Spaces:
Sleeping
Sleeping
File size: 12,795 Bytes
70ca632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import torch
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering, AutoModelForCausalLM
import gradio as gr
import re
# Check if GPU is available and use it if possible
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load Spanish models and tokenizers
confli_model_spanish = 'salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA'
confli_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_spanish)
confli_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_model_spanish)
beto_model_spanish = 'salsarra/Beto-Spanish-Cased-NewsQA'
beto_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(beto_model_spanish)
beto_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_model_spanish)
confli_sqac_model_spanish = 'salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC'
confli_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(confli_sqac_model_spanish)
confli_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_sqac_model_spanish)
beto_sqac_model_spanish = 'salsarra/Beto-Spanish-Cased-SQAC'
beto_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(beto_sqac_model_spanish)
beto_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_sqac_model_spanish)
# Load Spanish GPT-2 model and tokenizer
gpt2_spanish_model_name = 'datificate/gpt2-small-spanish'
gpt2_spanish_tokenizer = AutoTokenizer.from_pretrained(gpt2_spanish_model_name)
gpt2_spanish_model = AutoModelForCausalLM.from_pretrained(gpt2_spanish_model_name).to(device)
# Load BLOOM-1.7B model and tokenizer for Spanish
bloom_model_name = 'bigscience/bloom-1b7'
bloom_tokenizer = AutoTokenizer.from_pretrained(bloom_model_name)
bloom_model = AutoModelForCausalLM.from_pretrained(bloom_model_name).to(device)
# Preload models with a dummy pass to improve first-time loading
def preload_models():
dummy_context = "Este es un contexto de prueba."
dummy_question = "¿Cuál es el propósito de este contexto?"
# Run each model with a dummy input to initialize them
inputs = confli_tokenizer_spanish(dummy_question, dummy_context, return_tensors='tf')
_ = confli_model_spanish_qa(inputs)
inputs = beto_tokenizer_spanish(dummy_question, dummy_context, return_tensors='tf')
_ = beto_model_spanish_qa(inputs)
inputs = confli_sqac_tokenizer_spanish(dummy_question, dummy_context, return_tensors='tf')
_ = confli_sqac_model_spanish_qa(inputs)
inputs = beto_sqac_tokenizer_spanish(dummy_question, dummy_context, return_tensors='tf')
_ = beto_sqac_model_spanish_qa(inputs)
preload_models() # Initialize models
# Error handling function
def handle_error_message(e, default_limit=512):
error_message = str(e)
pattern = re.compile(r"The size of tensor a \((\d+)\) must match the size of tensor b \((\d+)\)")
match = pattern.search(error_message)
if match:
number_1, number_2 = match.groups()
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size is larger than model limits of {default_limit}</span>"
# Spanish QA functions
def question_answering_spanish(context, question):
try:
inputs = confli_tokenizer_spanish(question, context, return_tensors='tf', truncation=True)
outputs = confli_model_spanish_qa(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = confli_tokenizer_spanish.convert_tokens_to_string(confli_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end]))
return f"<span style='color: green; font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
def beto_question_answering_spanish(context, question):
try:
inputs = beto_tokenizer_spanish(question, context, return_tensors='tf', truncation=True)
outputs = beto_model_spanish_qa(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = beto_tokenizer_spanish.convert_tokens_to_string(beto_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end]))
return f"<span style='color: blue; font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
def confli_sqac_question_answering_spanish(context, question):
try:
inputs = confli_sqac_tokenizer_spanish(question, context, return_tensors='tf', truncation=True)
outputs = confli_sqac_model_spanish_qa(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = confli_sqac_tokenizer_spanish.convert_tokens_to_string(confli_sqac_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end]))
return f"<span style='color: teal; font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
def beto_sqac_question_answering_spanish(context, question):
try:
inputs = beto_sqac_tokenizer_spanish(question, context, return_tensors='tf', truncation=True)
outputs = beto_sqac_model_spanish_qa(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = beto_sqac_tokenizer_spanish.convert_tokens_to_string(beto_sqac_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end]))
return f"<span style='color: brown; font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
def gpt2_spanish_question_answering(context, question):
try:
prompt = f"Contexto:\n{context}\n\nPregunta:\n{question}\n\nRespuesta:"
inputs = gpt2_spanish_tokenizer(prompt, return_tensors='pt').to(device)
outputs = gpt2_spanish_model.generate(
inputs['input_ids'],
max_length=inputs['input_ids'].shape[1] + 50,
num_return_sequences=1,
pad_token_id=gpt2_spanish_tokenizer.eos_token_id,
do_sample=True,
top_k=40,
temperature=0.8
)
answer = gpt2_spanish_tokenizer.decode(outputs[0], skip_special_tokens=True)
answer = answer.split("Respuesta:")[-1].strip()
return f"<span style='color: orange; font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
def bloom_question_answering(context, question):
try:
prompt = f"Contexto:\n{context}\n\nPregunta:\n{question}\n\nRespuesta:"
inputs = bloom_tokenizer(prompt, return_tensors='pt').to(device)
outputs = bloom_model.generate(
inputs['input_ids'],
max_length=inputs['input_ids'].shape[1] + 50,
num_return_sequences=1,
pad_token_id=bloom_tokenizer.eos_token_id,
do_sample=True,
top_k=40,
temperature=0.8
)
answer = bloom_tokenizer.decode(outputs[0], skip_special_tokens=True)
answer = answer.split("Respuesta:")[-1].strip()
return f"<span style='color: purple; font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
# Main function for Spanish QA
def compare_question_answering_spanish(context, question):
confli_answer_spanish = question_answering_spanish(context, question)
beto_answer_spanish = beto_question_answering_spanish(context, question)
confli_sqac_answer_spanish = confli_sqac_question_answering_spanish(context, question)
beto_sqac_answer_spanish = beto_sqac_question_answering_spanish(context, question)
gpt2_answer_spanish = gpt2_spanish_question_answering(context, question)
bloom_answer = bloom_question_answering(context, question)
return f"""
<div>
<h2 style='color: #2e8b57; font-weight: bold;'>Respuestas:</h2>
</div><br>
<div>
<strong>ConfliBERT-Spanish-Beto-Cased-NewsQA:</strong><br>{confli_answer_spanish}</div><br>
<div>
<strong>Beto-Spanish-Cased-NewsQA:</strong><br>{beto_answer_spanish}
</div><br>
<div>
<strong>ConfliBERT-Spanish-Beto-Cased-SQAC:</strong><br>{confli_sqac_answer_spanish}
</div><br>
<div>
<strong>Beto-Spanish-Cased-SQAC:</strong><br>{beto_sqac_answer_spanish}
</div><br>
<div>
<strong>GPT-2-Small-Spanish:</strong><br>{gpt2_answer_spanish}
</div><br>
<div>
<strong>BLOOM-1.7B:</strong><br>{bloom_answer}
</div><br>
<div>
<strong>Información del modelo:</strong><br>
ConfliBERT-Spanish-Beto-Cased-NewsQA: <a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA' target='_blank'>salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA</a><br>
Beto-Spanish-Cased-NewsQA: <a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-NewsQA' target='_blank'>salsarra/Beto-Spanish-Cased-NewsQA</a><br>
ConfliBERT-Spanish-Beto-Cased-SQAC: <a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC' target='_blank'>salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC</a><br>
Beto-Spanish-Cased-SQAC: <a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-SQAC' target='_blank'>salsarra/Beto-Spanish-Cased-SQAC</a><br>
GPT-2-Small-Spanish: <a href='https://huggingface.co/datificate/gpt2-small-spanish' target='_blank'>datificate GPT-2 Small Spanish</a><br>
BLOOM-1.7B: <a href='https://huggingface.co/bigscience/bloom-1b7' target='_blank'>bigscience BLOOM-1.7B</a><br>
</div>
"""
# CSS for Gradio interface
css_styles = """
body {
background-color: #f0f8ff;
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
}
h1 a {
color: #2e8b57;
text-align: center;
font-size: 2em;
text-decoration: none;
}
h1 a:hover {
color: #ff8c00;
}
h2 {
color: #ff8c00;
text-align: center;
font-size: 1.5em;
}
.description-light {
color: black;
display: block;
font-size: 1em;
text-align: center;
}
.description-dark {
color: white;
display: none;
font-size: 1em;
text-align: center;
}
@media (prefers-color-scheme: dark) {
.description-light {
display: none;
}
.description-dark {
display: block;
}
}
.footer {
text-align: center;
margin-top: 10px;
font-size: 0.9em;
color: #666;
width: 100%;
}
.footer a {
color: #2e8b57;
font-weight: bold;
text-decoration: none;
}
.footer a:hover {
text-decoration: underline;
}
"""
# Define the Gradio interface with footer directly in the layout
demo = gr.Interface(
fn=compare_question_answering_spanish,
inputs=[
gr.Textbox(lines=5, placeholder="Ingrese el contexto aquí...", label="Contexto"),
gr.Textbox(lines=2, placeholder="Ingrese su pregunta aquí...", label="Pregunta")
],
outputs=gr.HTML(label="Salida"),
title="<a href='https://eventdata.utdallas.edu/conflibert/' target='_blank'>ConfliBERT-Spanish-QA</a>",
description="""
<span class="description-light">Compare respuestas entre los modelos ConfliBERT, BETO, ConfliBERT SQAC, Beto SQAC, GPT-2 Small Spanish y BLOOM-1.7B para preguntas en español.</span>
<span class="description-dark">Compare respuestas entre los modelos ConfliBERT, BETO, ConfliBERT SQAC, Beto SQAC, GPT-2 Small Spanish y BLOOM-1.7B para preguntas en español.</span>
""",
css=css_styles,
allow_flagging="never",
# Footer HTML with centered, green links
article="""
<div class='footer'>
<a href='https://eventdata.utdallas.edu/' style='color: #2e8b57; font-weight: bold;'>UTD Event Data</a> |
<a href='https://www.utdallas.edu/' style='color: #2e8b57; font-weight: bold;'>University of Texas at Dallas</a>
</div>
<div class='footer'>
Developed By: <a href='https://www.linkedin.com/in/sultan-alsarra-phd-56977a63/' target='_blank' style='color: #2e8b57; font-weight: bold;'>Sultan Alsarra</a>
</div>
"""
)
# Launch the Gradio demo
demo.launch(share=True)
|