File size: 7,676 Bytes
05e5eb9
bba907b
 
05e5eb9
de7b824
 
8ff9692
 
 
5d478c9
 
8ff9692
 
 
0896ff0
 
 
 
 
 
 
 
 
 
 
 
 
8ff9692
 
 
 
 
0896ff0
 
 
 
 
 
 
 
 
 
8ff9692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0896ff0
 
 
 
 
8ff9692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0896ff0
 
de7b824
 
 
 
 
 
 
 
 
 
 
 
001fc24
 
 
5d478c9
001fc24
de7b824
 
 
 
05e5eb9
bba907b
 
561eefd
de7b824
bba907b
 
 
 
 
de7b824
 
 
30987fc
de7b824
001fc24
16ba14a
 
 
 
bba907b
7537b38
 
 
 
16ba14a
bba907b
 
16ba14a
de7b824
16ba14a
 
 
 
 
 
 
bba907b
 
 
16ba14a
bba907b
e87d0c7
30987fc
5d478c9
30987fc
edd7b07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9af452
 
 
 
 
 
 
 
 
 
edd7b07
 
 
de7b824
 
f45f99c
154242e
bd2c03e
 
 
edd7b07
 
 
 
 
 
 
82fe5ff
edd7b07
 
 
 
 
 
 
 
 
 
 
 
 
826e9dc
54081a3
826e9dc
 
 
 
 
 
 
 
edd7b07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6ad64a
 
edd7b07
05e5eb9
bba907b
e87d0c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
from llama_cpp import Llama
import requests

# Define available models
MODELS = {
    # 3B+ Models
    "Phi-3.5-mini-4B": {
        "repo_id": "bartowski/Phi-3.5-mini-instruct-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },    
    "Llama-3.2-3B": {
        "repo_id": "lmstudio-community/Llama-3.2-3B-Instruct-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },
    "Granite-3B": {
        "repo_id": "lmstudio-community/granite-3.0-3b-a800m-instruct-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },
    "Qwen2.5-3B": {
        "repo_id": "lmstudio-community/Qwen2.5-3B-Instruct-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },
    "Gemma-2B": {
        "repo_id": "lmstudio-community/gemma-2-2b-it-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },
    "SmolLM2-1.7B": {
        "repo_id": "HuggingFaceTB/SmolLM2-1.7B-Instruct-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },
    "Qwen2.5-1.5B": {
        "repo_id": "lmstudio-community/Qwen2.5-1.5B-Instruct-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },
    "Llama-3.2-1B": {
        "repo_id": "lmstudio-community/Llama-3.2-1B-Instruct-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },    
    "AMD-OLMo-1B": {
        "repo_id": "lmstudio-community/AMD-OLMo-1B-SFT-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },
    "AMD-OLMo-1B-DPO": {
        "repo_id": "lmstudio-community/AMD-OLMo-1B-SFT-DPO-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },
    "Granite-1B": {
        "repo_id": "lmstudio-community/granite-3.0-1b-a400m-instruct-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },
    
    # Sub-1B Models
    "MobileLLM-600M": {
        "repo_id": "pjh64/MobileLLM-600M-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },
    "Danube-500M": {
        "repo_id": "BoscoTheDog/Danube_3-500M_Chat_GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },
    "Qwen2.5-500M": {
        "repo_id": "Qwen/Qwen2.5-0.5B-Instruct-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },
    "MobileLLM-350M": {
        "repo_id": "pjh64/MobileLLM-350M-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    },
    "MobileLLM-125M": {
        "repo_id": "pjh64/MobileLLM-125M-GGUF",
        "filename": "*Q4_K_M.gguf",
        "chat_format": "chatml"
    }
}

# Initialize with default model
current_model = None

def load_model(model_name):
    global current_model
    model_info = MODELS[model_name]
    current_model = Llama.from_pretrained(
        repo_id=model_info["repo_id"],
        filename=model_info["filename"],
        verbose=True,
        n_ctx=32768,
        n_threads=2,
        chat_format=model_info["chat_format"]
    )
    return current_model

# Initialize with first model
current_model = load_model(list(MODELS.keys())[0])

def respond(
    message,
    history,
    model_name,
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    global current_model
    
    # Load new model if changed
    if current_model is None or model_name not in str(current_model.model_path):
        current_model = load_model(model_name)
    
    # Start with system message
    messages = []
    if system_message and system_message.strip():
        messages.append({"role": "system", "content": system_message})

    # Add chat history
    if history:
        messages.extend(history)
    
    # Add current message
    messages.append({"role": "user", "content": message})

    # Generate response
    response = current_model.create_chat_completion(
        messages=messages,
        stream=True,
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p
    )
    
    message_repl = ""
    for chunk in response:
        if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
            message_repl = message_repl + chunk['choices'][0]["delta"]["content"]
        yield message_repl

def get_chat_title(model_name):
    return f"{model_name} < - Load different model in Additional Inputs"

with gr.Blocks() as demo:
    with gr.Row():
        title = gr.HTML(value=f"<h1>{get_chat_title(list(MODELS.keys())[0])}</h1>")
    
    with gr.Row():
        chatbot = gr.Chatbot(
            value=[],
            type="messages",
            label="Chat Messages"
        )
    
    with gr.Row():
        msg = gr.Textbox(
            label="Message",
            placeholder="Type your message here...",
            lines=1
        )
    
    with gr.Row():
        _ = gr.Button(value="", visible=False, scale=4)  # Spacer
        submit = gr.Button(
            "Submit",
            variant="primary",
            scale=2,
            size="lg"
        )
        _ = gr.Button(value="", visible=False, scale=4)  # Spacer
    
    with gr.Accordion("Additional Inputs", open=False):
        model_selector = gr.Dropdown(
            choices=list(MODELS.keys()),
            value=list(MODELS.keys())[0],
            label="Select Model",
            interactive=True,
            allow_custom_value=False,
            elem_id="model_selector",
            show_label=True
        )
        system_msg = gr.Textbox(value="You are a friendly Chatbot.", label="System message")
        max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
        temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
        top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
    
    gr.Markdown(
        "GGUF is popular model format, try [HG models](https://huggingface.co/models?search=-GGUF) localy in: [LM Studio AI](https://lmstudio.ai) for PC | PocketPal AI ([Android](https://play.google.com/store/apps/details?id=com.pocketpalai) & [iOS](https://play.google.com/store/apps/details?id=com.pocketpalai)) on Tablet or Mobile"
    )
    
    def update_title(model_name):
        return f"<h1>{get_chat_title(model_name)}</h1>"
    
    model_selector.change(
        fn=update_title,
        inputs=[model_selector],
        outputs=[title]
    )
    
    def submit_message(message, chat_history, model_name, system_message, max_tokens, temperature, top_p):
        history = [] if chat_history is None else chat_history
        current_response = ""
        
        # Stream the assistant's response
        for response in respond(message, history, model_name, system_message, max_tokens, temperature, top_p):
            current_response = response
            new_history = history + [
                {"role": "user", "content": message},
                {"role": "assistant", "content": current_response}
            ]
            yield new_history, ""
    
    submit_event = submit.click(
        fn=submit_message,
        inputs=[msg, chatbot, model_selector, system_msg, max_tokens, temperature, top_p],
        outputs=[chatbot, msg],
        show_progress=True,
    )
    
    msg.submit(
        fn=submit_message,
        inputs=[msg, chatbot, model_selector, system_msg, max_tokens, temperature, top_p],
        outputs=[chatbot, msg],
        show_progress=True,
    )
    
    demo.theme = gr.themes.Soft(
        primary_hue="blue",
        secondary_hue="purple",
    )

if __name__ == "__main__":
    demo.launch()