Spaces:
Sleeping
Sleeping
Delete appOLD.py
Browse files
appOLD.py
DELETED
@@ -1,263 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import tensorflow as tf
|
3 |
-
from tf_keras import models, layers
|
4 |
-
from transformers import AutoTokenizer, TFAutoModelForQuestionAnswering, AutoModelForCausalLM
|
5 |
-
import gradio as gr
|
6 |
-
import re
|
7 |
-
import os
|
8 |
-
|
9 |
-
# Check if GPU is available and use it if possible
|
10 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
-
|
12 |
-
# Version Information:
|
13 |
-
confli_version_spanish = 'ConfliBERT-Spanish-Beto-Cased-NewsQA'
|
14 |
-
beto_version_spanish = 'Beto-Spanish-Cased-NewsQA'
|
15 |
-
gpt2_spanish_version = 'GPT-2-Small-Spanish'
|
16 |
-
bloom_spanish_version = 'BLOOM-1.7B'
|
17 |
-
beto_sqac_version_spanish = 'Beto-Spanish-Cased-SQAC'
|
18 |
-
|
19 |
-
# Load Spanish models and tokenizers
|
20 |
-
confli_model_spanish = 'salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA'
|
21 |
-
confli_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(confli_model_spanish)
|
22 |
-
confli_tokenizer_spanish = AutoTokenizer.from_pretrained(confli_model_spanish)
|
23 |
-
|
24 |
-
beto_model_spanish = 'salsarra/Beto-Spanish-Cased-NewsQA'
|
25 |
-
beto_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(beto_model_spanish)
|
26 |
-
beto_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_model_spanish)
|
27 |
-
|
28 |
-
beto_sqac_model_spanish = 'salsarra/Beto-Spanish-Cased-SQAC'
|
29 |
-
beto_sqac_model_spanish_qa = TFAutoModelForQuestionAnswering.from_pretrained(beto_sqac_model_spanish)
|
30 |
-
beto_sqac_tokenizer_spanish = AutoTokenizer.from_pretrained(beto_sqac_model_spanish)
|
31 |
-
|
32 |
-
# Load Spanish GPT-2 model and tokenizer
|
33 |
-
gpt2_spanish_model_name = 'datificate/gpt2-small-spanish'
|
34 |
-
gpt2_spanish_tokenizer = AutoTokenizer.from_pretrained(gpt2_spanish_model_name)
|
35 |
-
gpt2_spanish_model = AutoModelForCausalLM.from_pretrained(gpt2_spanish_model_name).to(device)
|
36 |
-
|
37 |
-
# Load BLOOM-1.7B model and tokenizer for Spanish
|
38 |
-
bloom_model_name = 'bigscience/bloom-1b7'
|
39 |
-
bloom_tokenizer = AutoTokenizer.from_pretrained(bloom_model_name)
|
40 |
-
bloom_model = AutoModelForCausalLM.from_pretrained(bloom_model_name).to(device)
|
41 |
-
|
42 |
-
def handle_error_message(e, default_limit=512):
|
43 |
-
error_message = str(e)
|
44 |
-
pattern = re.compile(r"The size of tensor a \((\d+)\) must match the size of tensor b \((\d+)\)")
|
45 |
-
match = pattern.search(error_message)
|
46 |
-
if match:
|
47 |
-
number_1, number_2 = match.groups()
|
48 |
-
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
|
49 |
-
pattern_qa = re.compile(r"indices\[0,(\d+)\] = \d+ is not in \[0, (\d+)\)")
|
50 |
-
match_qa = pattern_qa.search(error_message)
|
51 |
-
if match_qa:
|
52 |
-
number_1, number_2 = match_qa.groups()
|
53 |
-
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size {number_1} is larger than model limits of {number_2}</span>"
|
54 |
-
return f"<span style='color: red; font-weight: bold;'>Error: Text Input is over limit where inserted text size is larger than model limits of {default_limit}</span>"
|
55 |
-
|
56 |
-
# Spanish QA functions
|
57 |
-
def question_answering_spanish(context, question):
|
58 |
-
try:
|
59 |
-
inputs = confli_tokenizer_spanish(question, context, return_tensors='tf', truncation=True)
|
60 |
-
outputs = confli_model_spanish_qa(inputs)
|
61 |
-
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
|
62 |
-
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
|
63 |
-
answer = confli_tokenizer_spanish.convert_tokens_to_string(confli_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end]))
|
64 |
-
return f"<span style='color: green; font-weight: bold;'>{answer}</span>"
|
65 |
-
except Exception as e:
|
66 |
-
return handle_error_message(e)
|
67 |
-
|
68 |
-
def beto_question_answering_spanish(context, question):
|
69 |
-
try:
|
70 |
-
inputs = beto_tokenizer_spanish(question, context, return_tensors='tf', truncation=True)
|
71 |
-
outputs = beto_model_spanish_qa(inputs)
|
72 |
-
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
|
73 |
-
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
|
74 |
-
answer = beto_tokenizer_spanish.convert_tokens_to_string(beto_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end]))
|
75 |
-
return f"<span style='color: blue; font-weight: bold;'>{answer}</span>"
|
76 |
-
except Exception as e:
|
77 |
-
return handle_error_message(e)
|
78 |
-
|
79 |
-
def beto_sqac_question_answering_spanish(context, question):
|
80 |
-
try:
|
81 |
-
inputs = beto_sqac_tokenizer_spanish(question, context, return_tensors='tf', truncation=True)
|
82 |
-
outputs = beto_sqac_model_spanish_qa(inputs)
|
83 |
-
answer_start = tf.argmax(outputs.start_logits, axis=1).numpy()[0]
|
84 |
-
answer_end = tf.argmax(outputs.end_logits, axis=1).numpy()[0] + 1
|
85 |
-
answer = beto_sqac_tokenizer_spanish.convert_tokens_to_string(beto_sqac_tokenizer_spanish.convert_ids_to_tokens(inputs['input_ids'].numpy()[0][answer_start:answer_end]))
|
86 |
-
return f"<span style='color: brown; font-weight: bold;'>{answer}</span>"
|
87 |
-
except Exception as e:
|
88 |
-
return handle_error_message(e)
|
89 |
-
|
90 |
-
# Functions for Spanish GPT-2 and BLOOM-1.7B models
|
91 |
-
def gpt2_spanish_question_answering(context, question):
|
92 |
-
try:
|
93 |
-
prompt = f"Contexto:\n{context}\n\nPregunta:\n{question}\n\nRespuesta:"
|
94 |
-
inputs = gpt2_spanish_tokenizer(prompt, return_tensors='pt').to(device)
|
95 |
-
outputs = gpt2_spanish_model.generate(
|
96 |
-
inputs['input_ids'],
|
97 |
-
max_length=inputs['input_ids'].shape[1] + 50,
|
98 |
-
num_return_sequences=1,
|
99 |
-
pad_token_id=gpt2_spanish_tokenizer.eos_token_id,
|
100 |
-
do_sample=True,
|
101 |
-
top_k=40,
|
102 |
-
temperature=0.8
|
103 |
-
)
|
104 |
-
answer = gpt2_spanish_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
105 |
-
answer = answer.split("Respuesta:")[-1].strip()
|
106 |
-
return f"<span style='color: orange; font-weight: bold;'>{answer}</span>"
|
107 |
-
except Exception as e:
|
108 |
-
return handle_error_message(e)
|
109 |
-
|
110 |
-
def bloom_question_answering(context, question):
|
111 |
-
try:
|
112 |
-
prompt = f"Contexto:\n{context}\n\nPregunta:\n{question}\n\nRespuesta:"
|
113 |
-
inputs = bloom_tokenizer(prompt, return_tensors='pt').to(device)
|
114 |
-
outputs = bloom_model.generate(
|
115 |
-
inputs['input_ids'],
|
116 |
-
max_length=inputs['input_ids'].shape[1] + 50,
|
117 |
-
num_return_sequences=1,
|
118 |
-
pad_token_id=bloom_tokenizer.eos_token_id,
|
119 |
-
do_sample=True,
|
120 |
-
top_k=40,
|
121 |
-
temperature=0.8
|
122 |
-
)
|
123 |
-
answer = bloom_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
124 |
-
answer = answer.split("Respuesta:")[-1].strip()
|
125 |
-
return f"<span style='color: purple; font-weight: bold;'>{answer}</span>"
|
126 |
-
except Exception as e:
|
127 |
-
return handle_error_message(e)
|
128 |
-
|
129 |
-
# Main function for Spanish QA
|
130 |
-
def compare_question_answering_spanish(context, question):
|
131 |
-
confli_answer_spanish = question_answering_spanish(context, question)
|
132 |
-
beto_answer_spanish = beto_question_answering_spanish(context, question)
|
133 |
-
beto_sqac_answer_spanish = beto_sqac_question_answering_spanish(context, question)
|
134 |
-
gpt2_answer_spanish = gpt2_spanish_question_answering(context, question)
|
135 |
-
bloom_answer = bloom_question_answering(context, question)
|
136 |
-
return f"""
|
137 |
-
<div>
|
138 |
-
<h2 style='color: #2e8b57; font-weight: bold;'>Respuestas:</h2>
|
139 |
-
</div><br>
|
140 |
-
<div>
|
141 |
-
<strong>ConfliBERT-Spanish-Beto-Cased-NewsQA:</strong><br>{confli_answer_spanish}</div><br>
|
142 |
-
<div>
|
143 |
-
<strong>Beto-Spanish-Cased-NewsQA:</strong><br>{beto_answer_spanish}
|
144 |
-
</div><br>
|
145 |
-
<div>
|
146 |
-
<strong>Beto-Spanish-Cased-SQAC:</strong><br>{beto_sqac_answer_spanish}
|
147 |
-
</div><br>
|
148 |
-
<div>
|
149 |
-
<strong>GPT-2-Small-Spanish:</strong><br>{gpt2_answer_spanish}
|
150 |
-
</div><br>
|
151 |
-
<div>
|
152 |
-
<strong>BLOOM-1.7B:</strong><br>{bloom_answer}
|
153 |
-
</div><br>
|
154 |
-
<div>
|
155 |
-
<strong>Información del modelo:</strong><br>
|
156 |
-
ConfliBERT-Spanish-Beto-Cased-NewsQA: <a href='https://huggingface.co/salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA' target='_blank'>salsarra/ConfliBERT-Spanish-Beto-Cased-NewsQA</a><br>
|
157 |
-
Beto-Spanish-Cased-NewsQA: <a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-NewsQA' target='_blank'>salsarra/Beto-Spanish-Cased-NewsQA</a><br>
|
158 |
-
Beto-Spanish-Cased-SQAC: <a href='https://huggingface.co/salsarra/Beto-Spanish-Cased-SQAC' target='_blank'>salsarra/Beto-Spanish-Cased-SQAC</a><br>
|
159 |
-
GPT-2-Small-Spanish: <a href='https://huggingface.co/datificate/gpt2-small-spanish' target='_blank'>datificate GPT-2 Small Spanish</a><br>
|
160 |
-
BLOOM-1.7B: <a href='https://huggingface.co/bigscience/bloom-1b7' target='_blank'>bigscience BLOOM-1.7B</a><br>
|
161 |
-
</div>
|
162 |
-
"""
|
163 |
-
|
164 |
-
# Define the CSS for Gradio interface
|
165 |
-
css_styles = """
|
166 |
-
body {
|
167 |
-
background-color: #f0f8ff;
|
168 |
-
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
|
169 |
-
}
|
170 |
-
h1 a {
|
171 |
-
color: #2e8b57;
|
172 |
-
text-align: center;
|
173 |
-
font-size: 2em;
|
174 |
-
text-decoration: none;
|
175 |
-
}
|
176 |
-
h1 a:hover {
|
177 |
-
color: #ff8c00;
|
178 |
-
}
|
179 |
-
h2 {
|
180 |
-
color: #ff8c00;
|
181 |
-
text-align: center;
|
182 |
-
font-size: 1.5em;
|
183 |
-
}
|
184 |
-
.gradio-container {
|
185 |
-
max-width: 100%;
|
186 |
-
margin: 10px auto;
|
187 |
-
padding: 10px;
|
188 |
-
background-color: #ffffff;
|
189 |
-
border-radius: 10px;
|
190 |
-
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
191 |
-
}
|
192 |
-
.gr-input, .gr-output {
|
193 |
-
background-color: #ffffff;
|
194 |
-
border: 1px solid #ddd;
|
195 |
-
border-radius: 5px;
|
196 |
-
padding: 10px;
|
197 |
-
font-size: 1em;
|
198 |
-
}
|
199 |
-
.gr-title {
|
200 |
-
font-size: 1.5em;
|
201 |
-
font-weight: bold;
|
202 |
-
color: #2e8b57;
|
203 |
-
margin-bottom: 10px;
|
204 |
-
text-align: center;
|
205 |
-
}
|
206 |
-
.gr-description {
|
207 |
-
font-size: 1.2em;
|
208 |
-
color: #ff8c00;
|
209 |
-
margin-bottom: 10px;
|
210 |
-
text-align: center.
|
211 |
-
}
|
212 |
-
.header-title-center a {
|
213 |
-
font-size: 4em;
|
214 |
-
font-weight: bold;
|
215 |
-
color: darkorange;
|
216 |
-
text-align: center;
|
217 |
-
display: block.
|
218 |
-
}
|
219 |
-
.gr-button {
|
220 |
-
background-color: #ff8c00;
|
221 |
-
color: white;
|
222 |
-
border: none;
|
223 |
-
padding: 10px 20px;
|
224 |
-
font-size: 1em.
|
225 |
-
border-radius: 5px;
|
226 |
-
cursor: pointer.
|
227 |
-
}
|
228 |
-
.gr-button:hover {
|
229 |
-
background-color: #ff4500.
|
230 |
-
}
|
231 |
-
.footer {
|
232 |
-
text-align: center.
|
233 |
-
margin-top: 10px.
|
234 |
-
font-size: 0.9em.
|
235 |
-
color: #666.
|
236 |
-
width: 100%.
|
237 |
-
}
|
238 |
-
.footer a {
|
239 |
-
color: #2e8b57.
|
240 |
-
font-weight: bold.
|
241 |
-
text-decoration: none.
|
242 |
-
}
|
243 |
-
.footer a:hover {
|
244 |
-
text-decoration: underline.
|
245 |
-
}
|
246 |
-
"""
|
247 |
-
|
248 |
-
# Define the Gradio interface
|
249 |
-
demo = gr.Interface(
|
250 |
-
fn=compare_question_answering_spanish,
|
251 |
-
inputs=[
|
252 |
-
gr.Textbox(lines=5, placeholder="Ingrese el contexto aquí...", label="Contexto"),
|
253 |
-
gr.Textbox(lines=2, placeholder="Ingrese su pregunta aquí...", label="Pregunta")
|
254 |
-
],
|
255 |
-
outputs=gr.HTML(label="Salida"),
|
256 |
-
title="<a href='https://eventdata.utdallas.edu/conflibert/' target='_blank'>ConfliBERT-Spanish-QA</a>",
|
257 |
-
description="Compare respuestas entre los modelos ConfliBERT, BETO, Beto SQAC, GPT-2 Small Spanish y BLOOM-1.7B para preguntas en español.",
|
258 |
-
css=css_styles,
|
259 |
-
allow_flagging="never"
|
260 |
-
)
|
261 |
-
|
262 |
-
# Launch the Gradio demo
|
263 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|