app para avalição do modelo treinado
Browse files- app.py +21 -7
- requirements.txt +3 -1
app.py
CHANGED
@@ -1,21 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
|
5 |
# Load model and tokenizer
|
6 |
-
model_name = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def generate_text(prompt,
|
11 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
12 |
|
13 |
with torch.no_grad():
|
14 |
outputs = model.generate(
|
15 |
**inputs,
|
16 |
-
|
17 |
temperature=temperature,
|
18 |
-
num_return_sequences=1
|
|
|
19 |
)
|
20 |
|
21 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
@@ -25,7 +39,7 @@ iface = gr.Interface(
|
|
25 |
fn=generate_text,
|
26 |
inputs=[
|
27 |
gr.Textbox(lines=5, label="Enter your ESG-related prompt"),
|
28 |
-
gr.Slider(50, 500, value=200, label="Maximum
|
29 |
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
|
30 |
],
|
31 |
outputs=gr.Textbox(label="Generated ESG Report Paragraph"),
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
3 |
import torch
|
4 |
|
5 |
# Load model and tokenizer
|
6 |
+
model_name = "unsloth/Llama-3.2-1B-Instruct-bnb-4bit" # Replace with your model's name
|
7 |
+
|
8 |
+
# Configure quantization
|
9 |
+
bnb_config = BitsAndBytesConfig(
|
10 |
+
load_in_4bit=True,
|
11 |
+
bnb_4bit_use_double_quant=True,
|
12 |
+
bnb_4bit_quant_type="nf4",
|
13 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
14 |
+
)
|
15 |
+
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
model_name,
|
19 |
+
quantization_config=bnb_config,
|
20 |
+
device_map="auto",
|
21 |
+
)
|
22 |
|
23 |
+
def generate_text(prompt, max_new_tokens, temperature):
|
24 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
25 |
|
26 |
with torch.no_grad():
|
27 |
outputs = model.generate(
|
28 |
**inputs,
|
29 |
+
max_new_tokens=max_new_tokens,
|
30 |
temperature=temperature,
|
31 |
+
num_return_sequences=1,
|
32 |
+
do_sample=True,
|
33 |
)
|
34 |
|
35 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
39 |
fn=generate_text,
|
40 |
inputs=[
|
41 |
gr.Textbox(lines=5, label="Enter your ESG-related prompt"),
|
42 |
+
gr.Slider(50, 500, value=200, label="Maximum New Tokens"),
|
43 |
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
|
44 |
],
|
45 |
outputs=gr.Textbox(label="Generated ESG Report Paragraph"),
|
requirements.txt
CHANGED
@@ -2,4 +2,6 @@ huggingface_hub==0.25.2
|
|
2 |
|
3 |
gradio
|
4 |
transformers
|
5 |
-
torch
|
|
|
|
|
|
2 |
|
3 |
gradio
|
4 |
transformers
|
5 |
+
torch
|
6 |
+
accelerate>=0.26.0
|
7 |
+
bitsandbytes
|