File size: 13,839 Bytes
50ca51b
 
70ca632
 
50ca51b
70ca632
 
 
50ca51b
 
 
70ca632
 
 
50ca51b
 
 
 
 
 
 
 
 
70ca632
12ecea8
 
 
70ca632
12ecea8
 
 
70ca632
12ecea8
70ca632
 
 
 
 
 
 
 
50ca51b
70ca632
 
50ca51b
70ca632
 
 
 
 
50ca51b
 
 
 
 
70ca632
50ca51b
 
12ecea8
cf16b5d
 
 
 
 
 
 
 
 
12ecea8
cf16b5d
 
12ecea8
 
cf16b5d
 
 
 
 
 
 
 
 
 
 
 
12ecea8
 
 
 
5c6dfff
12ecea8
 
 
 
 
 
 
 
 
 
 
 
 
5c6dfff
12ecea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb381b1
12ecea8
fb381b1
 
 
 
12ecea8
 
fb381b1
12ecea8
 
 
 
fb381b1
12ecea8
fb381b1
 
 
 
12ecea8
 
fb381b1
12ecea8
 
 
 
fb381b1
50ca51b
 
 
 
 
 
 
 
 
 
 
12ecea8
50ca51b
12ecea8
50ca51b
 
12ecea8
50ca51b
72ed0a4
 
 
 
 
 
50ca51b
 
 
 
 
 
 
 
 
 
 
 
12ecea8
50ca51b
12ecea8
50ca51b
 
12ecea8
50ca51b
 
12ecea8
50ca51b
 
c8ce6ba
50ca51b
72ed0a4
 
 
 
 
 
 
 
50ca51b
 
12ecea8
50ca51b
70ca632
 
 
 
50ca51b
70ca632
 
 
 
 
 
 
 
 
50ca51b
70ca632
 
 
50ca51b
 
 
 
 
 
 
 
 
 
12ecea8
50ca51b
 
 
 
 
 
 
 
 
 
 
70ca632
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import openai
import torch
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering
import gradio as gr
import re

# Set your OpenAI API key here temporarily for testing
openai.api_key = os.getenv("OPENAI_API_KEY")

# Check if GPU is available and use it if possible
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Load the English models and tokenizers
qa_model_name_v1 = 'salsarra/ConfliBERT-QA'
qa_model_v1 = TFAutoModelForQuestionAnswering.from_pretrained(qa_model_name_v1)
qa_tokenizer_v1 = AutoTokenizer.from_pretrained(qa_model_name_v1)

bert_model_name_v1 = 'salsarra/BERT-base-cased-SQuAD-v1'
bert_qa_model_v1 = TFAutoModelForQuestionAnswering.from_pretrained(bert_model_name_v1)
bert_qa_tokenizer_v1 = AutoTokenizer.from_pretrained(bert_model_name_v1)

# Load Spanish models and tokenizers
confli_model_spanish_name = 'salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA'
confli_model_spanish = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_spanish_name)
confli_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_model_spanish_name)

beto_model_spanish_name = 'salsarra/Beto-Spanish-Cased-NewsQA'
beto_model_spanish = TFAutoModelForQuestionAnswering.from_pretrained(beto_model_spanish_name)
beto_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_model_spanish_name)

# Load the additional Spanish models
confli_sqac_model_spanish = 'salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC'
confli_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(confli_sqac_model_spanish)
confli_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_sqac_model_spanish)

beto_sqac_model_spanish = 'salsarra/Beto-Spanish-Cased-SQAC'
beto_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(beto_sqac_model_spanish)
beto_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_sqac_model_spanish)

# Define error handling to separate input size errors from other issues
def handle_error_message(e, default_limit=512):
    error_message = str(e)
    pattern = re.compile(r"The size of tensor a \\((\\d+)\\) must match the size of tensor b \\((\\d+)\\)")
    match = pattern.search(error_message)
    if match:
        number_1, number_2 = match.groups()
        return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"

    pattern_qa = re.compile(r"indices\\[0,(\\d+)\\] = \\d+ is not in \\[0, (\\d+)\\)")
    match_qa = pattern_qa.search(error_message)
    if match_qa:
        number_1, number_2 = match_qa.groups()
        return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"

    return f"<span style='color: red; font-weight: bold;'>Error: {error_message}</span>"

# Define question_answering_v1 for ConfliBERT English with truncation=True
def question_answering_v1(context, question):
    try:
        inputs = qa_tokenizer_v1(question, context, return_tensors='tf', truncation=True)
        outputs = qa_model_v1(inputs)
        answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
        answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
        answer = qa_tokenizer_v1.convert_tokens_to_string(
            qa_tokenizer_v1.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
        )
        return f"<span style='font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

# Define bert_question_answering_v1 for BERT English with truncation=True
def bert_question_answering_v1(context, question):
    try:
        inputs = bert_qa_tokenizer_v1(question, context, return_tensors='tf', truncation=True)
        outputs = bert_qa_model_v1(inputs)
        answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
        answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
        answer = bert_qa_tokenizer_v1.convert_tokens_to_string(
            bert_qa_tokenizer_v1.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
        )
        return f"<span style='font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

# Define question_answering_spanish for ConfliBERT-Spanish-Beto-Cased-NewsQA
def question_answering_spanish(context, question):
    try:
        inputs = confli_tokenizer_spanish.encode_plus(question, context, return_tensors='tf', truncation=True)
        outputs = confli_model_spanish(inputs)
        answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
        answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
        answer = confli_tokenizer_spanish.convert_tokens_to_string(
            confli_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
        )
        return f"<span style='font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

# Define beto_question_answering_spanish for Beto-Spanish-Cased-NewsQA
def beto_question_answering_spanish(context, question):
    try:
        inputs = beto_tokenizer_spanish.encode_plus(question, context, return_tensors='tf', truncation=True)
        outputs = beto_model_spanish(inputs)
        answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
        answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
        answer = beto_tokenizer_spanish.convert_tokens_to_string(
            beto_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
        )
        return f"<span style='font-weight: bold;'>{answer}</span>"
    except Exception as e:
        return handle_error_message(e)

# Define confli_sqac_question_answering_spanish for ConfliBERT-Spanish-Beto-Cased-SQAC
def confli_sqac_question_answering_spanish(context, question):
    inputs = confli_sqac_tokenizer_spanish.encode_plus(question, context, return_tensors="tf", truncation=True)
    outputs = confli_sqac_model_spanish_qa(inputs)
    answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
    answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
    answer = confli_sqac_tokenizer_spanish.convert_tokens_to_string(
        confli_sqac_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
    )
    return f"<span style='font-weight: bold;'>{answer}</span>"

# Define beto_sqac_question_answering_spanish for Beto-Spanish-Cased-SQAC
def beto_sqac_question_answering_spanish(context, question):
    inputs = beto_sqac_tokenizer_spanish.encode_plus(question, context, return_tensors="tf", truncation=True)
    outputs = beto_sqac_model_spanish_qa(inputs)
    answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
    answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
    answer = beto_sqac_tokenizer_spanish.convert_tokens_to_string(
        beto_sqac_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end])
    )
    return f"<span style='font-weight: bold;'>{answer}</span>"

# Define a function to get ChatGPT's answer in English using the latest OpenAI API
def chatgpt_question_answering(context, question):
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": f"Context: {context}\nQuestion: {question}\nAnswer:"}
    ]
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=messages,
        max_tokens=150
    )
    return response['choices'][0]['message']['content'].strip()

# Define a function to get ChatGPT's answer in Spanish using the latest OpenAI API
def chatgpt_question_answering_spanish(context, question):
    messages = [
        {"role": "system", "content": "You are a helpful assistant that responds in Spanish."},
        {"role": "user", "content": f"Contexto: {context}\nPregunta: {question}\nRespuesta:"}
    ]
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=messages,
        max_tokens=150
    )
    return response['choices'][0]['message']['content'].strip()


# Main comparison function with language selection
def compare_question_answering(language, context, question):
    if language == "English":
        confli_answer_v1 = question_answering_v1(context, question)
        bert_answer_v1 = bert_question_answering_v1(context, question)
        chatgpt_answer = chatgpt_question_answering(context, question)
        return f"""
        <div>
            <h2 style='color: #2e8b57; font-weight: bold;'>Answers:</h2>
        </div><br>
        <div>
            <strong style='color: green; font-weight: bold;'>ConfliBERT-cont-cased-SQuAD-v1:</strong><br><span style='font-weight: bold;'>{confli_answer_v1}</span></div><br>
        <div>
            <strong style='color: orange; font-weight: bold;'>BERT-base-cased-SQuAD-v1:</strong><br><span style='font-weight: bold;'>{bert_answer_v1}</span>
        </div><br>
        <div>
            <strong style='color: #74AA9C; font-weight: bold;'>ChatGPT:</strong><br><span style='font-weight: bold;'>{chatgpt_answer}</span>
        </div><br>
        <div>
            <strong>Model Information:</strong><br>
            <a href='https://huggingface.co/salsarra/ConfliBERT-QA' target='_blank'>ConfliBERT-cont-cased-SQuAD-v1</a><br>
            <a href='https://huggingface.co/salsarra/BERT-base-cased-SQuAD-v1' target='_blank'>BERT-base-cased-SQuAD-v1</a><br>
            <a href='https://platform.openai.com/docs/models/gpt-3-5' target='_blank'>ChatGPT (GPT-3.5 Turbo)</a><br></p>
        </div>
        """
    elif language == "Spanish":
        confli_answer_spanish = question_answering_spanish(context, question)
        beto_answer_spanish = beto_question_answering_spanish(context, question)
        confli_sqac_answer_spanish = confli_sqac_question_answering_spanish(context, question)
        beto_sqac_answer_spanish = beto_sqac_question_answering_spanish(context, question)
        chatgpt_answer_spanish = chatgpt_question_answering_spanish(context, question)
        return f"""
        <div>
            <h2 style='color: #2e8b57; font-weight: bold;'>Answers:</h2>
        </div><br>
        <div>
            <strong style='color: green; font-weight: bold;'>ConfliBERT-Spanish-Beto-Cased-NewsQA:</strong><br><span style='font-weight: bold;'>{confli_answer_spanish}</span></div><br>
        <div>
            <strong style='color: orange; font-weight: bold;'>Beto-Spanish-Cased-NewsQA:</strong><br><span style='font-weight: bold;'>{beto_answer_spanish}</span>
        </div><br>
        <div>
            <strong style='color: green; font-weight: bold;'>ConfliBERT-Spanish-Beto-Cased-SQAC:</strong><br><span style='font-weight: bold;'>{confli_sqac_answer_spanish}</span>
        </div><br>
        <div>
            <strong style='color: orange; font-weight: bold;'>Beto-Spanish-Cased-SQAC:</strong><br><span style='font-weight: bold;'>{beto_sqac_answer_spanish}</span>
        </div><br>
        <div>
            <strong style='color: #74AA9C; font-weight: bold;'>ChatGPT:</strong><br><span style='font-weight: bold;'>{chatgpt_answer_spanish}</span>
        </div><br>
        <div>
            <strong>Model Information:</strong><br>
            <a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA' target='_blank'>ConfliBERT-Spanish-Beto-Cased-NewsQA</a><br>
            <a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-NewsQA' target='_blank'>Beto-Spanish-Cased-NewsQA</a><br>
            <a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-SQAC' target='_blank'>ConfliBERT-Spanish-Beto-Cased-SQAC</a><br>
            <a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-SQAC' target='_blank'>Beto-Spanish-Cased-SQAC</a><br>
            <a href='https://platform.openai.com/docs/models/gpt-3-5' target='_blank'>ChatGPT (GPT-3.5 Turbo)</a><br></p>
        </div>
        """

# Gradio interface setup
with gr.Blocks(css="""
    body {
        background-color: #f0f8ff;
        font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
    }
    h1, h1 a {
        color: #2e8b57;
        text-align: center;
        font-size: 2em;
        text-decoration: none;
    }
    h1 a:hover {
        color: #ff8c00;
    }
    h2 {
        color: #ff8c00;
        text-align: center;
        font-size: 1.5em;
    }
""") as demo:
    
    gr.Markdown("# [ConfliBERT-QA](https://eventdata.utdallas.edu/conflibert/)", elem_id="title")
    gr.Markdown("Compare answers between ConfliBERT, BERT, and ChatGPT for English, and ConfliBERT, BETO, ConfliBERT-SQAC, Beto-SQAC, and ChatGPT for Spanish.")
    
    language = gr.Dropdown(choices=["English", "Spanish"], label="Select Language")
    context = gr.Textbox(lines=5, placeholder="Enter the context here...", label="Context")
    question = gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question")
    output = gr.HTML(label="Output")
    
    with gr.Row():
        clear_btn = gr.Button("Clear")
        submit_btn = gr.Button("Submit")
    
    submit_btn.click(fn=compare_question_answering, inputs=[language, context, question], outputs=output)
    clear_btn.click(fn=lambda: ("", "", "", ""), inputs=[], outputs=[language, context, question, output])
    
    gr.Markdown("""
        <div style="text-align: center; margin-top: 20px;">
            Built by: <a href="https://www.linkedin.com/in/sultan-alsarra-phd-56977a63/" target="_blank">Sultan Alsarra</a>
        </div>
    """)

demo.launch(share=True)