File size: 8,339 Bytes
50ca51b
 
70ca632
 
50ca51b
70ca632
 
 
50ca51b
 
 
70ca632
 
 
50ca51b
 
 
 
 
 
 
 
 
70ca632
 
 
 
 
 
 
 
 
50ca51b
70ca632
 
 
 
 
 
 
 
50ca51b
70ca632
 
50ca51b
70ca632
 
 
 
 
50ca51b
 
 
 
 
70ca632
50ca51b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70ca632
 
 
 
50ca51b
70ca632
 
 
 
 
 
 
 
 
50ca51b
70ca632
 
 
50ca51b
 
 
 
 
 
 
70ca632
50ca51b
 
 
 
70ca632
50ca51b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70ca632
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import openai
import torch
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering
import gradio as gr
import re

# Set your OpenAI API key here temporarily for testing
openai.api_key = os.getenv("OPENAI_API_KEY")

# Check if GPU is available and use it if possible
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Load the English models and tokenizers
qa_model_name_v1 = 'salsarra/ConfliBERT-QA'
qa_model_v1 = TFAutoModelForQuestionAnswering.from_pretrained(qa_model_name_v1)
qa_tokenizer_v1 = AutoTokenizer.from_pretrained(qa_model_name_v1)

bert_model_name_v1 = 'salsarra/BERT-base-cased-SQuAD-v1'
bert_qa_model_v1 = TFAutoModelForQuestionAnswering.from_pretrained(bert_model_name_v1)
bert_qa_tokenizer_v1 = AutoTokenizer.from_pretrained(bert_model_name_v1)

# Load Spanish models and tokenizers
confli_model_spanish = 'salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA'
confli_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_spanish)
confli_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_model_spanish)

beto_model_spanish = 'salsarra/Beto-Spanish-Cased-NewsQA'
beto_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(beto_model_spanish)
beto_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_model_spanish)

# Load the newly added models for Spanish (Beto and ConfliBERT SQAC)
confli_sqac_model_spanish = 'salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC'
confli_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(confli_sqac_model_spanish)
confli_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_sqac_model_spanish)

beto_sqac_model_spanish = 'salsarra/Beto-Spanish-Cased-SQAC'
beto_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(beto_sqac_model_spanish)
beto_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_sqac_model_spanish)

# Define error handling to separate input size errors from other issues
def handle_error_message(e, default_limit=512):
    error_message = str(e)
    pattern = re.compile(r"The size of tensor a \\((\\d+)\\) must match the size of tensor b \\((\\d+)\\)")
    match = pattern.search(error_message)
    if match:
        number_1, number_2 = match.groups()
        return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"

    pattern_qa = re.compile(r"indices\\[0,(\\d+)\\] = \\d+ is not in \\[0, (\\d+)\\)")
    match_qa = pattern_qa.search(error_message)
    if match_qa:
        number_1, number_2 = match_qa.groups()
        return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"

    return f"<span style='color: red; font-weight: bold;'>Error: {error_message}</span>"

# Main comparison function with language selection
def compare_question_answering(language, context, question):
    if language == "English":
        confli_answer_v1 = question_answering_v1(context, question)
        bert_answer_v1 = bert_question_answering_v1(context, question)
        chatgpt_answer = chatgpt_question_answering(context, question)
        return f"""
        <div>
            <h2 style='color: #2e8b57; font-weight: bold;'>Answers:</h2>
        </div><br>
        <div>
            <strong>ConfliBERT-cont-cased-SQuAD-v1:</strong><br>{confli_answer_v1}</div><br>
        <div>
            <strong>BERT-base-cased-SQuAD-v1:</strong><br>{bert_answer_v1}
        </div><br>
        <div>
            <strong>ChatGPT:</strong><br>{chatgpt_answer}
        </div><br>
        <div>
            <strong>Model Information:</strong><br>
            ConfliBERT-cont-cased-SQuAD-v1: <a href='https://huggingface.co/salsarra/ConfliBERT-QA' target='_blank'>salsarra/ConfliBERT-QA</a><br>
            BERT-base-cased-SQuAD-v1: <a href='https://huggingface.co/salsarra/BERT-base-cased-SQuAD-v1' target='_blank'>salsarra/BERT-base-cased-SQuAD-v1</a><br>
            ChatGPT (GPT-3.5 Turbo): <a href='https://platform.openai.com/docs/models/gpt-3-5' target='_blank'>OpenAI API</a><br>
        </div>
        """
    elif language == "Spanish":
        confli_answer_spanish = question_answering_spanish(context, question)
        beto_answer_spanish = beto_question_answering_spanish(context, question)
        confli_sqac_answer_spanish = confli_sqac_question_answering_spanish(context, question)
        beto_sqac_answer_spanish = beto_sqac_question_answering_spanish(context, question)
        chatgpt_answer_spanish = chatgpt_question_answering_spanish(context, question)
        return f"""
        <div>
            <h2 style='color: #2e8b57; font-weight: bold;'>Answers:</h2>
        </div><br>
        <div>
            <strong>ConfliBERT-Spanish-Beto-Cased-NewsQA:</strong><br>{confli_answer_spanish}</div><br>
        <div>
            <strong>Beto-Spanish-Cased-NewsQA:</strong><br>{beto_answer_spanish}
        </div><br>
        <div>
            <strong>ConfliBERT-Spanish-Beto-Cased-SQAC:</strong><br>{confli_sqac_answer_spanish}
        </div><br>
        <div>
            <strong>Beto-Spanish-Cased-SQAC:</strong><br>{beto_sqac_answer_spanish}
        </div><br>
        <div>
            <strong>ChatGPT:</strong><br>{chatgpt_answer_spanish}
        </div><br>
        <div>
            <strong>Model Information:</strong><br>
            ConfliBERT-Spanish-Beto-Cased-NewsQA: <a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA' target='_blank'>salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA</a><br>
            Beto-Spanish-Cased-NewsQA: <a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-NewsQA' target='_blank'>salsarra/Beto-Spanish-Cased-NewsQA</a><br>
            ConfliBERT-Spanish-Beto-Cased-SQAC: <a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC' target='_blank'>salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC</a><br>
            Beto-Spanish-Cased-SQAC: <a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-SQAC' target='_blank'>salsarra/Beto-Spanish-Cased-SQAC</a><br>
            ChatGPT (GPT-3.5 Turbo): <a href='https://platform.openai.com/docs/models/gpt-3-5' target='_blank'>OpenAI API</a><br>
        </div>
        """

# Setting up Gradio Blocks interface with footer
with gr.Blocks(css="""
    body {
        background-color: #f0f8ff;
        font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
    }
    h1, h1 a {
        color: #2e8b57;
        text-align: center;
        font-size: 2em;
        text-decoration: none;
    }
    h1 a:hover {
        color: #ff8c00;
    }
    h2 {
        color: #ff8c00;
        text-align: center;
        font-size: 1.5em;
    }
    .gradio-container {
        max-width: 100%;
        margin: 10px auto;
        padding: 10px;
        background-color: #ffffff;
        border-radius: 10px;
        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    }
    .button-row {
        display: flex;
        justify-content: center;
        gap: 10px;
    }
""") as demo:
    
    gr.Markdown("# [ConfliBERT-QA](https://eventdata.utdallas.edu/conflibert/)", elem_id="title")
    gr.Markdown("Compare answers between ConfliBERT, BERT, and ChatGPT for English, and ConfliBERT, BETO, ConfliBERT-SQAC, Beto-SQAC, and ChatGPT for Spanish.")
    
    language = gr.Dropdown(choices=["English", "Spanish"], label="Select Language")
    context = gr.Textbox(lines=5, placeholder="Enter the context here...", label="Context")
    question = gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question")
    output = gr.HTML(label="Output")
    
    with gr.Row(elem_id="button-row"):
        clear_btn = gr.Button("Clear")
        submit_btn = gr.Button("Submit")
    
    submit_btn.click(fn=compare_question_answering, inputs=[language, context, question], outputs=output)
    clear_btn.click(fn=lambda: ("", "", "", ""), inputs=[], outputs=[language, context, question, output])
    
    gr.Markdown("""
        <div style="text-align: center; margin-top: 20px;">
            Built by: <a href="https://www.linkedin.com/in/sultan-alsarra-phd-56977a63/" target="_blank">Sultan Alsarra</a>
        </div>
    """)

demo.launch(share=True)