import gradio as gr from llama_cpp import Llama import requests # Define available models MODELS = { # 3B+ Models "Phi-3.5-mini-4B": { "repo_id": "bartowski/Phi-3.5-mini-instruct-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, "Llama-3.2-3B": { "repo_id": "lmstudio-community/Llama-3.2-3B-Instruct-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, "Granite-3B": { "repo_id": "lmstudio-community/granite-3.0-3b-a800m-instruct-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, "Qwen2.5-3B": { "repo_id": "lmstudio-community/Qwen2.5-3B-Instruct-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, "Gemma-2B": { "repo_id": "lmstudio-community/gemma-2-2b-it-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, "SmolLM2-1.7B": { "repo_id": "HuggingFaceTB/SmolLM2-1.7B-Instruct-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, "Qwen2.5-1.5B": { "repo_id": "lmstudio-community/Qwen2.5-1.5B-Instruct-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, "Llama-3.2-1B": { "repo_id": "lmstudio-community/Llama-3.2-1B-Instruct-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, "AMD-OLMo-1B": { "repo_id": "lmstudio-community/AMD-OLMo-1B-SFT-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, "AMD-OLMo-1B-DPO": { "repo_id": "lmstudio-community/AMD-OLMo-1B-SFT-DPO-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, "Granite-1B": { "repo_id": "lmstudio-community/granite-3.0-1b-a400m-instruct-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, # Sub-1B Models "MobileLLM-600M": { "repo_id": "pjh64/MobileLLM-600M-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, "Danube-500M": { "repo_id": "BoscoTheDog/Danube_3-500M_Chat_GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, "Qwen2.5-500M": { "repo_id": "Qwen/Qwen2.5-0.5B-Instruct-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, "MobileLLM-350M": { "repo_id": "pjh64/MobileLLM-350M-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" }, "MobileLLM-125M": { "repo_id": "pjh64/MobileLLM-125M-GGUF", "filename": "*Q4_K_M.gguf", "chat_format": "chatml" } } # Initialize with default model current_model = None def load_model(model_name): global current_model model_info = MODELS[model_name] current_model = Llama.from_pretrained( repo_id=model_info["repo_id"], filename=model_info["filename"], verbose=True, n_ctx=32768, n_threads=2, chat_format=model_info["chat_format"] ) return current_model # Initialize with first model current_model = load_model(list(MODELS.keys())[0]) def respond( message, history, model_name, system_message, max_tokens, temperature, top_p, ): global current_model # Load new model if changed if current_model is None or model_name not in str(current_model.model_path): current_model = load_model(model_name) # Start with system message messages = [] if system_message and system_message.strip(): messages.append({"role": "system", "content": system_message}) # Add chat history if history: messages.extend(history) # Add current message messages.append({"role": "user", "content": message}) # Generate response response = current_model.create_chat_completion( messages=messages, stream=True, max_tokens=max_tokens, temperature=temperature, top_p=top_p ) message_repl = "" for chunk in response: if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]: message_repl = message_repl + chunk['choices'][0]["delta"]["content"] yield message_repl def get_chat_title(model_name): return f"{model_name} < - Load different model in Additional Inputs" with gr.Blocks() as demo: with gr.Row(): title = gr.HTML(value=f"

{get_chat_title(list(MODELS.keys())[0])}

") with gr.Row(): chatbot = gr.Chatbot( value=[], type="messages", label="Chat Messages" ) with gr.Row(): msg = gr.Textbox( label="Message", placeholder="Type your message here...", lines=1 ) with gr.Row(): _ = gr.Button(value="", visible=False, scale=4) # Spacer submit = gr.Button( "Submit", variant="primary", scale=2, size="lg" ) _ = gr.Button(value="", visible=False, scale=4) # Spacer with gr.Accordion("Additional Inputs", open=False): model_selector = gr.Dropdown( choices=list(MODELS.keys()), value=list(MODELS.keys())[0], label="Select Model", interactive=True, allow_custom_value=False, elem_id="model_selector", show_label=True ) system_msg = gr.Textbox(value="You are a friendly Chatbot.", label="System message") max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") gr.Markdown( "GGUF is popular model format, try [HG models](https://huggingface.co/models?search=-GGUF) localy in: [LM Studio AI](https://lmstudio.ai) for PC | PocketPal AI ([Android](https://play.google.com/store/apps/details?id=com.pocketpalai) & [iOS](https://play.google.com/store/apps/details?id=com.pocketpalai)) on Tablet or Mobile" ) def update_title(model_name): return f"

{get_chat_title(model_name)}

" model_selector.change( fn=update_title, inputs=[model_selector], outputs=[title] ) def submit_message(message, chat_history, model_name, system_message, max_tokens, temperature, top_p): history = [] if chat_history is None else chat_history current_response = "" # Stream the assistant's response for response in respond(message, history, model_name, system_message, max_tokens, temperature, top_p): current_response = response new_history = history + [ {"role": "user", "content": message}, {"role": "assistant", "content": current_response} ] yield new_history, "" submit_event = submit.click( fn=submit_message, inputs=[msg, chatbot, model_selector, system_msg, max_tokens, temperature, top_p], outputs=[chatbot, msg], show_progress=True, ) msg.submit( fn=submit_message, inputs=[msg, chatbot, model_selector, system_msg, max_tokens, temperature, top_p], outputs=[chatbot, msg], show_progress=True, ) demo.theme = gr.themes.Soft( primary_hue="blue", secondary_hue="purple", ) if __name__ == "__main__": demo.launch()