Spaces:
Sleeping
Sleeping
File size: 13,839 Bytes
50ca51b 70ca632 50ca51b 70ca632 50ca51b 70ca632 50ca51b 70ca632 12ecea8 70ca632 12ecea8 70ca632 12ecea8 70ca632 50ca51b 70ca632 50ca51b 70ca632 50ca51b 70ca632 50ca51b 12ecea8 cf16b5d 12ecea8 cf16b5d 12ecea8 cf16b5d 12ecea8 5c6dfff 12ecea8 5c6dfff 12ecea8 fb381b1 12ecea8 fb381b1 12ecea8 fb381b1 12ecea8 fb381b1 12ecea8 fb381b1 12ecea8 fb381b1 12ecea8 fb381b1 50ca51b 12ecea8 50ca51b 12ecea8 50ca51b 12ecea8 50ca51b 72ed0a4 50ca51b 12ecea8 50ca51b 12ecea8 50ca51b 12ecea8 50ca51b 12ecea8 50ca51b c8ce6ba 50ca51b 72ed0a4 50ca51b 12ecea8 50ca51b 70ca632 50ca51b 70ca632 50ca51b 70ca632 50ca51b 12ecea8 50ca51b 70ca632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import os
import openai
import torch
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering
import gradio as gr
import re
# Set your OpenAI API key here temporarily for testing
openai.api_key = os.getenv("OPENAI_API_KEY")
# Check if GPU is available and use it if possible
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the English models and tokenizers
qa_model_name_v1 = 'salsarra/ConfliBERT-QA'
qa_model_v1 = TFAutoModelForQuestionAnswering.from_pretrained(qa_model_name_v1)
qa_tokenizer_v1 = AutoTokenizer.from_pretrained(qa_model_name_v1)
bert_model_name_v1 = 'salsarra/BERT-base-cased-SQuAD-v1'
bert_qa_model_v1 = TFAutoModelForQuestionAnswering.from_pretrained(bert_model_name_v1)
bert_qa_tokenizer_v1 = AutoTokenizer.from_pretrained(bert_model_name_v1)
# Load Spanish models and tokenizers
confli_model_spanish_name = 'salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA'
confli_model_spanish = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_spanish_name)
confli_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_model_spanish_name)
beto_model_spanish_name = 'salsarra/Beto-Spanish-Cased-NewsQA'
beto_model_spanish = TFAutoModelForQuestionAnswering.from_pretrained(beto_model_spanish_name)
beto_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_model_spanish_name)
# Load the additional Spanish models
confli_sqac_model_spanish = 'salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC'
confli_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(confli_sqac_model_spanish)
confli_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_sqac_model_spanish)
beto_sqac_model_spanish = 'salsarra/Beto-Spanish-Cased-SQAC'
beto_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(beto_sqac_model_spanish)
beto_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_sqac_model_spanish)
# Define error handling to separate input size errors from other issues
def handle_error_message(e, default_limit=512):
error_message = str(e)
pattern = re.compile(r"The size of tensor a \\((\\d+)\\) must match the size of tensor b \\((\\d+)\\)")
match = pattern.search(error_message)
if match:
number_1, number_2 = match.groups()
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
pattern_qa = re.compile(r"indices\\[0,(\\d+)\\] = \\d+ is not in \\[0, (\\d+)\\)")
match_qa = pattern_qa.search(error_message)
if match_qa:
number_1, number_2 = match_qa.groups()
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
return f"<span style='color: red; font-weight: bold;'>Error: {error_message}</span>"
# Define question_answering_v1 for ConfliBERT English with truncation=True
def question_answering_v1(context, question):
try:
inputs = qa_tokenizer_v1(question, context, return_tensors='tf', truncation=True)
outputs = qa_model_v1(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = qa_tokenizer_v1.convert_tokens_to_string(
qa_tokenizer_v1.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
# Define bert_question_answering_v1 for BERT English with truncation=True
def bert_question_answering_v1(context, question):
try:
inputs = bert_qa_tokenizer_v1(question, context, return_tensors='tf', truncation=True)
outputs = bert_qa_model_v1(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = bert_qa_tokenizer_v1.convert_tokens_to_string(
bert_qa_tokenizer_v1.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
# Define question_answering_spanish for ConfliBERT-Spanish-Beto-Cased-NewsQA
def question_answering_spanish(context, question):
try:
inputs = confli_tokenizer_spanish.encode_plus(question, context, return_tensors='tf', truncation=True)
outputs = confli_model_spanish(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = confli_tokenizer_spanish.convert_tokens_to_string(
confli_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
# Define beto_question_answering_spanish for Beto-Spanish-Cased-NewsQA
def beto_question_answering_spanish(context, question):
try:
inputs = beto_tokenizer_spanish.encode_plus(question, context, return_tensors='tf', truncation=True)
outputs = beto_model_spanish(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = beto_tokenizer_spanish.convert_tokens_to_string(
beto_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
except Exception as e:
return handle_error_message(e)
# Define confli_sqac_question_answering_spanish for ConfliBERT-Spanish-Beto-Cased-SQAC
def confli_sqac_question_answering_spanish(context, question):
inputs = confli_sqac_tokenizer_spanish.encode_plus(question, context, return_tensors="tf", truncation=True)
outputs = confli_sqac_model_spanish_qa(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = confli_sqac_tokenizer_spanish.convert_tokens_to_string(
confli_sqac_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
# Define beto_sqac_question_answering_spanish for Beto-Spanish-Cased-SQAC
def beto_sqac_question_answering_spanish(context, question):
inputs = beto_sqac_tokenizer_spanish.encode_plus(question, context, return_tensors="tf", truncation=True)
outputs = beto_sqac_model_spanish_qa(inputs)
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
answer = beto_sqac_tokenizer_spanish.convert_tokens_to_string(
beto_sqac_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
)
return f"<span style='font-weight: bold;'>{answer}</span>"
# Define a function to get ChatGPT's answer in English using the latest OpenAI API
def chatgpt_question_answering(context, question):
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": f"Context: {context}\nQuestion: {question}\nAnswer:"}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=150
)
return response['choices'][0]['message']['content'].strip()
# Define a function to get ChatGPT's answer in Spanish using the latest OpenAI API
def chatgpt_question_answering_spanish(context, question):
messages = [
{"role": "system", "content": "You are a helpful assistant that responds in Spanish."},
{"role": "user", "content": f"Contexto: {context}\nPregunta: {question}\nRespuesta:"}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=150
)
return response['choices'][0]['message']['content'].strip()
# Main comparison function with language selection
def compare_question_answering(language, context, question):
if language == "English":
confli_answer_v1 = question_answering_v1(context, question)
bert_answer_v1 = bert_question_answering_v1(context, question)
chatgpt_answer = chatgpt_question_answering(context, question)
return f"""
<div>
<h2 style='color: #2e8b57; font-weight: bold;'>Answers:</h2>
</div><br>
<div>
<strong style='color: green; font-weight: bold;'>ConfliBERT-cont-cased-SQuAD-v1:</strong><br><span style='font-weight: bold;'>{confli_answer_v1}</span></div><br>
<div>
<strong style='color: orange; font-weight: bold;'>BERT-base-cased-SQuAD-v1:</strong><br><span style='font-weight: bold;'>{bert_answer_v1}</span>
</div><br>
<div>
<strong style='color: #74AA9C; font-weight: bold;'>ChatGPT:</strong><br><span style='font-weight: bold;'>{chatgpt_answer}</span>
</div><br>
<div>
<strong>Model Information:</strong><br>
<a href='https://huggingface.co/salsarra/ConfliBERT-QA' target='_blank'>ConfliBERT-cont-cased-SQuAD-v1</a><br>
<a href='https://huggingface.co/salsarra/BERT-base-cased-SQuAD-v1' target='_blank'>BERT-base-cased-SQuAD-v1</a><br>
<a href='https://platform.openai.com/docs/models/gpt-3-5' target='_blank'>ChatGPT (GPT-3.5 Turbo)</a><br></p>
</div>
"""
elif language == "Spanish":
confli_answer_spanish = question_answering_spanish(context, question)
beto_answer_spanish = beto_question_answering_spanish(context, question)
confli_sqac_answer_spanish = confli_sqac_question_answering_spanish(context, question)
beto_sqac_answer_spanish = beto_sqac_question_answering_spanish(context, question)
chatgpt_answer_spanish = chatgpt_question_answering_spanish(context, question)
return f"""
<div>
<h2 style='color: #2e8b57; font-weight: bold;'>Answers:</h2>
</div><br>
<div>
<strong style='color: green; font-weight: bold;'>ConfliBERT-Spanish-Beto-Cased-NewsQA:</strong><br><span style='font-weight: bold;'>{confli_answer_spanish}</span></div><br>
<div>
<strong style='color: orange; font-weight: bold;'>Beto-Spanish-Cased-NewsQA:</strong><br><span style='font-weight: bold;'>{beto_answer_spanish}</span>
</div><br>
<div>
<strong style='color: green; font-weight: bold;'>ConfliBERT-Spanish-Beto-Cased-SQAC:</strong><br><span style='font-weight: bold;'>{confli_sqac_answer_spanish}</span>
</div><br>
<div>
<strong style='color: orange; font-weight: bold;'>Beto-Spanish-Cased-SQAC:</strong><br><span style='font-weight: bold;'>{beto_sqac_answer_spanish}</span>
</div><br>
<div>
<strong style='color: #74AA9C; font-weight: bold;'>ChatGPT:</strong><br><span style='font-weight: bold;'>{chatgpt_answer_spanish}</span>
</div><br>
<div>
<strong>Model Information:</strong><br>
<a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA' target='_blank'>ConfliBERT-Spanish-Beto-Cased-NewsQA</a><br>
<a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-NewsQA' target='_blank'>Beto-Spanish-Cased-NewsQA</a><br>
<a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC' target='_blank'>ConfliBERT-Spanish-Beto-Cased-SQAC</a><br>
<a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-SQAC' target='_blank'>Beto-Spanish-Cased-SQAC</a><br>
<a href='https://platform.openai.com/docs/models/gpt-3-5' target='_blank'>ChatGPT (GPT-3.5 Turbo)</a><br></p>
</div>
"""
# Gradio interface setup
with gr.Blocks(css="""
body {
background-color: #f0f8ff;
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
}
h1, h1 a {
color: #2e8b57;
text-align: center;
font-size: 2em;
text-decoration: none;
}
h1 a:hover {
color: #ff8c00;
}
h2 {
color: #ff8c00;
text-align: center;
font-size: 1.5em;
}
""") as demo:
gr.Markdown("# [ConfliBERT-QA](https://eventdata.utdallas.edu/conflibert/)", elem_id="title")
gr.Markdown("Compare answers between ConfliBERT, BERT, and ChatGPT for English, and ConfliBERT, BETO, ConfliBERT-SQAC, Beto-SQAC, and ChatGPT for Spanish.")
language = gr.Dropdown(choices=["English", "Spanish"], label="Select Language")
context = gr.Textbox(lines=5, placeholder="Enter the context here...", label="Context")
question = gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question")
output = gr.HTML(label="Output")
with gr.Row():
clear_btn = gr.Button("Clear")
submit_btn = gr.Button("Submit")
submit_btn.click(fn=compare_question_answering, inputs=[language, context, question], outputs=output)
clear_btn.click(fn=lambda: ("", "", "", ""), inputs=[], outputs=[language, context, question, output])
gr.Markdown("""
<div style="text-align: center; margin-top: 20px;">
Built by: <a href="https://www.linkedin.com/in/sultan-alsarra-phd-56977a63/" target="_blank">Sultan Alsarra</a>
</div>
""")
demo.launch(share=True)
|