set your OpenAI API key here temporarily for testing
openai.api_key = os.getenv("OPENAI_API_KEY")
# Check if GPU is available and use it if possible
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the English models and tokenizers
qa_model_name_v1 = 'salsarra/ConfliBERT-QA'
qa_model_v1 = TFAutoModelForQuestionAnswering.from_pretrained(qa_model_name_v1)
qa_tokenizer_v1 = AutoTokenizer.from_pretrained(qa_model_name_v1)
bert_model_name_v1 = 'salsarra/BERT-base-cased-SQuAD-v1'
bert_qa_model_v1 = TFAutoModelForQuestionAnswering.from_pretrained(bert_model_name_v1)
bert_qa_tokenizer_v1 = AutoTokenizer.from_pretrained(bert_model_name_v1)
# Load Spanish models and tokenizers
confli_model_spanish_name = 'salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA'
confli_model_spanish = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_spanish_name)
confli_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_model_spanish_name)
beto_model_spanish_name = 'salsarra/Beto-Spanish-Cased-NewsQA'
beto_model_spanish = TFAutoModelForQuestionAnswering.from_pretrained(beto_model_spanish_name)
beto_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_model_spanish_name)
# Load the additional Spanish models
confli_sqac_model_spanish = 'salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC'
confli_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(confli_sqac_model_spanish)
confli_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_sqac_model_spanish)
beto_sqac_model_spanish = 'salsarra/Beto-Spanish-Cased-SQAC'
beto_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(beto_sqac_model_spanish)
beto_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_sqac_model_spanish)
# Load specified ConfliBERT Arabic models
confli_model_arabic_1_name = 'salsarra/ConfliBERT-Arabic-Arabertv2-QA-MLQA'
confli_model_arabic_1 = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_arabic_1_name)
confli_tokenizer_arabic_1 = AutoTokenizer.from_pretrained(confli_model_arabic_1_name)
confli_model_arabic_2_name = 'salsarra/ConfliBERT-Arabic-Arabertv2-QA-XQUAD'
confli_model_arabic_2 = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_arabic_2_name)
confli_tokenizer_arabic_2 = AutoTokenizer.from_pretrained(confli_model_arabic_2_name)
confli_model_arabic_3_name = 'salsarra/ConfliBERT-Arabic-Arabertv2-QA-ARCD'
confli_model_arabic_3 = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_arabic_3_name)
confli_tokenizer_arabic_3 = AutoTokenizer.from_pretrained(confli_model_arabic_3_name)
# Load specified BERT Arabic models (AraBERTv2)
bert_model_arabic_1_name = 'salsarra/Bert-Base-Arabertv2-QA-MLQA'
bert_qa_model_arabic_1 = TFAutoModelForQuestionAnswering.from_pretrained(bert_model_arabic_1_name)
bert_qa_tokenizer_arabic_1 = AutoTokenizer.from_pretrained(bert_model_arabic_1_name)
bert_model_arabic_2_name = 'salsarra/Bert-Base-Arabertv2-QA-XQUAD'
bert_qa_model_arabic_2 = TFAutoModelForQuestionAnswering.from_pretrained(bert_model_arabic_2_name)
bert_qa_tokenizer_arabic_2 = AutoTokenizer.from_pretrained(bert_model_arabic_2_name)
bert_model_arabic_3_name = 'salsarra/Bert-Base-Arabertv2-QA-ARCD'
bert_qa_model_arabic_3 = TFAutoModelForQuestionAnswering.from_pretrained(bert_model_arabic_3_name)
bert_qa_tokenizer_arabic_3 = AutoTokenizer.from_pretrained(bert_model_arabic_3_name)
# Define error handling to separate input size errors from other issues
def handle_error_message(e, default_limit=512):
error_message = str(e)
pattern = re.compile(r"The size of tensor a \\((\\d+)\\) must match the size of tensor b \\((\\d+)\\)")
match = pattern.search(error_message)
if match:
number_1, number_2 = match.groups()
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
pattern_qa = re.compile(r"indices\\[0,(\\d+)\\] = \\d+ is not in \\[0, (\\d+)\\)")
match_qa = pattern_qa.search(error_message)
if match_qa:
number_1, number_2 = match_qa.groups()
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
return f"<span style='color: red; font-weight: bold;'>Error: {error_message}</span>"
# Define question_answering_v1 for ConfliBERT English with truncation=True
def question_answering_v1(context, question):
try:
inputs = qa_tokenizer_v1(question, context, return_tensors='tf', truncation=True)
outputs = qa_model_v1(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = qa_tokenizer_v1.convert_tokens_to_string(
qa_tokenizer_v1.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
# Define bert_question_answering_v1 for BERT English with truncation=True
def bert_question_answering_v1(context, question):
try:
inputs = bert_qa_tokenizer_v1(question, context, return_tensors='tf', truncation=True)
outputs = bert_qa_model_v1(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = bert_qa_tokenizer_v1.convert_tokens_to_string(
bert_qa_tokenizer_v1.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
# Define question_answering_spanish for ConfliBERT-Spanish-Beto-Cased-NewsQA
def question_answering_spanish(context, question):
try:
inputs = confli_tokenizer_spanish.encode_plus(question, context, return_tensors='tf', truncation=True)
outputs = confli_model_spanish(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = confli_tokenizer_spanish.convert_tokens_to_string(
confli_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
# Define beto_question_answering_spanish for Beto-Spanish-Cased-NewsQA
def beto_question_answering_spanish(context, question):
try:
inputs = beto_tokenizer_spanish.encode_plus(question, context, return_tensors='tf', truncation=True)
outputs = beto_model_spanish(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = beto_tokenizer_spanish.convert_tokens_to_string(
beto_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
# Define confli_sqac_question_answering_spanish for ConfliBERT-Spanish-Beto-Cased-SQAC
def confli_sqac_question_answering_spanish(context, question):
inputs = confli_sqac_tokenizer_spanish.encode_plus(question, context, return_tensors="tf", truncation=True)
outputs = confli_sqac_model_spanish_qa(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = confli_sqac_tokenizer_spanish.convert_tokens_to_string(
confli_sqac_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
# Define beto_sqac_question_answering_spanish for Beto-Spanish-Cased-SQAC
def beto_sqac_question_answering_spanish(context, question):
inputs = beto_sqac_tokenizer_spanish.encode_plus(question, context, return_tensors="tf", truncation=True)
outputs = beto_sqac_model_spanish_qa(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = beto_sqac_tokenizer_spanish.convert_tokens_to_string(
beto_sqac_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
# ConfliBERT Arabic Model 1
def question_answering_confli_arabic_1(context, question):
try:
inputs = confli_tokenizer_arabic_1(question, context, return_tensors='tf', truncation=True)
outputs = confli_model_arabic_1(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = confli_tokenizer_arabic_1.convert_tokens_to_string(
confli_tokenizer_arabic_1.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
# Add functions for other ConfliBERT and BERT models similarly
def question_answering_confli_arabic_2(context, question):
inputs = confli_tokenizer_arabic_2(question, context, return_tensors='tf', truncation=True)
outputs = confli_model_arabic_2(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = confli_tokenizer_arabic_2.convert_tokens_to_string(
confli_tokenizer_arabic_2.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
def question_answering_confli_arabic_3(context, question):
inputs = confli_tokenizer_arabic_3(question, context, return_tensors='tf', truncation=True)
outputs = confli_model_arabic_3(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = confli_tokenizer_arabic_3.convert_tokens_to_string(
confli_tokenizer_arabic_3.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
# Similarly, for BERT models
def question_answering_bert_arabic_1(context, question):
inputs = bert_qa_tokenizer_arabic_1(question, context, return_tensors='tf', truncation=True)
outputs = bert_qa_model_arabic_1(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = bert_qa_tokenizer_arabic_1.convert_tokens_to_string(
bert_qa_tokenizer_arabic_1.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
# BERT Arabic Model 2 (XQUAD)
def question_answering_bert_arabic_2(context, question):
try:
inputs = bert_qa_tokenizer_arabic_2(question, context, return_tensors='tf', truncation=True)
outputs = bert_qa_model_arabic_2(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = bert_qa_tokenizer_arabic_2.convert_tokens_to_string(
bert_qa_tokenizer_arabic_2.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
# BERT Arabic Model 3 (ARCD)
def question_answering_bert_arabic_3(context, question):
try:
inputs = bert_qa_tokenizer_arabic_3(question, context, return_tensors='tf', truncation=True)
outputs = bert_qa_model_arabic_3(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = bert_qa_tokenizer_arabic_3.convert_tokens_to_string(
bert_qa_tokenizer_arabic_3.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
# Define a function to get ChatGPT's answer in English using the latest OpenAI API
def chatgpt_question_answering(context, question):
messages = [
{"role": "system", "content": "You are a helpful assistant. Only answer based on the provided context. Do not use any external knowledge."},
{"role": "user", "content": f"Context: {context}\nQuestion: {question}\nAnswer:"}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=500
)
return response['choices'][0]['message']['content'].strip()
# Define a function to get ChatGPT's answer in Spanish using the latest OpenAI API
def chatgpt_question_answering_spanish(context, question):
messages = [
{"role": "system", "content": "You are a helpful assistant that responds in Spanish. Only answer based on the provided context. Do not use any external knowledge."},
{"role": "user", "content": f"Contexto: {context}\nPregunta: {question}\nRespuesta:"}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=500
)
return response['choices'][0]['message']['content'].strip()
# Define a function to get ChatGPT's answer in Arabic using the latest OpenAI API
def chatgpt_question_answering_arabic(context, question):
messages = [
{"role": "system", "content": "أنت مساعد ذكي ومفيد. أجب فقط بناءً على النص المُعطى في السياق. لا تستخدم أي معرفة خارجية."},
{"role": "user", "content": f"السياق: {context}\nالسؤال: {question}\nالإجابة:"}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=500
)
return response['choices'][0]['message']['content'].strip()
# Main comparison function with language selection
def compare_question_answering(language, context, question):
if language == "English":
confli_answer_v1 = question_answering_v1(context, question)
bert_answer_v1 = bert_question_answering_v1(context, question)
chatgpt_answer = chatgpt_question_answering(context, question)
return f"""
<div>
<h2 style='color: #2e8b57; font-weight: bold;'>Answers:</h2>
</div><br>
<div>
<strong style='color: green; font-weight: bold;'>ConfliBERT English:</strong><br><span style='font-weight: bold;'>{confli_answer_v1}</span></div><br>
<div>
<strong style='color: orange; font-weight: bold;'>BERT:</strong><br><span style='font-weight: bold;'>{bert_answer_v1}</span>
</div><br>
<div>
<strong style='color: #74AA9C; font-weight: bold;'>ChatGPT:</strong><br><span style='font-weight: bold;'>{chatgpt_answer}</span>
</div><br>
<div>
<strong>Model Information:</strong><br>
<a href='https://huggingface.co/salsarra/ConfliBERT-QA' target='_blank'>ConfliBERT English (Cont-Cased-SQuAD-v1)</a><br>
<a href='https://huggingface.co/salsarra/BERT-base-cased-SQuAD-v1' target='_blank'>BERT (Base-Cased-SQuAD-v1)</a><br>
<a href='https://platform.openai.com/docs/models/gpt-3-5' target='_blank'>ChatGPT (GPT-3.5 Turbo)</a><br></p>
</div>
"""
elif language == "Spanish":
confli_answer_spanish = question_answering_spanish(context, question)
beto_answer_spanish = beto_question_answering_spanish(context, question)
confli_sqac_answer_spanish = confli_sqac_question_answering_spanish(context, question)
beto_sqac_answer_spanish = beto_sqac_question_answering_spanish(context, question)
chatgpt_answer_spanish = chatgpt_question_answering_spanish(context, question)
return f"""
<div>
<h2 style='color: #2e8b57; font-weight: bold;'>Answers:</h2>
</div><br>
<div>
<strong style='color: green; font-weight: bold;'>ConfliBERT Spanish:</strong><br><span style='font-weight: bold;'>{confli_answer_spanish}</span></div><br>
<div>
<strong style='color: orange; font-weight: bold;'>BERT Spanish (BETO):</strong><br><span style='font-weight: bold;'>{beto_answer_spanish}</span>
</div><br>
<div>
<strong style='color: green; font-weight: bold;'>ConfliBERT Spanish:</strong><br><span style='font-weight: bold;'>{confli_sqac_answer_spanish}</span>
</div><br>
<div>
<strong style='color: orange; font-weight: bold;'>BERT Spanish (BETO):</strong><br><span style='font-weight: bold;'>{beto_sqac_answer_spanish}</span>
</div><br>
<div>
<strong style='color: #74AA9C; font-weight: bold;'>ChatGPT:</strong><br><span style='font-weight: bold;'>{chatgpt_answer_spanish}</span>
</div><br>
<div>
<strong>Model Information:</strong><br>
<a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA' target='_blank'>ConfliBERT Spanish (Beto-Cased-NewsQA)</a><br>
<a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-NewsQA' target='_blank'>BERT Spanish (BETO) (Beto-Spanish-Cased-NewsQA)</a><br>
<a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC' target='_blank'>ConfliBERT Spanish (Beto-Cased-SQAC)</a><br>
<a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-SQAC' target='_blank'>BERT Spanish (BETO) (Beto-Cased-SQAC)</a><br>
<a href='https://platform.openai.com/docs/models/gpt-3-5' target='_blank'>ChatGPT (GPT-3.5 Turbo)</a><br></p>
</div>
"""
elif language == "Arabic":
confli_answer_arabic_1 = question_answering_confli_arabic_1(context, question)
bert_answer_arabic_1 = question_answering_bert_arabic_1(context, question)
confli_answer_arabic_2 = question_answering_confli_arabic_2(context, question)
bert_answer_arabic_2 = question_answering_bert_arabic_2(context, question)
confli_answer_arabic_3 = question_answering_confli_arabic_3(context, question)
bert_answer_arabic_3 = question_answering_bert_arabic_3(context, question)
chatgpt_answer_arabic = chatgpt_question_answering_arabic(context, question)
return f"""
<div dir="rtl" style="text-align: right;">
<h2 style='color: #2e8b57; font-weight: bold;'>الإجابات:</h2>
</div><br>
<div dir="rtl" style="text-align: right;">
<strong style='color: green; font-weight: bold;'>ConfliBERT Arabic (MLQA):</strong><br>
{confli_answer_arabic_1}
</div><br>
<div dir="rtl" style="text-align: right;">
<strong style='color: orange; font-weight: bold;'>BERT Arabic (MLQA):</strong><br>
{bert_answer_arabic_1}
</div><br>
<div dir="rtl" style="text-align: right;">
<strong style='color: green; font-weight: bold;'>ConfliBERT Arabic (XQUAD):</strong><br>
{confli_answer_arabic_2}
</div><br>
<div dir="rtl" style="text-align: right;">
<strong style='color: orange; font-weight: bold;'>BERT Arabic (XQUAD):</strong><br>
{bert_answer_arabic_2}
</div><br>
<div dir="rtl" style="text-align: right;">
<strong style='color: green; font-weight: bold;'>ConfliBERT Arabic (ARCD):</strong><br>
{confli_answer_arabic_3}
</div><br>
<div dir="rtl" style="text-align: right;">
<strong style='color: orange; font-weight: bold;'>BERT Arabic (ARCD):</strong><br>
{bert_answer_arabic_3}
</div><br>
<div dir="rtl" style="text-align: right;">
<strong style='color: #74AA9C; font-weight: bold;'>ChatGPT:</strong><br>
{chatgpt_answer_arabic}
</div><br>
<div dir="rtl" style="text-align: right;">
<strong>Model Information:</strong><br>
<a href='https://huggingface.co/salsarra/ConfliBERT-Arabic-Arabertv2-QA-MLQA' target='_blank'>ConfliBERT Arabic (MLQA)</a><br>
<a href='https://huggingface.co/salsarra/Bert-Base-Arabertv2-QA-MLQA' target='_blank'>BERT Arabic (MLQA)</a><br>
<a href='https://huggingface.co/salsarra/ConfliBERT-Arabic-Arabertv2-QA-XQUAD' target='_blank'>ConfliBERT Arabic (XQUAD)</a><br>
<a href='https://huggingface.co/salsarra/Bert-Base-Arabertv2-QA-XQUAD' target='_blank'>BERT Arabic (XQUAD)</a><br>
<a href='https://huggingface.co/salsarra/ConfliBERT-Arabic-Arabertv2-QA-ARCD' target='_blank'>ConfliBERT Arabic (ARCD)</a><br>
<a href='https://huggingface.co/salsarra/Bert-Base-Arabertv2-QA-ARCD' target='_blank'>BERT Arabic (ARCD)</a><br>
<a href='https://platform.openai.com/docs/models/gpt-3-5' target='_blank'>ChatGPT (GPT-3.5 Turbo)</a><br>
</div>
"""
# Gradio interface setup
with gr.Blocks(css="""
body {
background-color: #f0f8ff;
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
}
h1, h1 a {
color: #2e8b57;
text-align: center;
font-size: 2em;
text-decoration: none;
}
h1 a:hover {
color: #ff8c00;
}
h2 {
color: #ff8c00;
text-align: center;
font-size: 1.5em;
}
""") as demo:
gr.Markdown("# [ConfliBERT-QA](https://eventdata.utdallas.edu/conflibert/)", elem_id="title")
gr.Markdown("Compare answers between ConfliBERT, BERT, and ChatGPT for English, and ConfliBERT, BETO, ConfliBERT-SQAC, Beto-SQAC, and ChatGPT for Spanish.")
language = gr.Dropdown(choices=["English", "Spanish", "Arabic"], label="Select Language")
context = gr.Textbox(lines=5, placeholder="Enter the context here...", label="Context")
question = gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question")
output = gr.HTML(label="Output")
with gr.Row():
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit")
submit_btn.click(fn=compare_question_answering, inputs=[language, context, question], outputs=output)
clear_btn.click(fn=lambda: ("", "", "", ""), inputs=[], outputs=[language, context, question, output])
gr.Markdown("""
<div style="text-align: center; margin-top: 20px;">
Built by: <a href="https://www.linkedin.com/in/sultan-alsarra-phd-56977a63/" target="_blank">Sultan Alsarra</a>
</div>
""")
demo.launch(share=True)