File size: 11,150 Bytes
c903136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import torch
import tensorflow as tf
from tf_keras import models, layers
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering, AutoModelForCausalLM
import gradio as gr
import re
import os

# Check if GPU is available and use it if possible
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Version Information:
confli_version_spanish = 'ConfliBERT-Spanish-Beto-Cased-NewsQA'
beto_version_spanish = 'Beto-Spanish-Cased-NewsQA'
gpt2_spanish_version = 'GPT-2-Small-Spanish'
bloom_spanish_version = 'BLOOM-1.7B'
beto_sqac_version_spanish = 'Beto-Spanish-Cased-SQAC'

# Load Spanish models and tokenizers
confli_model_spanish = 'salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA'
confli_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_spanish)
confli_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_model_spanish)

beto_model_spanish = 'salsarra/Beto-Spanish-Cased-NewsQA'
beto_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(beto_model_spanish)
beto_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_model_spanish)

beto_sqac_model_spanish = 'salsarra/Beto-Spanish-Cased-SQAC'
beto_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(beto_sqac_model_spanish)
beto_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_sqac_model_spanish)

# Load Spanish GPT-2 model and tokenizer
gpt2_spanish_model_name = 'datificate/gpt2-small-spanish'
gpt2_spanish_tokenizer = AutoTokenizer.from_pretrained(gpt2_spanish_model_name)
gpt2_spanish_model = AutoModelForCausalLM.from_pretrained(gpt2_spanish_model_name).to(device)

# Load BLOOM-1.7B model and tokenizer for Spanish
bloom_model_name = 'bigscience/bloom-1b7'
bloom_tokenizer = AutoTokenizer.from_pretrained(bloom_model_name)
bloom_model = AutoModelForCausalLM.from_pretrained(bloom_model_name).to(device)

def handle_error_message(e, default_limit=512):
    error_message = str(e)
    pattern = re.compile(r"The size of tensor a \((\d+)\) must match the size of tensor b \((\d+)\)")
    match = pattern.search(error_message)
    if match:
        number_1, number_2 = match.groups()
        return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
    pattern_qa = re.compile(r"indices\[0,(\d+)\] = \d+ is not in \[0, (\d+)\)")
    match_qa = pattern_qa.search(error_message)
    if match_qa:
        number_1, number_2 = match_qa.groups()
        return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
    return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size is larger than model limits of {default_limit}</span>"

# Spanish QA functions
def question_answering_spanish(context, question):
    try:
        inputs = confli_tokenizer_spanish(question, context, return_tensors='tf', truncation=True)
        outputs = confli_model_spanish_qa(inputs)
        answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
        answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
        answer = confli_tokenizer_spanish.convert_tokens_to_string(confli_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end]))
        return f"<span style='color: green; font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

def beto_question_answering_spanish(context, question):
    try:
        inputs = beto_tokenizer_spanish(question, context, return_tensors='tf', truncation=True)
        outputs = beto_model_spanish_qa(inputs)
        answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
        answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
        answer = beto_tokenizer_spanish.convert_tokens_to_string(beto_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end]))
        return f"<span style='color: blue; font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

def beto_sqac_question_answering_spanish(context, question):
    try:
        inputs = beto_sqac_tokenizer_spanish(question, context, return_tensors='tf', truncation=True)
        outputs = beto_sqac_model_spanish_qa(inputs)
        answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
        answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
        answer = beto_sqac_tokenizer_spanish.convert_tokens_to_string(beto_sqac_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end]))
        return f"<span style='color: brown; font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

# Functions for Spanish GPT-2 and BLOOM-1.7B models
def gpt2_spanish_question_answering(context, question):
    try:
        prompt = f"Contexto:\n{context}\n\nPregunta:\n{question}\n\nRespuesta:"
        inputs = gpt2_spanish_tokenizer(prompt, return_tensors='pt').to(device)
        outputs = gpt2_spanish_model.generate(
            inputs['input_ids'], 
            max_length=inputs['input_ids'].shape[1] + 50, 
            num_return_sequences=1, 
            pad_token_id=gpt2_spanish_tokenizer.eos_token_id,
            do_sample=True,
            top_k=40,
            temperature=0.8
        )
        answer = gpt2_spanish_tokenizer.decode(outputs[0], skip_special_tokens=True)
        answer = answer.split("Respuesta:")[-1].strip()
        return f"<span style='color: orange; font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

def bloom_question_answering(context, question):
    try:
        prompt = f"Contexto:\n{context}\n\nPregunta:\n{question}\n\nRespuesta:"
        inputs = bloom_tokenizer(prompt, return_tensors='pt').to(device)
        outputs = bloom_model.generate(
            inputs['input_ids'], 
            max_length=inputs['input_ids'].shape[1] + 50, 
            num_return_sequences=1, 
            pad_token_id=bloom_tokenizer.eos_token_id,
            do_sample=True,
            top_k=40,
            temperature=0.8
        )
        answer = bloom_tokenizer.decode(outputs[0], skip_special_tokens=True)
        answer = answer.split("Respuesta:")[-1].strip()
        return f"<span style='color: purple; font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

# Main function for Spanish QA
def compare_question_answering_spanish(context, question):
    confli_answer_spanish = question_answering_spanish(context, question)
    beto_answer_spanish = beto_question_answering_spanish(context, question)
    beto_sqac_answer_spanish = beto_sqac_question_answering_spanish(context, question)
    gpt2_answer_spanish = gpt2_spanish_question_answering(context, question)
    bloom_answer = bloom_question_answering(context, question)
    return f"""
    <div>
        <h2 style='color: #2e8b57; font-weight: bold;'>Respuestas:</h2>
    </div><br>
    <div>
        <strong>ConfliBERT-Spanish-Beto-Cased-NewsQA:</strong><br>{confli_answer_spanish}</div><br>
    <div>
        <strong>Beto-Spanish-Cased-NewsQA:</strong><br>{beto_answer_spanish}
    </div><br>
    <div>
        <strong>Beto-Spanish-Cased-SQAC:</strong><br>{beto_sqac_answer_spanish}
    </div><br>
    <div>
        <strong>GPT-2-Small-Spanish:</strong><br>{gpt2_answer_spanish}
    </div><br>
    <div>
        <strong>BLOOM-1.7B:</strong><br>{bloom_answer}
    </div><br>
    <div>
        <strong>Información del modelo:</strong><br>
        ConfliBERT-Spanish-Beto-Cased-NewsQA: <a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA' target='_blank'>salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA</a><br>
        Beto-Spanish-Cased-NewsQA: <a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-NewsQA' target='_blank'>salsarra/Beto-Spanish-Cased-NewsQA</a><br>
        Beto-Spanish-Cased-SQAC: <a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-SQAC' target='_blank'>salsarra/Beto-Spanish-Cased-SQAC</a><br>
        GPT-2-Small-Spanish: <a href='https://huggingface.co/datificate/gpt2-small-spanish' target='_blank'>datificate GPT-2 Small Spanish</a><br>
        BLOOM-1.7B: <a href='https://huggingface.co/bigscience/bloom-1b7' target='_blank'>bigscience BLOOM-1.7B</a><br>
    </div>
    """

# Define the CSS for Gradio interface
css_styles = """
    body {
        background-color: #f0f8ff;
        font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
    }
    h1 a {
        color: #2e8b57;
        text-align: center;
        font-size: 2em;
        text-decoration: none;
    }
    h1 a:hover {
        color: #ff8c00;
    }
    h2 {
        color: #ff8c00;
        text-align: center;
        font-size: 1.5em;
    }
    .gradio-container {
        max-width: 100%;
        margin: 10px auto;
        padding: 10px;
        background-color: #ffffff;
        border-radius: 10px;
        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    }
    .gr-input, .gr-output {
        background-color: #ffffff;
        border: 1px solid #ddd;
        border-radius: 5px;
        padding: 10px;
        font-size: 1em;
    }
    .gr-title {
        font-size: 1.5em;
        font-weight: bold;
        color: #2e8b57;
        margin-bottom: 10px;
        text-align: center;
    }
    .gr-description {
        font-size: 1.2em;
        color: #ff8c00;
        margin-bottom: 10px;
        text-align: center.
    }
    .header-title-center a {
        font-size: 4em;
        font-weight: bold;
        color: darkorange;
        text-align: center;
        display: block.
    }
    .gr-button {
        background-color: #ff8c00;
        color: white;
        border: none;
        padding: 10px 20px;
        font-size: 1em.
        border-radius: 5px;
        cursor: pointer.
    }
    .gr-button:hover {
        background-color: #ff4500.
    }
    .footer {
        text-align: center.
        margin-top: 10px.
        font-size: 0.9em.
        color: #666.
        width: 100%.
    }
    .footer a {
        color: #2e8b57.
        font-weight: bold.
        text-decoration: none.
    }
    .footer a:hover {
        text-decoration: underline.
    }
"""

# Define the Gradio interface
demo = gr.Interface(
    fn=compare_question_answering_spanish,
    inputs=[
        gr.Textbox(lines=5, placeholder="Ingrese el contexto aquí...", label="Contexto"),
        gr.Textbox(lines=2, placeholder="Ingrese su pregunta aquí...", label="Pregunta")
    ],
    outputs=gr.HTML(label="Salida"),
    title="<a href='https://eventdata.utdallas.edu/conflibert/' target='_blank'>ConfliBERT-Spanish-QA</a>",
    description="Compare respuestas entre los modelos ConfliBERT, BETO, Beto SQAC, GPT-2 Small Spanish y BLOOM-1.7B para preguntas en español.",
    css=css_styles,
    allow_flagging="never"
)

# Launch the Gradio demo
demo.launch(share=True)