|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
|
|
model_name = "unsloth/Llama-3.2-1B-Instruct" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.float32, |
|
low_cpu_mem_usage=True, |
|
device_map="cpu" |
|
) |
|
|
|
def generate_text(prompt, max_new_tokens, temperature): |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=int(max_new_tokens), |
|
temperature=temperature, |
|
num_return_sequences=1, |
|
do_sample=True, |
|
) |
|
|
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_text, |
|
inputs=[ |
|
gr.Textbox(lines=5, label="Enter your prompt"), |
|
gr.Slider(50, 500, value=200, step=1, label="Maximum New Tokens"), |
|
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature") |
|
], |
|
outputs=gr.Textbox(label="Generated Text"), |
|
title="Text Generation with Llama-3.2-1B-Instruct", |
|
description="Enter a prompt to generate text using the Llama-3.2-1B-Instruct model." |
|
) |
|
|
|
|
|
iface.launch() |