|
import gradio as gr |
|
from transformers import pipeline |
|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor |
|
import os |
|
|
|
|
|
|
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
|
|
model_id = "openai/whisper-large-v3-turbo" |
|
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True |
|
) |
|
model.to(device) |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
|
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
chunk_length_s=30, |
|
batch_size=16, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
) |
|
|
|
|
|
def transcribe(audio): |
|
if audio is None or not os.path.exists(audio): |
|
return "Input de audio inv谩lido. Por favor, sube un archivo de audio v谩lido." |
|
|
|
|
|
try: |
|
result = pipe(audio) |
|
return result["text"] |
|
except Exception as e: |
|
return f"Ocurri贸 un error durante la transcripci贸n: {e}" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=transcribe, |
|
inputs=gr.Audio(type="filepath", label="Subir archivo de audio"), |
|
outputs=gr.Textbox(label="Resultado de la transcripci贸n"), |
|
title="Transcripci贸n por reconocimiento de audio", |
|
description="Sube tu audio para transcribir a texto.\n\nEV 2024", |
|
examples=[ |
|
["example_audio_1.wav"], |
|
["example_audio_2.wav"], |
|
], |
|
live=True, |
|
theme="default", |
|
) |
|
|
|
iface.launch() |