Spaces:
Sleeping
Sleeping
File size: 9,774 Bytes
50ca51b 70ca632 50ca51b 70ca632 50ca51b 70ca632 50ca51b 70ca632 50ca51b 70ca632 50ca51b 70ca632 50ca51b 70ca632 50ca51b 70ca632 50ca51b cf16b5d 50ca51b 70ca632 50ca51b 70ca632 50ca51b 70ca632 50ca51b 70ca632 50ca51b 70ca632 50ca51b 70ca632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import os
import openai
import torch
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering
import gradio as gr
import re
# Set your OpenAI API key here temporarily for testing
openai.api_key = os.getenv("OPENAI_API_KEY")
# Check if GPU is available and use it if possible
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the English models and tokenizers
qa_model_name_v1 = 'salsarra/ConfliBERT-QA'
qa_model_v1 = TFAutoModelForQuestionAnswering.from_pretrained(qa_model_name_v1)
qa_tokenizer_v1 = AutoTokenizer.from_pretrained(qa_model_name_v1)
bert_model_name_v1 = 'salsarra/BERT-base-cased-SQuAD-v1'
bert_qa_model_v1 = TFAutoModelForQuestionAnswering.from_pretrained(bert_model_name_v1)
bert_qa_tokenizer_v1 = AutoTokenizer.from_pretrained(bert_model_name_v1)
# Load Spanish models and tokenizers
confli_model_spanish = 'salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA'
confli_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_spanish)
confli_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_model_spanish)
beto_model_spanish = 'salsarra/Beto-Spanish-Cased-NewsQA'
beto_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(beto_model_spanish)
beto_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_model_spanish)
# Load the newly added models for Spanish (Beto and ConfliBERT SQAC)
confli_sqac_model_spanish = 'salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC'
confli_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(confli_sqac_model_spanish)
confli_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_sqac_model_spanish)
beto_sqac_model_spanish = 'salsarra/Beto-Spanish-Cased-SQAC'
beto_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(beto_sqac_model_spanish)
beto_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_sqac_model_spanish)
# Define error handling to separate input size errors from other issues
def handle_error_message(e, default_limit=512):
error_message = str(e)
pattern = re.compile(r"The size of tensor a \\((\\d+)\\) must match the size of tensor b \\((\\d+)\\)")
match = pattern.search(error_message)
if match:
number_1, number_2 = match.groups()
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
pattern_qa = re.compile(r"indices\\[0,(\\d+)\\] = \\d+ is not in \\[0, (\\d+)\\)")
match_qa = pattern_qa.search(error_message)
if match_qa:
number_1, number_2 = match_qa.groups()
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
return f"<span style='color: red; font-weight: bold;'>Error: {error_message}</span>"
# Define question_answering_v1 for ConfliBERT English
def question_answering_v1(context, question):
try:
inputs = qa_tokenizer_v1(question, context, return_tensors='tf', truncation=True)
outputs = qa_model_v1(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = qa_tokenizer_v1.convert_tokens_to_string(
qa_tokenizer_v1.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='color: green; font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
# Define bert_question_answering_v1 for BERT English
def bert_question_answering_v1(context, question):
try:
inputs = bert_qa_tokenizer_v1(question, context, return_tensors='tf', truncation=True)
outputs = bert_qa_model_v1(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = bert_qa_tokenizer_v1.convert_tokens_to_string(
bert_qa_tokenizer_v1.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
# Main comparison function with language selection
def compare_question_answering(language, context, question):
if language == "English":
confli_answer_v1 = question_answering_v1(context, question)
bert_answer_v1 = bert_question_answering_v1(context, question)
chatgpt_answer = chatgpt_question_answering(context, question)
return f"""
<div>
<h2 style='color: #2e8b57; font-weight: bold;'>Answers:</h2>
</div><br>
<div>
<strong>ConfliBERT-cont-cased-SQuAD-v1:</strong><br>{confli_answer_v1}</div><br>
<div>
<strong>BERT-base-cased-SQuAD-v1:</strong><br>{bert_answer_v1}
</div><br>
<div>
<strong>ChatGPT:</strong><br>{chatgpt_answer}
</div><br>
<div>
<strong>Model Information:</strong><br>
ConfliBERT-cont-cased-SQuAD-v1: <a href='https://huggingface.co/salsarra/ConfliBERT-QA' target='_blank'>salsarra/ConfliBERT-QA</a><br>
BERT-base-cased-SQuAD-v1: <a href='https://huggingface.co/salsarra/BERT-base-cased-SQuAD-v1' target='_blank'>salsarra/BERT-base-cased-SQuAD-v1</a><br>
ChatGPT (GPT-3.5 Turbo): <a href='https://platform.openai.com/docs/models/gpt-3-5' target='_blank'>OpenAI API</a><br>
</div>
"""
elif language == "Spanish":
confli_answer_spanish = question_answering_spanish(context, question)
beto_answer_spanish = beto_question_answering_spanish(context, question)
confli_sqac_answer_spanish = confli_sqac_question_answering_spanish(context, question)
beto_sqac_answer_spanish = beto_sqac_question_answering_spanish(context, question)
chatgpt_answer_spanish = chatgpt_question_answering_spanish(context, question)
return f"""
<div>
<h2 style='color: #2e8b57; font-weight: bold;'>Answers:</h2>
</div><br>
<div>
<strong>ConfliBERT-Spanish-Beto-Cased-NewsQA:</strong><br>{confli_answer_spanish}</div><br>
<div>
<strong>Beto-Spanish-Cased-NewsQA:</strong><br>{beto_answer_spanish}
</div><br>
<div>
<strong>ConfliBERT-Spanish-Beto-Cased-SQAC:</strong><br>{confli_sqac_answer_spanish}
</div><br>
<div>
<strong>Beto-Spanish-Cased-SQAC:</strong><br>{beto_sqac_answer_spanish}
</div><br>
<div>
<strong>ChatGPT:</strong><br>{chatgpt_answer_spanish}
</div><br>
<div>
<strong>Model Information:</strong><br>
ConfliBERT-Spanish-Beto-Cased-NewsQA: <a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA' target='_blank'>salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA</a><br>
Beto-Spanish-Cased-NewsQA: <a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-NewsQA' target='_blank'>salsarra/Beto-Spanish-Cased-NewsQA</a><br>
ConfliBERT-Spanish-Beto-Cased-SQAC: <a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC' target='_blank'>salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC</a><br>
Beto-Spanish-Cased-SQAC: <a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-SQAC' target='_blank'>salsarra/Beto-Spanish-Cased-SQAC</a><br>
ChatGPT (GPT-3.5 Turbo): <a href='https://platform.openai.com/docs/models/gpt-3-5' target='_blank'>OpenAI API</a><br>
</div>
"""
# Setting up Gradio Blocks interface with footer
with gr.Blocks(css="""
body {
background-color: #f0f8ff;
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
}
h1, h1 a {
color: #2e8b57;
text-align: center;
font-size: 2em;
text-decoration: none;
}
h1 a:hover {
color: #ff8c00;
}
h2 {
color: #ff8c00;
text-align: center;
font-size: 1.5em;
}
.gradio-container {
max-width: 100%;
margin: 10px auto;
padding: 10px;
background-color: #ffffff;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.button-row {
display: flex;
justify-content: center;
gap: 10px;
}
""") as demo:
gr.Markdown("# [ConfliBERT-QA](https://eventdata.utdallas.edu/conflibert/)", elem_id="title")
gr.Markdown("Compare answers between ConfliBERT, BERT, and ChatGPT for English, and ConfliBERT, BETO, ConfliBERT-SQAC, Beto-SQAC, and ChatGPT for Spanish.")
language = gr.Dropdown(choices=["English", "Spanish"], label="Select Language")
context = gr.Textbox(lines=5, placeholder="Enter the context here...", label="Context")
question = gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question")
output = gr.HTML(label="Output")
with gr.Row(elem_id="button-row"):
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit")
submit_btn.click(fn=compare_question_answering, inputs=[language, context, question], outputs=output)
clear_btn.click(fn=lambda: ("", "", "", ""), inputs=[], outputs=[language, context, question, output])
gr.Markdown("""
<div style="text-align: center; margin-top: 20px;">
Built by: <a href="https://www.linkedin.com/in/sultan-alsarra-phd-56977a63/" target="_blank">Sultan Alsarra</a>
</div>
""")
demo.launch(share=True)
|